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Overview

ABC subfamily G, isoform 2 (ABCG2) is a gene encoding the Breast Cancer Resistance 

Protein (BCRP), which is an ATP-binding cassette (ABC) efflux transporter [1]. The 

transporter has a broad substrate profile, including much overlap with P-glycoprotein (P-gp; 

encoded by the gene ABCB1) and with MRP1 (encoded by the gene ABCC1). Together 

these 3 transporters are among the most studied members of the ABC efflux transporter 

family [2].

BCRP substrates include endogenous and naturally occurring polar molecules, particularly 

conjugated organic ions, in addition to chemotherapeutics [1]. These substrates include 

dietary flavonoids, porphyrins such as heme, estrogen precursors, and the carcinogenic 

heterocyclic amines (PhIP) found in cooked meat and fish [1,3]. Over-activity and 

overexpression of the BCRP protein, such as caused by genetic variation, have been 

associated with resistance to chemotherapy, including tyrosine kinase inhibitors. The 

International Transporter Consortium has identified ABCG2 as a pharmacogene with 

clinically important polymorphisms [4]. Here we describe the role of ABCG2 in efflux 

transport and highlight its pharmacogenetic relationships.
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Molecular and Protein Structure

The ABCG2 gene was first discovered in 1998 in a breast cancer cell line, MCF-7/AdrVp, 

which was resistant to chemotherapy, but did not express other efflux transporters that had 

already been associated with resistance at that time [3]. As a result the protein was named 

Breast Cancer Resistance Protein (BCRP). Subsequently, the cDNA was cloned, and the 

gene, ABCG2, was identified on chromosome 4q22 [2]. ABCG2 consists of 16 exons and 15 

introns that span 66 kb [5] (Entrez Gene ID: 9429, GenBank reference sequence 

NG_032067.2). The BCRP protein is 72 kDa in size and contains 655 amino acids, with the 

translation start site located in exon 2 [6,7]. There have been three distinct upstream 

promoters identified that affect the size of the 5′ UTR, but all three isoforms retain the ATG 

start site in exon 2 [8]. The ABCG2 promoter is TATA-less and contains multiple SP-1 sites 

downstream of a CpG island [5]. BCRP expression is significantly decreased by methylation 

of the CpG island and increased upon the inhibition of histone deacetylase (HDAC) [9–11].

Despite much overlap in substrates, the protein orientation is the reverse configuration 

compared to other ABC transporters, with the ATP-binding domain at the N terminus and 

the transmembrane domains at the C terminus [7,12]. The consequences of this reversed 

orientation are unknown. However, transport direction does not seem to be affected, as 

binding pockets flank the nucleotide binding domain as they do for P-gp [13]. G family 

transporters like BCRP are considered “half-transporters” because they have only one of 

each of the nucleotide binding and membrane spanning domains compared to other ABC 

transporters, which have two [14,15]. A 3-D structure of BCRP, analyzed by electron 

crystallography from 2-D crystals, revealed that BCRP exists as a symmetric homodimer, 

but recent studies have suggested the possibility that BCRP may also function as a higher 

order oligomer such as a tetramer [16,17]. The protein is thought to homodimerize via 

intermolecular disulfide bridges to create the active transporter [18,19]. This dimerization is 

mediated by Pim-1 phosphorylation at Thr362 in the endoplasmic reticulum before the 

protein is transferred to the golgi for post-translational processing, after which it is 

transported to the apical cell membrane [20,21]. Although BCRP is typically glycosylated at 

the Arg596 residue, this glycosylation does not appear to be important for expression, 

trafficking, or function [22].

The ABCG2 gene is found in all vertebrates that have been sequenced [23]. While fish have 

3 or more copies of the ABCG2 gene, most species have only one copy [23,24].

