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Abstract

Motivated by applications in genomics, we consider in this paper global and multiple testing for 

the comparisons of two high-dimensional linear regression models. A procedure for testing the 

equality of the two regression vectors globally is proposed and shown to be particularly powerful 

against sparse alternatives. We then introduce a multiple testing procedure for identifying unequal 

coordinates while controlling the false discovery rate and false discovery proportion. Theoretical 

justifications are provided to guarantee the validity of the proposed tests and optimality results are 

established under sparsity assumptions on the regression coefficients. The proposed testing 

procedures are easy to implement. Numerical properties of the procedures are investigated through 

simulation and data analysis. The results show that the proposed tests maintain the desired error 

rates under the null and have good power under the alternative at moderate sample sizes. The 

procedures are applied to the Framingham Offspring study to investigate the interactions between 

smoking and cardiovascular related genetic mutations important for an inflammation marker.
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1 Introduction

As we enter a new era of data science, called by some the “information century”, research in 

several novel genomics and epigenomics fields are well underway. Large-scale genomewide 

scans, such as genome-wide association studies, have become widely available tools for 

identifying common genetic variants that contribute to complex diseases and treatment 

responses (McCarthy et al. (2008); Venter et al. (2001)). However, there is growing evidence 

that genetic variants alone explain only a small proportion of variations in complex disease 

phenotypes. Most complex diseases are a result of interplay between genes and environment 

(Hunter (2005)). It is thus of substantial interest to rigorously study the effects of 

environment and its interaction with genetic predispositions on disease phenotypes.
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When the environmental factor is a binary variable such as smoking status or gender, such 

interaction problems can be addressed through the two-sample high-dimensional regression 

framework. Specifically, interaction detection can be formulated based on comparing two 

high-dimensional regression models

(1)

and identifing the nonzero components of β1 − β2, where βd = (β1,d, …, βp,d)T ∈ ℝp, μd = 

(μ1,d, …, μnd,d)T, , Yd = (Y1,d, …, Ynd,d)T, and εd = (ε1,d, …, 

εnd,d)T, with {εk,d} being independent and identically distributed (i.i.d) random variables 

with mean zero and variance  and independent of Xk,·,d, k = 1, …, nd. Two-sample 

interaction detection problems arise in many other biomedical settings. For example, when 

the two samples represent diseased and non-diseased group and Y represents a diagnostic 

test, and the non-zero components of β1 − β2 represent the covariates that affect the 

diagnostic accuracy of Y (Pepe (2003)). When the two samples represent two treatment 

groups, the proposed testing procedures have important applications in personalized 

medicine. The non-zero components of β1 − β2 correspond to markers useful for 

individualized treatment selection since the rule that optimize the treatment selection for an 

individual patient with genomic markers X can be formed based on (β1 − β2)TX (Matsouaka 

et al. (2014)). However, the high dimensionality of the genomic data presents substantial 

statistical challenges in efficiently identifying gene-environment interactions and markers 

useful for personalized treatment selection.

There is a paucity of literature focusing on multiple testing of the regression coefficients in 

the high-dimensional two-sample setting while controlling the false discovery rate (FDR) 

and false discovery proportion (FDP). For example, Zhang and Zhang (2014), Van de Geer 

et al. (2014), and Javanmard and Montanari (2013, 2014) considered confidence intervals 

and tests for a given coordinate of a high-dimensional linear regression vector. Procedures 

that are based on the “de-biased” Lasso estimators were proposed. The focus was solely on 

inference for a given coordinate and simultaneous testing of all coordinates was not 

considered. Recently, Liu and Luo (2014) investigated the one-sample version of the 

multiple testing problem, testing simultaneously

with the control of FDR. They constructed the test statistics based on bias-corrected sample 

covariances of the residuals and inverse regression, as explained in detail in Section 2.2. The 

one-sample setting is simpler than the two-sample multiple testing problem considered in 

the present paper. For example, their proposed test statistics have desirable theoretical 

properties due to the facts that (i) they are asymptotically normally distributed under 

, and (ii) the correlation between two test statistics is equal to the partial 

correlation between two covariates, which is fully determined by the precision matrix. 
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However, those properties no longer hold when we extend the hypothesis testing problem to 

two samples as described in (3).

In this paper, we are interested in developing efficient procedures for testing β1 − β2. The 

first goal is to develop a global test for

(2)

that is powerful against sparse alternatives. We then develop a procedure for simultaneously 

testing the hypotheses

(3)

with FDR and FDP control. The test statistics are constructed using the covariances between 

the residuals of the fitted regression models and the inverse regression models. Although the 

techniques build on the inverse regression method developed in Liu and Luo (2014) for the 

one-sample case, the two-sample case poses significant additional difficulties in both 

methodology development and technical analyses. We point out here two such major 

challenges and more detailed discussion is given in Section 2.3.

a. The construction of test statistics is much more involved than the one-sample 

case. This is mainly due to the fact that the difference of regression coefficients 

can no longer be reduced to the difference of residual covariances as in the one-

sample setting. Furthermore, corrections of the test statistics are essential in the 

two-sample case to establish the asymptotic normality.

b. The technical analyses of the two-sample case are much more challenging. This 

is because the one-sample case can be easily reduced to a weakly correlated 

testing problem provided that the precision matrix of the covariates is sparse or 

nearly sparse, while the two-sample case cannot as the correlation structure is 

much more complicated.

