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Abstract

Tomographic phase microscopy (TPM) is an emerging optical microscopic technique for 

bioimaging. TPM uses digital holographic measurements of complex scattered fields to 

reconstruct three-dimensional refractive index (RI) maps of cells with diffraction-limited 

resolution by solving inverse scattering problems. In this paper, we review the developments of 

TPM from the fundamental physics to its applications in bioimaging. We first provide a 

comprehensive description of the tomographic reconstruction physical models used in TPM. The 

RI map reconstruction algorithms and various regularization methods are discussed. Selected TPM 

applications for cellular imaging, particularly in hematology, are reviewed. Finally, we examine 

the limitations of current TPM systems, propose future solutions, and envision promising 

directions in biomedical research.

1. INTRODUCTION

In the 1960s, after the invention of lasers, several groups pioneered digital holography (DH) 

to numerically record and process holographic data with the aid of a digital camera and a 

computer [1,2]. In the 1990s, as image sensors became widely available, Schnars and 

Jüptner pioneered the use of CCD cameras in off-axis DH systems. On the other hand, phase 

contrast (PC), discovered around the same time as holography in the 1940s, gradually gained 

popularity as a microscopic technique for viewing transparent biological specimen without 

staining [3]. In the mid-1990s, several works on integrating PC with DH made quantitative 

analysis and reconstruction of microscopic structures possible, marking the beginning of a 

new field, called quantitate phase imaging (QPI) [4,5]. In most cases, the terms quantitative 

PC imaging, digital holographic microscopic imaging, and interference microscopic imaging 
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are used interchangeably with QPI. In this review of tomographic phase microscopy (TPM), 

we use the terminology QPI and specify it as a microscopy method that retrieves phase maps 

of biological samples from complex field measurements with interferometry. Over the past 

two decades, QPI has gained great popularity as a label-free microscopic technique for 

biological imaging [6–13].

Although QPI has been successfully used for many cellular and tissue studies, the fact that 

phase is a product of thickness and average RI can potentially result in inaccurate 

interpretations of QPI data when imaging complex three-dimensional (3D) structures. In 

order to gain more accurate morphological information such as nuclear shape, nuclear dry 

mass, and nuclear-to-cytoplasm volume ratio, depth-resolved [14–16] or tomographic 

versions of QPI [17–19], i.e., TPM, are often desired. In this paper, we will cover the 

developments of TPM. In 2006 and 2007, two groups reported the first implementations of 

TPM for 3D imaging of cells by quantitatively mapping their RI distributions [17,18]. In 

those early works, the 3D reconstruction physical model was based on a back filtered 

projection method, similar to what was used in x-ray computed tomography (CT). It 

assumed phase measurement to be an integration of RI along the projection angle, which 

ignored the significance of the optical diffraction effect, thus limiting the earlier TPM 

systems for small sample RI variations over the wavelength scale. In cell imaging 

experiments, this inaccurate tomography model can significantly affect the 3D 

reconstruction resolution, especially for cells that are much thicker than the depth of field of 

the imaging systems [20].

In the 1960s, Wolf proposed the idea of using holography for 3D object reconstruction by 

developing a diffraction-based tomography model, known as optical diffraction tomography 

(ODT) [21]. However, this concept was not implemented to TPM for 3D imaging of cells 

until 2009 [20]. Since then, there have been numerous developments in ODT [22–26]. The 

early TPM systems were mostly based on incident laser illumination angle scanning with the 

help of galvanometer mirrors or sample rotations to obtain projection field measurements 

[17,18,20,27]. As new hardware techniques became available, spatial light modulators [28–

30], digital micromirror devices (DMDs) [31], super-continuum lasers [32,33], fast cameras 

[34], and graphics-processing units [35] have been integrated into TPM systems to achieve 

improved imaging stability and speed. For high-throughput 3D cell measurements, 

microfluidic devices have also been integrated into TPM [34,36]. Although hardware 

improvements are important, there still are physical limitations that affect the performance 

of TPM. Current TPM techniques are based on transmission measurements that have a 

common missing cone problem like other wide-field microscopy methods [37,38]. 

Reflection-type TPM systems could potentially solve this problem by providing high axial 

sectioning capability [39]. Additionally, laser-based coherent TPM systems suffer from a 

small depth of field and speckle noise, which can be solved using incoherent light. The 

statistical property of incoherent light sources can naturally create optical sectioning effects 

across the focus plane through coherence gating, which is the physical basis of optical 

coherence tomography (OCT) [40]. Through a simple scanning of the sample through the 

objective focus, 3D maps of sample RI can be obtained, as was demonstrated in white-light 

diffraction tomography in 2014 [41]. Most recently, advanced image-processing tools, 

including total variation (TV) regularization [42,43] and 3D deconvolution algorithms 
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[41,44,45], have been applied to ODT to overcome the hardware and physical limits. For 

example, regularized ODT models that use sample priori information, such as non-negativity 

and piecewise smoothness, have been implemented to alleviate the missing cone issue in 

TPM [24,46,47]. In 2015, a new physical model, based on the beam propagation method 

(BPM) to treat light diffraction, was demonstrated for 3D RI reconstruction in TPM [43,48]. 