Tissue Distribution and Physiological Function

The BCRP protein functions as an efflux transporter that protects tissues from xenobiotics 

and harmful metabolites. Expressed on apical cell membranes of the placenta, brain, 

prostate, gastrointestinal tract, testes, ovaries, hepatocytes, renal tubules, stem cells, adrenal 

gland, uterus, bile ducts, gallbladder, central nervous system, and endothelium of veins and 

capillaries, BCRP mediates absorption, distribution, and elimination of its substrates [1,25–

29]. BCRP is most highly expressed in brain tissue, the cervix, the small intestine, and the 

uterus [30]. Efflux by BCRP requires ATP hydrolysis to shuttle molecules against the 
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concentration gradient [2,3,31]. Activity is altered by the lipid membrane environment, 

specifically cholesterol content, and may vary between tissues [3,32,33].

BCRP-mediated efflux protects tissues against mutagens and carcinogens found in the diet, 

such as polycyclic aromatic hydrocarbons and heterocyclic amines [7]. Mice deficient in 

BCRP1 were found to have higher area under the plasma concentration-time curve (AUC) 

exposure to the carcinogen PhIP [7]. BCRP is also highly expressed in a side population of 

stem cells derived from the bone marrow. These cells have long-term repopulating capacity 

and BCRP acts as a protective barrier from oxidative stress products that could cause genetic 

damage. It is also thought that BCRP, along with P-gp, may play an important role in organ 

regeneration [34].

Efflux via BCRP acts as a protective barrier in tissues central to substrate absorption and 

elimination. Within the intestine, BCRP expression decreases along the length of the 

intestine, where it limits absorption of xenobiotics from the gut [35]. BCRP is also highly 

expressed in the kidney and liver, where it mediates the elimination of its substrates from the 

blood. A vital part of the blood-brain barrier, BCRP limits the penetration of compounds 

into the brain. In the kidney, BCRP is a high-capacity transporter for uric acid and actively 

secretes excess uric acid into the urine [36].

BCRP protein expression is upregulated in the ducts and lobules of lactating breast tissue, 

and may thereby concentrate vitamins such as ribaflavin and minerals into milk [2,28], while 

simultaneously concentrating xenobiotics present in the systemic circulation into milk. It is 

also highly expressed in the placental syncytiotrophoblasts, protecting the fetus from 

harmful metabolites and compounds [28,37].

Based on studies in humans and mice, reports conflict as to whether women or men might 

have increased hepatic BCRP expression [6,38,39], though gender-related differences in the 

pharmacokinetics of the BCRP substrates topotecan [40] and doxorubin [41] suggest that 

men may have higher BCRP activity [38].

Compounds that Interact with BCRP

Many factors influence BCRP expression and activity. As mentioned previously, epigenetic 

factors such as methylation and histone deacetylation can affect BCRP expression as well as 

binding to hypoxia, estrogen, and progesterone response elements within the promoter [23]. 

As a result, estrogen and progesterone upregulate ABCG2 expression [42–44], while 

estradiol and the microRNAs hsa-miR-519c, hsa-miR520h, and hsa-miR328 downregulate 

ABCG2 expression [45–47]. Stressors and exogenous compounds can also affect expression 

via activation of AhR, CAR, PXR, GR, ER-β, PPAR-γand Nrf2 [17,48]. Finally, BCRP 

expression is mediated via the PI3K-Akt pathway and can be down-regulated using tyrosine 

kinase inhibitors [49,50].

Although the exact topology of BCRP’s binding sites is unknown, kinetic and equilibrium 

data suggest that there are two symmetric substrate binding sites and multiple allosteric sites 

allowing for non-competitive inhibition [3,51,52]. The list of compounds that interact with 

BCRP continues to grow (Table 1). BCRP inhibition is complex because any substrate for 
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BCRP may also serve as a competitive inhibitor at the right concentration. However, since 

BCRP has multiple binding sites, a lack of competitive inhibition does not imply that the 

compound is not a BCRP substrate. Further studies are needed to elucidate the exact 

properties of these binding sites and the effects of competitive and allosteric inhibition. 