The properties of the proposed testing procedures are investigated theoretically as well as 

numerically through simulation and data analysis. Theoretical justifications are provided to 

ensure the validity of the proposed tests and optimality results are established under sparsity 

assumptions on the regression coefficients. A simulation study is carried out to demonstrate 

that the proposed tests maintain the desired error rates under the null and have good power 

under the alternative at moderate sample sizes. The simulation results also show that the new 

multiple testing procedure outperforms the well known Benjamini-Yekutieli procedure 

(Benjamini and Yekutieli (2001)). In addition, the proposed testing procedures are illustrated 

by an application to the Framingham Offspring Study (Kannel et al., 1979) to study how 

smoking and its interaction with a genetic predisposition affect an inflammation marker 

which plays an important role in the risk of developing cardiovascular disease.

The rest of the paper is organized as follows. In Section 2, we introduce the construction of 

the new test statistics and discuss the technical differences and theoretical challenges of the 
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two-sample testing problems. Section 3 develops a maximum-type statistic Mn and the 

corresponding test for the global hypothesis H0 : β1 = β2 through the inverse regression 

framework. We establish in this section the asymptotic null distribution of Mn and show the 

optimality results under sparse alternatives. Large-scale multiple testing with FDR and FDP 

control is presented in Section 4. Section 5 investigates the numerical performance of the 

proposed procedures by simulations. In Section 6, we apply the proposed procedures to the 

Framingham Offspring Study. The proofs of the main results are given in Section 8.

2 Methodology

2.1 Notation and Definitions

We first introduce the notation and definitions that will be used throughout the paper. For a 

vector βd = (β1,d, …, βp,d)T ∈ ℝp, define the ℓq norm by  for 1 ≤ q ≤ 

∞. For subscripts, we use the convention that i stands for the ith entry of a vector and (i, j) 
for the entry in the ith row and jth column of a matrix, k represents the kth sample and d is the 

group indicator. Let  be the nd × p data matrix, and Yd = (Y1,d, …, 

Ynd,d)T be the nd × 1 data matrix, for d = 1, 2. Throughout, suppose that we have i.i.d 

random samples {Yk,d, Xk,·,d, 1 ≤ k ≤ nd} with Xk,·,d = (Xk,1,d, …, Xk,p,d) being a random 

vector with covariance matrix Σd for d = 1, 2. Define .

For any vector μd ∈ ℝp, let μ−i,d denote the (p − 1)-dimensional vector formed by removing 

the ith entry from μd. For a symmetric matrix Ad, let λmax(Ad) and λmin(Ad) denote the 

largest and smallest eigenvalues of Ad, respectively. For any n × p matrix Ad, Ai,−j,d denotes 

the ith row of Ad with its jth entry removed and A−i,j,d denotes the jth column of Ad with its 

ith entry removed. A−i,−j,d denotes the (n − 1) × (p − 1) submatrix of Ad with its ith row and 

jth column removed. Let A·, −j,d denote the n × (p − 1) submatrix of Ad with the jth column 

removed, Ai,·,d denote the ith row of Ad, A·,j,d denote the jth column of Ad and 

. Let , and 

. Let . For a matrix Ω = (ωi,j)p×p, 

the matrix 1-norm is the maximum absolute column sum, , the 

matrix elementwise infinity norm is defined to be ‖Ω‖∞ = max1≤i,j≤p|ωi,j| and the 

elementwise ℓ1 norm is . For a set ℋ, let |ℋ| be the cardinality of ℋ. 

For two sequences of real numbers {an} and {bn}, write an = O(bn) if there exists a constant 

C such that |an| ≤ C|bn| holds for all n, write an = o(bn) if limn→∞ an/bn = 0, and write an ≍ 
bn if there are positive constants c and C such that c ≤ an/bn ≤ C for all n.

2.2 Test Statistics

To form the test statistics, we consider the inverse regression models obtained by regressing 

Xk,i,d on (Yk,d, Xk,−i,d), as introduced in Liu and Luo (2014)
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where for d = 1, 2, ηk,i,d has mean zero and variance  and is uncorrelated with (Yk,d, 

Xk,−i,d), and γi,d = (γi,1,d, …, γi,p,d)T satisfies

(4)

where , as provided in Liu and Luo (2014).

Remark 1—Equation (4) can be obtained directly as follows. Denote the covariance matrix 

of Z = (Xk,i,d, Yk,d, Xk,−i,d) by Σ = Cov(Z). Section 2.5 of Anderson (2003) shows that γi,d 

can be obtained by , where Σ22 = Cov(Z1) with Z1 = (Yk,d, Xk,−i,d) and Σ21 

= Cov(Z1, Xk,i,d) is the covariance between Z1 and Xk,i,d. Then (4) follows from the 

regression model Yd = μd + Xdβd + εd and the fact that Xd and εd are uncorrelated with each 

other.

Because ri,d = Cov(εk,d, ηk,i,d) can be expressed as 

, the null hypotheses in global testing 

problem (2) and entry-wise testing problem (3) would be, respectively, equivalent to

(5)

and

(6)

and we base the tests on the estimates of { , i = 1, …, p; d = 1, 2}.

Define the residuals
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where βd̂ = (β̂1,d, …, βp̂,d) and γ̂
i,d = (γ̂

i,1,d, …, γ̂
i,p,d) are the respective estimators of βd 

and γi,d satisfy

(7)

for some an1 and an2 such that

(8)

Estimators βd̂ and γ̂
i,d that satisfy (7) and (8) can be obtained easily via standard methods 

such as the lasso and Danzig selector, see, for example, Xia et al. (2015) and Liu and Luo 

(2014).

Based on the residuals ε̂k,d and η̂
k,i,d, a natural estimator of ri,d is the sample covariance 

between the residuals,

Because r̃i,d tends to be biased, we define a bias corrected estimator for ri,d as

(9)

where  and  are the sample variances satisfying

which can be obtained by Lemma 2 in Xia et al. (2015) under conditions (7) and (8). By 

Lemma 2, the bias of r̂i,d is then of order max{βi,d(log p/nd)1/2, (nd log p)−1/2}.