This work has pioneered the machine learning concept for TPM [49].

As the TPM technique advances and matures, it has been increasingly applied to biomedical 

research. One of the most extensively applied areas is hematology [50,51] where TPM is 

used to study the morphological alterations of red blood cells (RBCs) and the related 

diseases caused by parasitic protozoa, such as Plasmodium falciparum [52,53] and Babesia 
microti [54]. TPM has also been used to measure eukaryotic cell biophysical markers, such 

as overall shape and volume [26,36], and dry mass [19,36]. Worth mentioning is that TPM is 

able to extract the properties of subcellular organelles such as nucleus [34,50] and lipid 

droplets (LDs) [55]. In this review, we will cover the aforementioned recent developments in 

TPM. It will focus on three aspects of TPM: (1) physical reconstruction model 

developments, (2) computational 3D reconstruction algorithms, and (3) bioimaging 

applications.

2. PHYSICAL MODELS FOR RI RECONSTRUCTION

By treating a 3D object as a black box and performing multiple intensity or field 

measurements through different ways, one is expected to be able to retrieve the 3D structure 

(i.e., RI maps) of the object by solving the inverse scattering problem. In the early days, 

inspired by the x-ray CT technique, optical physicists developed methods to reconstruct the 

RI distributions of microscopic objects through angle scanning of a laser illumination beam 

across the object (or rotate the object). In one of the earliest optical tomography 

experiments, Snyder and Hesselink [56] demonstrated the mapping of the RI distribution of 

a glass rod with holographic measurements; their reconstruction was done with a filtered 

back projection diffraction tomography algorithm developed by Devaney [57]. It was well 

understood that high-fidelity 3D reconstruction algorithms need to take into account the 

optical diffraction phenomenon [21,57–60]. The concept of tomographic phase microscopy 

or TPM was first proposed in 2007 as a technique to measure the RI maps of living cells 

with digital holographic microscopy [18]. In 2009, Sung et al. introduced a Rytov 

approximation-based ODT model for cell RI reconstruction in TPM [20], which enabled 

higher 3D resolution than the earlier experiments based on filtered back projection 

algorithms that ignored diffraction [17,18]. In Sections 2.A–2.C, we will discuss the 

reconstruction physical models in the context of ODT for coherent and incoherent 

illuminations.

A. Coherent Illumination ODT Reconstruction

As described in Fig. 1, the physical structure of an object is described by the object 

scattering potential function  where β0 = 2π/λ0 is the 

propagation constant in free space, λ0 is the illumination wavelength in free space, n(x, y, z) 

is the RI distribution of the object (the parameter to be determined), and nm is the RI of the 
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surrounding medium. With a plane wave incident on the object, scattered fields are 

generated in both forward and the backward directions. The scattered field, Us, is described 

by the following inhomogeneous wave equation [21]:

(1)

where β = nmβ0 is the propagation constant in the medium and U(r) is the total field that has 

contributions from the incident field plane wave, Ui(r), and the scattered field, Us(r), i.e., 

U(r) =Ui(r) + Us(r). Two approximations have been used here to solve the scattered field in 

Eq. (1). The first approximation, also called the first Born approximation, which assumes 

that Us(r) ≪ Ui(r) results in U(r) ≈ Ui(r) =eiki·r, where ki = βk̂i = (kxi, kyi, kzi) is the 

incident wave vector and k̂i is the direction unit vector with k̂i = (k̂xi, k̂yi, k̂zi). In the 

medium, where the incident field emerges, the dispersion relation establishes that 

. Through a wave-vector space method [41,61] or a Green’s 

function approach [21], the scattered field is solved in the transverse Fourier space for a 

particular focal plane z (z =0 is the imaging plane) as

(2)

where “+q” represents the forward scattered field and “−q” represents the backward 

scattered field; kx and ky represent the scattered field transverse spatial frequencies; and 

 is the axial spatial frequency projection of the scattered field. For 

simplicity in the formulation, we are using the variables of a function to indicate the exact 

transformation domain. Equation (2) reveals the relationship between the scattered field and 

scattering potential in a Fourier transform relation, which can also be written in the integral 

form of the Lipmann–Schwinger equation. The inverse scattering solution to the object 

function is therefore given by (Wolf [21])

(3)

where U = kx − kxi, V = ky − kyi, and W = ±q − kzi; “+q” represents the forward solution. 