Some compounds currently listed as inhibitors may later be discovered also to be BCRP 

substrates. Fumitremorgin C and its more potent derivative Ko143, however, appear to 

inhibit BCRP transport through an allosteric mechanism and offer an effective way to inhibit 

BCRP transport no matter the substrate or binding pocket. In fact, Ko143 is one of the most 

potent yet least toxic BCRP inhibitors known to date [51,53–56].

Many substrates that undergo efflux by BCRP also undergo efflux by P-gp and MRP1 [2]. In 

addition to compounds listed in Table 1, more comprehensive lists of BCRP substrates can 

be found in reviews [1,3,7,17,23,57].

Drug Interactions/Multi-drug Resistance

BCRP-mediated drug-drug interactions (DDIs) can severely affect the safety and efficacy of 

BCRP substrates, particularly those with a narrow therapeutic index. Because of this, the US 

Food and Drug Administration (FDA) and European Medicines Agency (EMA) recommend 

pre-clinical testing to determine whether a new molecular entity is a BCRP substrate, and 

thus a potential victim of DDIs, or a BCRP inhibitor, and thus a perpetrator of DDIs. The 

FDA has published complete guidance on whether a compound should be tested in a clinical 

DDI study based on potency and ADME characteristics [58–60].

Safety is a consideration for BCRP substrates when dosed with an inhibitor because of 

increased oral bioavailability and decreased hepatic clearance. Plasma concentrations of 

BCRP substrates increase when dosed with a BCRP inhibitor, such as the interaction 

between topotecan and elacridar, and between pitavastatin and cyclosporin A [1,2,7]. 

Conversely, an increase in BCRP expression has been linked to lower plasma drug levels, 

although there is little and conflicting data on compounds that might induce BCRP 

expression [61]. Clinical DDI studies should be designed thoughtfully, because many BCRP 

substrates and inhibitors interact with other membrane transporters. For example, 

rosuvastatin is recommended as a probe for identifying BCRP inhibition, but rosuvastatin 

pharmacokinetics are also highly dependent on OATP1B1 activity [19,62]. BCRP activity 

can also be inhibited by natural compounds in the diet such as curcumin, so dietary 

restrictions should also be considered for DDI studies [19].

BCRP overexpression is prevalent in many cancers, especially stomach, colon, and 

esophageal cancer. It has been shown that cancer cells can induce BCRP expression through 

gene amplification and chromosomal translocation [63]. Overexpression is typically 

associated with a worse prognosis, as many chemotherapeutics are BCRP substrates. In 

clinical studies, patients with higher expression of BCRP responded more poorly to the 

tyrosine kinase inhibitors imatinib, nilotinib, and dasatinib, and to photosensitizer 

chemotherapeutics [64–67]. ABC inhibitors, antisense oligonucleotides, siRNA, 

transcriptional regulation, antibodies, and drug delivery systems have all been examined as 

potential therapies to resensitize these resistant cancer cells, although few have shown 
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clinical promise. Many BCRP inhibitors caused serious neurotoxicity, perhaps due to off-

target BCRP inhibition at the blood-brain barrier. Although some BCRP inhibitors are still 

being examined for their efficacy and safety, the field has moved away from developing 

chemotherapeutics that undergo efflux by ABC transporters [66,68].

ABCG2 variants

Many single nucleotide polymorphisms, resulting in both synonymous and nonsynonymous 

changes, have been identified in the ABCG2 gene [69–71]. Additionally, sequence diversity 

in the cis-regulatory regions has been reported to affect BCRP expression, and over 100 non-

coding variants of ABCG2 have been associated with altered mRNA expression [30,72,73]. 

Both germline and somatic mutations have important implications for chemotherapeutic 

resistance. Table 2 summarizes the most common germline BCRP missense variants.

The two most common and extensively studied variants are rs2231137 (NM_004827.2: c.