Remark 2—The most straightforward way to estimate ri,d is to use the sample covariance 

between the error terms, . However, the error terms are unknown, and we 

can use the the sample covariance between the residuals r̃i,d instead. The bias of r̃i,d exceeds 

the desired rate (nd log p)−1/2, and thus we calculate the difference of r̃i,d and 
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, which up to order (nd log p)−1/2, is equal to . Hence, 

we define  as in (9).

For i = 1, …, p and d = 1, 2, a natural estimator of  can then be defined by

(10)

Subsequently, we may test the hypotheses (2) and (3) using the estimators  = {Ti,1 − Ti,2 : 

i = 1, …, p}. However, since Ti,1 − Ti,2 in  are heteroscedastic with possibly a wide range 

of variability, we instead consider a standardized version of Ti,1 − Ti,2. Specifically, let

It can be shown in Lemma 2 that, uniformly in i = 1, …, p,

Noting that , we estimate θi,d 

by

and define the standardized statistics

(11)

We base the tests for (2) and (3) on {Wi, i = 1, …, p}, which will be studied in detail in 

Sections 3 and 4.

2.3 Discussion

We discuss here the substantial differences between the two-sample and one-sample cases 

and the necessity for significant adjustments and corrections in the two-sample setting.

The proposed tests are based on estimators of . Here we estimate ri,d = 

Cov(εk,d, ηk,i,d) through constructing a bias-corrected sample covariance between the 

residuals, r̂i,d, as defined in (9). That is, we need to get an estimate of the difference between 

the naive estimate r̂i,d and an unbiased estimate of ri,d, which is .
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Liu and Luo (2014) considered the one-sample case of the multiple testing problem (3) so 

 is equivalent to ri = 0 under the null hypothesis, and ri is easier to estimate. The 

procedure in Liu and Luo (2014) is based on the estimation of ri instead of . In the 

two-sample case,  is not equivalent to ri,1 = ri,2. Thus, it is necessary to 

construct testing procedures based directly on estimators of .

Furthermore, in the one-sample case, the asymptotic normality of Ti can be established 

because βi,1 = 0 under the null, which is shown in Lemma 2. Thus the theoretical properties 

of the individual test statistics are easier to obtain. In the two-sample case, βi,1 and βi,2 are 

not necessary equal to 0 under the null, and corrections are thus essential in order to show 

Wi is close to a normal random variable; the technical details are much more complicated.

More importantly, in the one-sample case, under the null hypothesis βi,1 = 0, and thus 

Corr(εkηk,i, εkηk,j) = ωi,j / (ωi,iωj,j), which is fully determined by the precision matrix of 

the covariates and thus simplifies the calculations. In the two-sample version, βi,1 = βi,2 

under the null hypothesis and they are not necessary equal to zero. The calculation of 

Corr(εk,dηk,i,d, εk,dηk,j,d), which determines the correlation between Wi and Wj, is much 

more involved, and it can be shown in the proof of Theorem 4 that

(12)

The technical analysis for establishing the theoretical results in Sections 3 and 4 is thus 

much more challenging.

3 Global Test

In this section, we wish to test the global hypothesis

We propose a procedure based on the standardized statistics {Wi, i = 1, …, p}

(13)

It is shown in Section 3.1 that, under certain regularity conditions, Mn − 2 log p + log log p 
converges to a Gumbel distribution under the null, and the asymptotic α-level test can thus 

be defined as

(14)
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where qα is the 1 − α quantile of the Gumbel distribution with the cumulative distribution 

function exp(−π−1/2e−t/2),

We reject the null hypothesis H0 whenever Ψα = 1.

3.1 Asymptotic Null Distribution

We first introduce some regularity conditions, under which, Mn − 2 log p+log log p 
converges weakly to a Gumbel random variable with distribution function exp(−π−1/2e−t/2).

(C1) log p = o(n1/5), n1 ≍ n2, and for some constants C0,C1,C2 > 0, 

, and |βd|∞ ≤ C2 for d = 1, 

2. There exists some τ > 0 such that |Aτ| = O(pr) with r < 1/4, where Aτ = {i : |
βi,d| ≥ (log p)−2−τ, 1 ≤ i ≤ p, for d = 1 or 2}.

(C2) Let Dd be the diagonal of Ωd and let , for d = 1, 2. 

max1≤i<j≤p |ξi,j,d| ≤ ξd < 1 for some constant 0 < ξd < 1.

(C3)
There exists some constant K > 0 such that 

and  are finite.

Condition (C1) on the eigenvalues is commonly used in the high-dimensional setting and 

implies that most of the variables are not highly correlated with each other. Condition (C2) is 

also mild. For example, if max1≤i≤j≤p |ξi,j,d| = 1, then Ωd is singular. (C3) is s sub-Gaussian 

tail condition, and it can be weakened to a polynomial tail condition if p < nc for some 

constant c > 0.

Theorem 1—Suppose (C1), (C2), (C3), (7), and (8) hold. Then under H0, for any t ∈ ℝ,

(15)

where Mn is defined in (13). Under H0, the convergence in (15) is uniform for all {Yk,d, 

Xk,·,d : k = 1, 2, …, nd} satisfying (C1), (C2), (C3), (7), and (8).

Remark 3—The analysis can be extended to test H0 : βG,1 = βG,2 versus H1 : βG,1 ≠ βG,2 

for a given index set G. We can construct the test statistic as , and obtain a 

similar Gumbel limiting null distribution by replacing p with |G|, as n1, n2, |G| → ∞. The 

condition (C1) will be slightly different, with Aτ being replaced by AG,τ = {i : |βi,d| ≥ (log p)
−2−τ, i ∈ G, for d = 1 or 2}.

Remark 4—Condition (C1) is slightly stronger than the conditions in Liu and Luo (2014) 

as we need |Aτ| = O(pr) with r < 1/4. This is due to the major difference between the one-

sample and two-sample cases that the global null H0 : β = 0 is a simple null in the one-
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sample case and the null H0 : β1 = β2 is composite in the two-sample case. In the one-

sample case, Ti is a nearly unbiased estimate of βi because βi = 0 under the global null. 

However, in the two-sample case, as stated in Lemma 2, additional correction terms 

involving βi,d are needed in order to make Ti,d nearly unbiased because βi,1 and βi,2 are not 

necessary equal to 0 under the null. Thus, slightly stronger conditions on Aτ are needed.

3.2 Asymptotic Power

We now analyze the asymptotic power of the test Ψα given in (14). The test is shown to be 

particularly powerful against a large class of sparse alternatives and the power is minimax 

rate optimal. We first define a class of regression coefficients:

(16)

We show that the null hypothesis H0 can be rejected by the test Ψα with overwhelming 

probability, if .

Theorem 2—Let the test Ψα be given in (14). Suppose (C1), (C3), (7) and (8) hold. Then

Theorem 2 shows that the null parameter set in which β1 = β2 is asymptotically 

distinguishable from  by the test Ψα.

We further show that the lower bound in (16) is rate optimal. Let α be the set of all α-level 

tests, P(Tα = 1) ≤ α under H0 for all Tα ∈ α. If c in (16) is sufficiently small, then any α 
level test is unable to reject the null hypothesis correctly uniformly over (β1, β2) ∈ (c) with 

probability tending to one.

Theorem 3—Suppose that log p = o(n). Let α, β > 0 and α + β < 1. Then there exists a 
constant c0 > 0 such that for all sufficiently large n and p,

Theorem 3 shows that the order (log p)1/2 in the lower bound of max1≤i≤p{|βi,1 − βi,2|/(θi,1 + 

θi,2)1/2} in (16) cannot be further improved.
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4 Multiple Testing with False Discovery Rate Control

4.1 Multiple Testing Procedure

If the global null hypothesis is rejected, it is then of interest to identify the subset of 

variables in X that interact with the group indicator. This can be achieved by simultaneously 

testing on the entries of β1 − β2 with FDR and FDP control,

(17)

The standardized differences of Ti,1−Ti,2 are defined by the test statistics Wi = (Ti,1 − 

Ti,2)/(θ̂i,1 + θ̂i,2)1/2 as in (11). Let t be the threshold such that H0,i is rejected if |Wi| ≥ t. Let 

ℋ0 = {i : βi,1 = βi,2, 1 ≤ i ≤ p} be the set of true nulls. Let R0(t) = Σi∈ℋ0 I(|Wi| ≥ t) and R(t) 
= Σ1≤i≤p I(|Wi| ≥ t), respectively, denote the total number of false positives and the total 

number of rejections. The FDP and FDR are defined as

Ideally, we select the threshold level as

However, ℋ0 is unknown, and we estimate Σi∈ℋ0 I{|Wi| ≥ t} by 2p{1 − Φ(t)} due to the 

sparsity of β1 − β2, where Φ(t) is the standard normal cumulative distribution function. This 

leads to the following multiple testing procedure.

1. Calculate the test statistics Wi = (Ti,1 − Ti,2)/(θ̂i,1 + θ̂i,2)1/2 as in (11).

2. For a given 0 ≤ α ≤ 1, calculate

If t̂ does not exists, set t̂ = (2 log p)1/2.

3. For 1 ≤ i ≤ p, reject H0,i if and only if |Wi| ≥ t̂.

4.2 Theoretical Properties

We now investigate the theoretical properties of this multiple testing procedure. For any 1 ≤ i 
≤ p, define

where ξi,j,d is defined in Condition (C2). Under regularity conditions, this procedure 

controls the FDP and FDR at the pre-specified level α, asymptotically.
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Theorem 4—Let

Suppose for some ρ > 0 and some δ > 0, | ρ| ≥ [1/(π1/2α) + δ](log p)1/2. Suppose that |Aτ 
∩ ℋ0| = o(pν) for any ν > 0, where Aτ is given in Condition (C1). Assume that p0 = |ℋ0| ≥ 

cp for some c > 0, and (7) and (8) hold. If there exists some γ > 0 such that max1≤i≤p |Γi(γ)| 

= o(pν) for any ν > 0, then under (C1) – (C3) with p ≤ cnr for some c > 0 and r > 0, we have

in probability, as (n, p) → ∞.

The condition on | ρ| is mild, because among p hypotheses in total, it only requires a few 

number of entries with the standardized difference exceeding (log p)1/2+ρ/n1/2 for some 

constant ρ > 0. The technical condition |Aτ ∩ ℋ0| = o(pν) for any ν > 0 is to ensure that 

most of the regression residuals are not highly correlated with each other under the null 

hypotheses H0,i : βi,1 = βi,2.

5 Simulation Study

We consider the numerical performance, including the sizes and powers of both the global 

and the multiple testing procedures, through simulation studies. We investigated the 

performance of both procedures under two sets of simulations. For the first, we generated 

the data by considering two constructions of regression coefficients under three matrix 

models, with covariates being a combination of continuous and discrete random variables. 

For the second set, we studied the numerical performance of the proposed multiple testing 

procedure in a setting that is similar to the data application described in Section 6. We 

compared the proposed multiple testing procedure with Benjamini-Yekutieli (B-Y) 

procedure, as considered in Benjamini and Yekutieli (2001), and show that the B-Y 

procedure is much more conservative and has lower power in all cases.