34G>A), which results in a V12M replacement (NP_004818.2: p.Val12Met), and rs2231142 

(NM_004827.2:c.421C>A), which results in a Q141K substitution 

(NP_004818.2:p.Gln141Lys) [31,74]. The c.34G>A SNP (rs2231137) variant is located in 

exon 2 and reportedly does not affect expression, localization, or function of BCRP, or affect 

the pharmacokinetics of BCRP substrates [1,6,75]. However, in in vitro studies in 

transfected K562 cells, the c.34G>A variant was associated with reduced activity of the 

BCRP transporter, resulting in decreased resistance to tyrosine kinase inhibitors [76].

The c.421C>A (rs2231142) variant is located in exon 5 and is in the nucleotide binding 

domain of the transporter. It has been found to decrease the expression of BCRP due to 

increased degradation of the variant protein in the endoplasmic reticulum [1,6,7,38,77]. 

Expression of the BCRP protein was reported to be 30-40% that of protein with the 

reference sequence, and expression in the placenta, specifically, also was reportedly lower 

[74,75]. The c.421C>A variant has been found to affect pharmacokinetics of, response to, 

and toxicity of compounds that are BCRP substrates, including chemotherapeutics and 

endogenous compounds [70,78–81]. This variant was identified by the International 

Transporter Consortium as a clinically important transporter pharmacogene based on three 

criteria: 1) genome wide significance of an association between the variant and one or more 

drugs from genome wide association studies, 2) significant association of the variant and 

drug outcome from candidate gene studies, and 3) functional changes resulting from the 

polymorphism found in in vitro studies [4]. The in vivo intestinal BCRP transport activity in 

people homozygous for the A allele is reported to be approximately 23% of that in the c.

421CC subjects [80]. Furthermore, the AUC of sulfasalazine, a drug used as a BCRP probe 

in vivo, is reportedly 2.5 times greater in patients carrying the A allele compared to patients 

without it [82]. A study in people of Japanese descent reported a 1.9 - 3.5 times greater AUC 

of sulfasalazine in patients with the c.421C>A variant, but this finding was not replicated in 

a study of people of Chinese descent [83]. Other studies found that patients of Japanese 

descent with the c.421C>A variant who were being treated with sunitinib for advanced renal 

cell carcinoma were more likely to develop grade 3 or grade 4 thrombocytopenia [81,84,85], 

and that the variant was significantly associated with increased sunitinib exposure [86]. 

Furthermore, patients homozygous for the reference allele may have lower plasma 
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concentrations of atorvastatin, simvastatin, and fluvastatin [1,87,88] and may respond more 

poorly to FOLFOX/XELOX therapy [89] compared to patients homozygous for the A allele. 

Additionally, patients with the AA genotype at c.421 may have reduced response to 

allopurinol when treated for gout as compared to patients with the AC or CC genotypes 

[90,91], and a greater incidence of adverse events with gefitinib treatment was reported with 

the c.421C>A variant [2,38]. The A allele is found more commonly in East Asian 

populations (27-35% in Japanese and Chinese study participants) than in Caucasian 

populations (6-14%) and African American populations (1-4%) [4,38,75,92]. This difference 

in allele frequency at c.421 may be responsible for the different recommended initial dosing 

of rosuvastatin for patients of Asian descent (5 mg/day) compared to patients not of Asian 

descent (10-20 mg/day) [93]. Compared to Caucasian patients, Asian patients were found to 

have a 2-fold increase in drug exposure, resulting in increased risk for myopathy due to 

higher drug concentrations [93].

Besides what is known about c.34 and c.421, there are nonsense and missense variants that 

have been characterized in vitro but are rarely found in germline variation. The variants 

rs1061018 (NM_004827.2:c.623T>C; NP_004818.2:p.Phe208Ser), rs3116448 

(NM_004827.2:c.742T>C; NP_004818.2:p.Ser248Pro), rs3201997 (NM_004827.2:c.

1000G>T; NP_004818.2:p.Glu334Stop), rs773828630 (NM_004827.2:c.

1321_1331delAGTGTTTCAGC; NP_004818.2:p.Ser441Argfs) and rs192169063 

(NM_004827.2:c.1465T>C; NP_004818.2:p.Phe489Leu) are all reported to result in null 

BCRP protein activity based on the impact on the transport of methotrexate and 

haematoporphyrin [71]. Furthermore, the variants c.623T>C, and c.

1321_1331delAGTGTTTCAGC were reported to have severely reduced protein levels, 

perhaps due to instability or degradation [71,75]. BCRP variants c.742T>C and c.1465T>C 

were all reported to have altered protein expression and to affect drug resistance [71]. In 

addition to what was found in K562 cells transfected with c.34G>A, in vitro studies in K562 

cells showed reduced sensitivity to tyrosine kinase inhibitors in cells transfected with c.

421C>A, c.623T>C, c.886G>C, or c.1574T>G [76].

Acquired somatic cell variants that have been implicated in chemotherapeutic resistance 

include protein sequence changes Arg482Gly and Arg482Thr, which are thought to increase 

BCRP activity [2,94,95]. Due to increased efflux activity, patients with these variants exhibit 

decreased response to the anthracyclines, doxorubicin, daunorubicin, and to rhodamine 123 

[2,94,95]. The Arg482 site is likely involved in substrate recognition, as it is found in a large 

drug binding pocket at the cytoplasmic interface [1]. On the other hand, the variants 

Thr402Ala and Thr402Arg reportedly decrease BCRP activity, reducing mitoxantrone and 

the probes BODIPY-prazosin and Hoechst33342 efflux by 50-90% [1]. The Pro485Ala 

variant is also thought to decrease BCRP function, and has been found to reduce efflux of 

the probe BODIPY-prazosin by 70% [96]. However, this variant did not affect the efflux of 

mitoxantrone or Hoechst33342, suggesting that the variant lies in the drug binding pocket 

and thereby determines substrate specificity [1].

Fluorescent probes, including BODIPY-prazosin, Hoechst33342, and pheophorbide A, can 

be used to assess BCRP expression and function [1]. Probes specific for particular variants 

of the ABCG2 gene include Rhodamine 123 for R482G and Lyso-Tracker Green for R482T, 
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as these probes are not substrates of the protein produced from the ABCG2 reference 

sequence [97].

Genetic Associations

Variants in ABCG2 have been associated with a number of phenotypes via genome-wide 

association studies (GWAS), both as a risk for developing disease and altered drug response. 

One of the most well-characterized associations is that of the reduced-function BCRP 

Q141K variant and the risk for developing gout and hyperuricemia [36,98–100]. Since 

BCRP is a high-capacity urate transporter, reduced-function variants are linked to a decrease 

in urate excretion and higher uric acid levels. This in turn increases the risk for developing 

gout. Since the time BCRP Q141K was linked to urate excretion via GWAS, other reduced-

function variants have also been linked to uric acid levels, such as Q126X [100,101].

The Clinical Pharmacogenetics Implementation Consortium (CPIC) evaluates the strength of 

evidence for gene-drug associations and publishes peer-reviewed guidelines for changing 

drug dose or drug choice based on the genotype of a patient. While most CPIC dosing 

guidelines have focused on genetic variation in enzymes causing an increase in drug toxicity 

[102–104], two large GWAS have linked ABCG2 c.421 variants with altered drug efficacy. 

The JUPITER trial in over 4,000 patients with cardiovascular disease demonstrated a strong 

association (at genome-wide level significance) of the C genotype with improved LDL 

cholesterol response to rosuvastatin [105]. These results were further studied in a cohort of 

291 Chinese patients to reveal that this altered efficacy was due to an increased 

bioavailability in these patients [106]. In a recent GWAS in over 1500 multi-ethnic gout 

patients, the C genotype was associated at genome-wide level significance with worse uric-

acid lowering response to allopurinol [90]. One follow up study in 264 patients confirmed 

this association, even when controlling for adherence to allopurinol, a prevalent factor of 

non-response in gout treatment [91].