5.1 Implementation Details

The proposed testing procedures required the estimation of the regression coefficients βd and 

γi,d, for i = 1, …, p and d = 1, 2. One may use the Lasso to estimate these parameters, as 

follows.
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(18)

and

(19)

where DX = diag(Σ̂), Di,d = diag(σ̂
Yd, Σ̂−i,−i),  and 

, in which σ̂Yd is the sample variance of Yd and Σ̂ = (σ̂
i,j) is the 

sample covariance matrix of Xd. In the global testing of H0 : β1 = β2, we chose the tuning 

parameter κ = 2.

For multiple testing of H0,i : βi,1 = βi,2, we selected the tuning parameters λn and λi,n in (18) 

and (19) adaptively by the data with the principle of making Σi∈ℋ0 I{|Wi| ≥ t} and 2{1 − 

Φ(t)}|ℋ0| as close as possible. That is, a good choice of the tuning parameters should 

minimize the error

where c > 0 and  is the statistic of the corresponding tuning parameter. Step 2 below is a 

discretization of the above integral. The algorithm is summarized as follows.

1.
Let  and  for b = 1, …, 40. 

For each b, calculate  and , i = 1, …, p, d = 1, 2. Based on the estimation 

of regression coefficients, construct the corresponding statistics  for each b.

2. Choose b̂ as the minimizer of

The tuning parameters λn and λi,n are then chosen to be

(20)
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5.2 Simulation Under Different Matrix Models

We first generated the design matrices Xk,·,d, for k = 1, …, nd and d = 1, 2, with some of the 

covariates being continuous and the others being discrete. For simplicity, we generated Xk,·,d 

from the same distribution for d = 1, 2. As a first step, for three different matrix models, we 

obtained i.i.d samples Xk,·,d ~ N(0,Σ(m)), for k = 1, …, nd, with m = 1, 2 and 3. We then 

replaced l covariates of Xk,·,d by one of three discrete values 0, 1 or 2, with probability 1/3 

each, where l is a random integer between ⌊p/2⌋ and p. We first introduce the matrix models 

Σ(m) used in the simulations. Let D = (Di,j) be a diagonal matrix with Di,i = Unif(1, 3) for i = 

1, …, p. The following models were used to generate the design matrices.

Model 1: , where  and 

 otherwise. Ω(1) = D1/2Ω*(1)D1/2.

Model 2: , where  for i = 10(k − 1) + 1 and 10(k − 1) 

+ 2 ≤ j ≤ 10(k − 1) + 10, 1 ≤ k ≤ p/10.  otherwise. Ω(2) = D1/2(Ω*(2) + δI)/(1 + 

δ)D1/2 with δ = |λmin(Ω*(2))| + 0.05.

Model 3: , where  for i < j and 

. Ω(3) = D1/2(Ω*(3) + δI)/(1 + δ)D1/2 with δ = |λmin(Ω*(3))| + 0.05.

Global Test—For the global testing of H0 : β1 = β2, the sample sizes were taken to be n = 

n1 = n2 = 100, while the dimension p varied over the values 100, 200, 400, and 1000. Under 

the global null hypothesis, we have β1 = β2 = β, and two scenarios of generating β were 

considered. For case 1, 10 nonzero locations {k1, …, k10} of β were randomly generated 

with magnitudes , i = 1, …, 10. For case 2, s nonzero locations for β were 

randomly selected, with s = 5, 8, 10, and 15 for p =100, 200, 400 and 1000, respectively. The 

nonzero locations had magnitudes with any values between −10 and 10. The error terms εk,d 

were generated as normal random variables with mean 0 and variances having any values 

between 0.5 and 2.5. The nominal significance level for all the tests was set at α1 = 0.05.

Table 1 shows that the sizes of the global test Ψα1 are close to the nominal level for both 

cases under all matrix models. This reflects the fact that the null distribution of the test 

statistics Mn is well approximated by its limiting null distribution, as shown in Theorem 1. 

The empirical sizes are slightly below the nominal level in some cases for lower dimensions, 

as similarly observed in Xia et al. (2015), due to correlation among the variables. It is also 

shown in Table 1 that the proposed test is powerful in all settings, though β1 and β2 only 

differ in five or fewer locations with magnitudes of the order .

To evaluate the power of the global test, we selected five locations, {k1, …, k5}, among the 

nonzero locations of β1, with magnitudes βkj,2 = βkj,1 + uj, j = 1, …, m, where uj has 

magnitude randomly and uniformly from the set [−2β(log p/n)1/2, −β(2 log p/n)1/2] ∪ [β(2 

log p/n)1/2, 2β(log p/n)1/2], with β = max1≤i≤p |βi,1|. The actual sizes and powers in 

percentage for each case under three matrix models, reported in Table 1, are estimated from 
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1000 replications. For each replication, the nonzero locations and magnitudes of the 

regression coefficients could vary.

Multiple Testing—For simultaneous testing of {H0,i : βi,1 − βi,2 = 0, for 1 ≤ i ≤ p} with 

FDR control, we first generated β1 according to the above two cases. For case 1, ten nonzero 

locations  for β2 were randomly generated and the locations could vary for 

these two vectors. The magnitudes were generated with values , i = 1, …, 

10. For case 2, s nonzero locations for β2 were randomly selected, again with s = 5, 8, 10, 

and 15 for p =100, 200, 400 and 1000, respectively, also with magnitudes having any values 

between −10 and 10.

In Table 2, we present the empirical FDR and true discovery rate (power) of the proposed 

procedure (NEW) and the B-Y procedure at the FDR level of α2 = 0.1, based on 100 

replications, where the power is summarized based on

where Wi,l denotes standardized difference for the lth replication and ℋ1 denotes the 

nonzero locations of β1 − β2. The results suggest that across all configurations, the FDRs are 

well controlled under the nominal level α by both FDR control procedures. However, the B-

Y procedure is extremely conservative in all scenarios. For the new FDR procedure, the 

empirical FDRs are also conservative, due to the correlations among the regression residuals 

under the nulls ℋ0,i, and also due to the fact that we use |ℋ| to estimate |ℋ0| because the 

latter is usually unknown. Furthermore, the total number of true signals is small in all cases 

due to the sparsity of the regression coefficients; for example, when the total number of true 

signals is ten, the FDP for each replication tends to be either 0 or some number close to 0.1, 

which will also cause the conservatism of the FDR estimation. In case 2, we can see that the 

empirical FDR gets closer to the nominal level as dimension increases, because the number 

of true signals increases when p grows. In summary, the new procedure has empirical FDR 

much closer to the nominal level than B-Y procedure in all cases. Table 2 also reflects that 

the FDR control procedure introduced in Section 4 is more powerful than the B-Y procedure 

for different scenarios.

5.3 Simulation by Mimicking Data

We now consider a simulation setting mimicking the data considered in Section 6, where we 

have p = 119, n1 = 46 and n2 = 417. We investigated both cases of the construction of the 

regression coefficients as considered in Section 5.2, with ten nonzero locations, under all 

three matrix models, with covariates as a combination of continuous and discrete random 

variables. The nominal level was set at α3 = 0.1, and the empirical FDR’s and powers for 

both FDR procedures, as reported in Table 3, were evaluated based on 100 replications. As 

in Section 5.2, the empirical FDRs are well controlled under the data setting by the new 

FDR procedure, while the B-Y procedure is again very conservative. For case 1, the 

empirical FDR’s of the new procedure are slightly larger than the nominal level, due to the 
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fact that n1 is much smaller than n2 in this setting, and thus β1 and β2 have magnitudes much 

closer to each other based on their construction. The performance of the new method for 

case 2 is less conservative than in Section 5.2 due to the fact we have ten nonzero locations 

for the regression coefficients when the dimension is 119 in the data setting. Table 3 also 

indicates that the new procedure is more powerful than the B-Y procedure under the data 

setting in all scenarios.

6 Data Analysis

We illustrate our proposed methods using the Framingham Offspring Study (Kannel et al. 

(1979)) of coronary artery disease (CAD). Over the past three decades, various risk 

prediction models for CAD have been developed (Wilson et al. (1998); Ridker et al. (2007)). 

Unlike those for many other diseases, the risk models such as the Framingham Risk Score 

have been incorporated into clinical practice guidelines (Lloyd-Jones et al. (2004); 

D’Agostino Sr et al. (2008)). However, these models, largely based on traditional clinical 

risk factors, have recognized limitations in their clinical utilities. It is thus important to 

explore avenues beyond the routine clinical measures to improve prediction. One potential 

approach is to fully understand the roles of intermediate phenotypes, such as the C- reactive 

protein (CRP) and genomic markers. In recent years, many genome-wide association studies 

(GWAS) have been conducted to identify CAD-related single-nucleotide polymorphism 

(SNP) mutations. The newly identified SNPs, while significantly associated with CAD risk 

or the intermediate phenotypes of CAD, explain very little of the genetic risk for the trait 

(Humphries et al. (2008); Paynter et al. (2009)). This coincides with the growing awareness 

that the failure to identify genetic scores that significantly improve risk prediction for 

complex traits may be in part due to failure to account for the interplay of genes and 

environment. It is thus of substantial interests to study environment and its interaction with a 

genetic predisposition in causing human diseases.

Here, we use data from Framingham Offspring Study to examine how the interaction 

between smoking and genetic risk factors affect the inflammation marker CRP, since the 

inflammation system plays a vital role in the atherosclerotic process (Ross (1999)). We focus 

on the 463 female participants with complete information on CRP, 116 SNP’s previously 

reported as associated with CAD intermediate phenotypes, two leading principal 

components that adjust for population stratification, as well as age and smoking status at 

exam seven. Smoking is known to roughly double life-time risk of CAD and is thought to 

increase cardiovascular risk via a few different mechanisms. We examine the interaction 

between smoking and the genetic markers, as well as other risk factors based on the 

proposed method. We fit linear regression models for smokers and for non-smokers and the 

variables with significantly different coefficients between smokers and non-smokers are 

deemed as having an interactive effect.

The effects of top eight SNPs including rs11585329, rs17583120, rs17132534, rs11214606, 

rs17529477, rs10891552, rs4293, and rs4351, on CRP are considered as significantly 

modified by smoking. Interestingly, the smoking and rs11585329 interaction has been 

reported as important contributor to the risk of colorectal cancer whereas inflammation is a 

hallmark of cancer (Liu et al. (2013)). SNP rs17132534 belongs to the UCP2 gene whose 
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main function is the control of mitochondria-derived reactive oxygen species. A variant in 

the UCP2 has been previously shown to interact with smoking to influence plasma markers 

of oxidative stress and hence likely to be associated with prospective CHD risk (Stephens et 

al. (2008)). SNPs rs10891552, rs17529477, and rs11214606 all belong to the DRD2 gene, 

which is linked to addictive behaviors, including alcoholism and smoking. Smoking was 

found to modify the effects of polymorphism in DRD2 gene on gastric cancer risk (Ikeda et 

al. (2008)). SNPs rs4293 and rs 4351 belong to the ACE gene, linked with hypertension and 

CAD among other disorders. Interactions between smoking and polymorphism in the ACE 

gene have been reported for blood pressure and coronary atherosclerosis (Hibi et al. (1997); 

Sayed-Tabatabaei et al. (2004); Schut et al. (2004)).