Conclusion

ABCG2, encoding the efflux pump BCRP, plays an important role in drug response and 

disposition. It is widely expressed and has a broad substrate specificity to efflux xenobiotics 

and harmful metabolites from systemic circulation. BCRP is also an important mediator of 

multi-drug resistance in cancers and protection of vital yet vulnerable tissues such as the 

brain, stem cells, and placenta.

The regulation of ABCG2 is complex. To date, studies have shown that BCRP expression 

and function can be controlled via genetic response elements, post-translational 

modifications, epigenetics, DDIs, and genetic variation. Variation in BCRP activity affects 

the pharmacokinetic profiles of many drugs, and has been associated with risks of toxicity 

and efficacy of therapy. One of the most common reduced-function variants, BCRP 

p.Q141K, has been implicated in improved response to statins, increased side effects of 

chemotherapeutics, altered response to allopurinol, and reduced excretion of endogenous 

substrates such as uric acid. This variant reduces the expression of BCRP on the plasma 

membrane due to an increased breakdown in the endoplasmic reticulum. In vitro site-
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directed mutagenesis studies have helped identify other residues important for BCRP 

transport, trafficking, and expression, but identification of a BCRP crystal structure is 

needed to definitively describe the multiple binding pockets and allosteric sites of the efflux 

protein.
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Table 1

A selection of ABCG2 substrates and inhibitorsa

Substrates Inhibitors

5-fluorouracil atazanavir

abacavir chromanone derivatives

atorvastatin curcumin

azidopine cyclosporin A

ciprofloxacin delavirdine

daunorubicin fumitremorgin C (FTC) Ko143

doxorubicin itraconazole

efavirenz ketoconazole

epirubicin lopinavir

erlotinib nelfinavir

erythromycin poloxamines

etoposide reserpine

flavopiridol ritonavir

fluvastatin saquinavir

folic acid sirolimus

ganciclovir tacrolimus

gefitinib

glutathione

glyburide

homocamptothecins

imatinib

irinotecan

lamivudine

methotrexate

mitoxantrone

nilotinib

pantoprazole

pheophorbide A

PhIP

pitavastatin

porphyrins

pravastatin

riboflavin

rosuvastatin

SN-38

sorafenib

sulfasalazine

sulfated estrogens

sunitinib
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Substrates Inhibitors

tamoxifen

tariquidar

topotecan

urate

vitamin K3

zidovudine

a
The references used to compile this list are [17, 87, 107–119]
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Table 2

ABCG2 variants, including genome location and coding change, the effect on transporter function, and the 

global variant allele frequency.

Variant rs number cDNA
(NM_004827.2)

Protein coding effect
(NP_004818.2)

Protein function effect Global Minor Allele Frequencya

rs2231137 c. 34G>A p. Val12Met no function [107, 120, 121] 0.1076

rs2231142 c. 421C>A p. Gln141Lys reduced function [107, 120, 121] 0.1180

rs34783571 c. 1858G>A p. Asp620Asn reduced function [122] 0.0056

rs138606116 c. 1060G>A p. Gly354Arg unknown 0.0026

rs45605536 c. 1582G>A p. Ala528Thr unknown 0.0014

rs192169063 c. 1465T>C p. Phe489Leu reduced function [121] 0.0009

rs148475733 c. 211A>G p. Met71Val unknown 0.0009

rs147547385 c. 1787A>G p. Asn596Ser unknown 0.0005

rs72552713 c. 376C>T p. Gln126Stop no function [107, 123, 124] 0.0005

rs199473672 c. 335C>A p. Pro112Gln unknown 0.0004

rs34264773 c. 1768A>T p. Asn590Tyr reduced function [122] 0.0003

rs140207606 c. 706 C>A p. Arg236Stop no function* [123] 0.0003

rs149106245 c. 383A>T p. Asp128Val unknown 0.0002

rs35965584 c. 1624 A>G p. Thr542Ala unknown 0.0002

rs547742211 c. 1312T>C p. Cys438Arg unknown 0.0002

a
From the ExAC server, accessed December 15, 2016 [125]

*
not validated in vitro
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