7 Extension to Non-Binary Environmental Variable

Motivated by applications in genomics, we have proposed hypothesis testing procedures for 

detecting the interactions between environment and genomic markers when the 

environmental variable is binary, such as smoking status, as illustrated in Section 6. Our 

testing approach can be extended to detect the interactions when the environmental variable 

is discrete and finite, but non-binary. Specifically, suppose the environmental variable takes 

K possible values. Interaction detection can then be formulated based on comparing K high-

dimensional regression models

One wishes to develop a global test for

(21)

as well as develop a procedure for simultaneously testing the hypotheses

(22)

with FDR and FDP control.

The test statistics for each model can be formulated similarly as in Section 2.2. For d = 1, 

…, K, we let

and estimate θi,d by
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Then the pairwise standardized statistics can be defined by

Then if K is finite, we construct the sum of square type test statistic by

As in Cai and Xia (2014), it can be shown that the limiting null distribution of Si is a mixture 

chi-square distribution. Based on this fact, we can further develop global and multiple 

testing procedures. When the environmental variable is binary, the test statistics Si reduce to 

(11) in Section 2.2. On the other hand, if the environmental variable is continuous, the 

testing problem is significantly different, and out of the scope of the current paper. We leave 

it to future research.

8 Proofs

We prove the main results in this section. We begin by collecting technical lemmas that will 

be used in the proof of the main theorems.

8.1 Technical Lemmas

The first lemma is the classical Bonferroni inequality.

Lemma 1 (Bonferroni inequality)—Let . For any k < [p/2], we have

where Ft = Σ1≤i1<⋯<it≤p P(Bi1 ∩ ⋯ ∩ Bit).

For d = 1, 2, let  and . The 

following lemma is essentially proved in Liu and Luo (2014).

Lemma 2—Suppose that Conditions (C1), (C3), (7) and (8) hold. Then
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where  and  with 

 and . Consequently, uniformly in i = 1, …, p,

Lemma 3—Let Xk ~ N(μ1, Σ1) for k = 1, …, n1 and Yk ~ N(μ2, Σ2) for k = 1, …, n2.

Define

Then, for some constant C > 0, σ̃
i,j,1 − σ̃i,j,2 satisfies the large deviation bound

uniformly for 0 ≤ x ≤ (8 log p)1/2 and any subset 𝑆 ⊆ {(i, j) : 1 ≤ i ≤ j ≤ p}.

The complete proof of this lemma can be found in the supplementary material of Xia et al. 

(2015).

8.2 Proof of Theorem 1

To prove Theorem 1, we first show that the terms in Aτ are negligible. Then we focus on the 

terms in ℋ\Aτ, where ℋ = {1, …, p}, and show that 

, where Wi is 

defined in (11).

Define

where , for d = 1, 2. By 

Lemma 2 in Xia et al. (2015), under conditions (7) and (8), we have

(23)

Thus we have
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(24)

By Lemma 2, we have

where . Note that 

for i ∈ ℋ\Aτ, βi,d = o{(log p)−1}. Thus we have maxi∈ℋ\Aτ |Wi − Vi| = oP{(log p)−1/2}. For 

i ∈ Aτ,

Due to the fact that the indices of the random variables only show up in the second term 

here, by Lemma 3 and the condition that |Aτ| = O(pr) with r < 1/4, we have

where . Thus, it suffices to 

show that

Let q = |ℋ\Aτ| and let n2/n1 ≤ K1 with K1 ≥ 1. Define 

 for 1 ≤ k ≤ n1 and 

 for n1 + 1 ≤ k ≤ n2. Thus we have

Without loss of generality, we assume . Define
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where Ẑk,i = Zk,iI(|Zk,i| ≤ τn) − E{Zk,iI(|Zk,i| ≤ τn)}, and τn = (4K1/K) log(p + n). Note that 

, and that

Hence, P{max1≤i≤q |Vi − V̂
i| ≥ (log p)−1} ≤ P(max1≤i≤q max1≤k≤n1+n2 |Zk,i| ≥ τn) = O(p−1). 

By the fact that 

, 

it suffices to prove that for any t ∈ ℝ, as n, p → ∞,

(25)

By Lemma 1, for any integer l with 0 < l < q/2,

(26)

where yp = 2 log p − log log p + t and . Let Z̃
k,i = Ẑk,i/(n2θi,1/n1 + θi,2)1/2 for 

i = 1, …, q and Wk = (Z̃
k,i1, …, Z̃

k,id), for 1 ≤ k ≤ n1 + n2. Define |a|min = min1≤i≤d |ai| for 

any vector a ∈ Rd. Then we have

Then it follows from Theorem 1 in Zaïtsev (1987) that
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(27)

where c1 > 0 and c2 > 0 are constants, εn → 0 which will be specified later, and Nd = (Nm1, 

…, Nmd) is a normal random vector with E(Nd) = 0 and Cov(Nd) = n1/n2 Cov(W1) + 

Cov(Wn1+1). Here d is a fixed integer that does not depend on n, p. Because log p = o(n1/5), 

we can let εn → 0 sufficiently slowly that, for any large M > 0,

(28)

Combining (26), (27), and (28) we have

(29)

Similarly, using Theorem 1 in Zaïtsev (1987) again, we can get

(30)

The following lemma is shown in the supplementary material of Cai et al. (2013) with q ≍ p 
and yp = 2 log p − log log p + t.

Lemma 4—For any fixed integer d ≥ 1 and real number t ∈ ℝ,

(31)

It then follows from Lemma 4, (29), and (30) that
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for any positive integer l. By letting l → ∞, we obtain (25) and Theorem 1 is proved.

8.3 Proof of Theorem 2

Let . It follows from the proof of 

Theorem 1 that , as n, p → ∞. By (23), (24), and the 

inequalities

we have P(Mn ≥ qα + 2 log p − log log p) → 1 as n, p → ∞.

8.4 Proof of Theorem 3

To prove the lower bound, we first construct a worst case scenario to test between β1 and β2. 

We apply the arguments in Baraud (2002) to prove the result.

Without loss of generality, we assume , σi,i,d = 1, σi,j,d = 0, i ≠ j for d = 1, 2, and n1 = 

n2. Let m̂ be a random entry uniformly drawn from ℋ = {1, …, p}. We construct a class of 

β1,  = {β(m̂), m̂ ∈ ℋ}, such that, βm̂,1 = ρ and βi,1 = 0 for i ≠ m̂, with ρ = c(log p/n)1/2, 

where c < 1/2 is a constant. Let β2 = 0 and β1 be uniformly distributed on . Let μρ be the 

distribution on β1 − β2. Note that μρ is a probability measure on , where 

𝑆1 is a class of p-dimensional vectors with one nonzero entry. Then the likelihood ratio 

between samples {Yk,1, Xk,·,1} and {Yk,2, Xk,·,2} can be calculated as

where Σ(m̂) = Ω(m̂)−1 is the covariance matrix of {Yk,1, Xk,·,1} and {Z1, …, Zn} are i.i.d 

samples generated from N(0, I). Because , Var(Yk,2) = 1 and 

Cov(Yk,d, Xk,i,d) = βi,dσi,i,d. It can be easily calculated that |Σ(m̂)| = 1 and  with 

, and  otherwise. Hence
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With Ω(m) + Ω(m′) − 2I = (ai,j), it is easy to see that, when m ≠ m′, ai,i = ρ2 and a1,i = −ρ for i 
= m + 1 or m′ + 1, aj,i = ai,j and ai,j = 0 otherwise; when m = m′, ai,i = 2ρ2 and a1,i = −2ρ 
for i = m + 1, aj,i = ai,j and ai,j = 0 otherwise. Thus we have

where x1, x2, x3 are independent standard normal random variables. Because E(exp{ρ(x1x2 + 

x2x3)) = 1 + ρ2,  and E(exp{2ρx1x2) = 1 + 2ρ2, we have

Theorem 3 is thus proved by Baraud (2002).

8.5 Proof of Theorem 4

We first show that t̂, as defined in Section 4.1, is attained in the interval [0, (2 log p)1/2]. We 

then show that Aτ is negligible and we focus on the set ℋ\Aτ. We then show the FDP result 

by dividing the null set into small subsets and controlling the variance of R0(t) for each 

subset, and the FDR result will thus also be proved.

Under the condition of Theorem 4, we have

with probability going to one. Hence, with probability tending to one, we have

Let tp = (2 log p − 2 log log p)1/2. Because , we have 

P(1 ≤ t̂ ≤ tp) → 1 according to the definition of t̂ in Section 4.1. For 0 ≤ t̂ ≤ tp,

Thus, to prove Theorem 4, it suffices to prove
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in probability, uniformly for 0 ≤ t ≤ tp, where G(t) = 2(1 − Φ(t)) and p0 = |ℋ0|. We will show 

that it suffices to show

(32)

in probability. We now consider two cases.

1. If t = {2 log p + o(log p)}1/2, the proof of Theorem 1 yields that 

. Thus, it suffices to prove

in probability. We show in Theorem 1 that maxi∈ℋ0\Aτ |Wi − Vi| = oP{(log p)
−1/2}. Thus it suffices to show (32).

2. If t ≤ (C log p)1/2 for some C < 2, we have

in probability. Thus, it is again enough to show (32).

Let 0 ≤ t0 < t1 < ⋯ < tb = tp such that tι − tι−1 = υp for 1 ≤ ι ≤ b − 1 and tb − tb−1 ≤ υp, 

where . Thus we have b ~ tp/υp. For any t such that tι−1 ≤ t ≤ tι, by the 

fact that G(t + o((log p)−1/2))/G(t) = 1 + o(1) uniformly in 0 ≤ t ≤ c(log p)1/2 for any constant 

c, we have

Thus it suffices to prove

in probability. Define ℋ0̃ = ℋ0 \ Aτ. Note that
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Thus, it suffices to show, for any ε > 0,

(33)

Note that

We divides the indices i, j ∈ ℋ̃
0 into the subsets: ℋ0̃1 = {i, j ∈ ℋ̃0, i = j}, ℋ̃

02 = {i, j ∈ ℋ̃
0, 

i ∈ Γj(γ), or j ∈ Γi(γ)} and ℋ̃
03 = ℋ̃0 \ (ℋ̃

01 ∪ ℋ̃02). Then we have

(34)

We now show the equation (12). Note that 

. Because 

, we have . Note that

By definition, we have εk,d independent with ηk,i,d + εk,dγi,1,d. Thus, we have

Note that

and that
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We have . Thus

Note that, for i ∈ ℋ̃
0, we have βi,d = O((log p)−2−τ) and so | Corr(Vi, Vj)| ≤ ξ < 1, where ξ 

= max{ξ1, ξ2} + ε with ξd defined in (C2) and ε < 1 − max{ξ1, ξ2}, for i, j ∈ ℋ̃
02. Hence

(35)

It remains to consider the subset ℋ0̃3, in which Vi and Vj are weakly correlated. It is easy to 

check that maxi,j∈ ℋ̃03 P(|Vi| ≥ t, |Vj | ≥ t) = (1 + O{(log p)−1−γ})G2(t). Hence,

(36)

Equation (33) and the FDP result then follow by combining (34), (35), and (36), and the 

FDR result is also proved.
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