The measurement is usually performed at the imaging plane, and, thus, χ(U, V, W) = 

qUs(kx, ky; z = 0) = q · ℑ2D[Us(x, y; z = 0)], where ℑ2D represents the two-dimensional (2D) 

Fourier transform. According to this equation, each measurement of Us(x, y; z = 0)can be 

mapped to a particular spherical surface on the Ewald sphere in (U, V, W) space. As 

illustrated in Fig. 2(a), through changing the illumination angle on the sample, i.e., changing 

the pair kxi and kyi and mapping the corresponding scattered field into the Ewald sphere in 

the “mapped region” in Fig. 2(b), we can eventually recover a 3D spatial frequency region 

for χ(U, V, W). In order to better illustrate the Ewald sphere mapping, we have sketched the 
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frequency sections from seven different illumination angles (−64°, −37°, −18°, 0°, 18°, 37°, 

and 64° as indicated by different colors) in Fig. 2(b). After a complete mapping, with a 3D 

inverse Fourier transform of χ(U, V, W), the 3D object function in real space can be 

obtained, which will allow us to obtain its RI map. However, as shown in Fig. 2(b), we 

cannot recover the central low frequency (in U and V) region of the 3D Fourier space, which 

is called the missing cone problem. Reflection-mode measurements can fill the missing cone 

region as shown in Fig. 2(b), where we have mapped the back scattered fields corresponding 

to different illumination angles into the Ewald sphere (the same illumination angles as in 

transmission-mode mapping are used). However, building an angle scanning reflection-mode 

TPM experimental system for biological imaging is very difficult, mainly because the back 

scattered fields from the cellular structures are very weak due to the small RI contrast of 

about 0.03. The detector will be mostly saturated by the background reflection from the 

sample holders such as cover glasses. In contrast, incoherent illumination with a broadband 

source or speckle field, as well as confocal-based illumination, can potentially make a better 

reflection-mode TPM with the help of the coherence gating or confocal gating effect. 

Recently, several versions of reflection-mode QPI systems have demonstrated inherent depth 

discrimination [14], which can be potentially incorporated into new TPM approaches to 

enable recovery of information from these missing regions [39,62,63].

The first Born approximation is valid when the total phase delay of the field is small and 

there is substantially low optical absorption, which means that it works well for thin objects 

with weak RI contrasts to the media. For relatively thick objects, the Rytov approximation is 

more appropriate, which assumes that the total field has a complex phase function 

ϕs(r)which is related to the scattered field, i.e., U(r) = eϕi(r)+ϕs(r) = Ui(r)eϕs(r) {refer to Eq. 

(5) in [58]}. Note that both approximations assume weak RI variations and single scattering 

events in the sample, which is mostly true for imaging single cells. In order to image strong 

scattering samples with TPM such as tissues, aberration corrections may be needed. As 

derived in Ref. [20], under the Rytov approximation, the reconstruction still follows Eq. (3), 

except that the scattered field Us is replaced with Us(r) =Ui(r) ln(U(r)/Ui(r)), and U(r) can 

be measured from a QPI system. We note that the Rytov approximation is valid when the 

gradient of the RI is small, which means the objects need to be smooth in RI distribution 

(see page 485 in Ref. [64] for more details).

In TPM systems using coherent illumination ODT models, the experiments have been 

mostly based on angle scanning of coherent laser illuminations. Recently, with the 

availability of more advanced super-continuum laser sources, wavelength scanning TPM has 

also been demonstrated [32]. Its reconstruction physical model is similar to the angle 

scanning case, and details can be found in Ref. [32].

B. Coherence-Gated ODT Reconstruction

In coherent illumination ODT, the 3D object reconstruction is performed with Fourier space 

mapping. For incoherent illumination ODT, one can selectively image different sample 

depths through creating an optical sectioning effect, i.e., achieving coherence-gated ODT. 

The optical sectioning is a result of the 3D confinement of optical fields, i.e., the coherence 

gating effect. There are two ways to create the coherence gating effect in TPM. The first one 

Jin et al. Page 5

J Opt Soc Am B. Author manuscript; available in PMC 2018 January 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



is through using temporally incoherent illumination via a broadband light source, similarly 

to OCT [40]. The second option is to utilize spatially incoherent illumination with dynamic 

speckle fields [14,65] or confocal laser scanning [63,66]. Earlier work has used spatially or 

temporally incoherent illumination to achieve depth-resolved quantitative phase 

measurements [67–69]. In order to apply those systems to TPM, one may need to consider 

the phase measurement accuracy [70], as it can be affected by the dispersion and aberration 

from incoherent illumination, which may result in deviated 3D RI mappings. The 3D 

reconstruction models for both types of incoherent illuminations have been addressed very 

recently [39,41,61]. In Sections 2.B.1 and 2.B.2, we will briefly introduce the 3D 

reconstruction models for both temporal and spatial incoherent illuminations.

1. Temporally Incoherent Illumination—In interferometric imaging, the measurement 

is the cross-correlation function between the scattered field, Us, and the reference field, Ur. 

For a broadband light source, it has a short temporal coherence length, which will help to 

create a narrow temporal cross-correlation function. The width of this function determines 

the depth selectivity in TPM. Next, we formulate the 3D reconstruction model under 

temporally incoherent illumination. The temporal cross-correlation function, Γ12(r, τ), at 

each spatial point is a function of temporal delay, τ,

(4)

where 〈〉t is an ensemble average over time. We can relate Γ12(r, τ) to the cross-spectral 

density function, W12(r, ω), through a Fourier transform by using the generalized Wiener–

Khintchine theorem [71,72],

(5)

where . Normally, phase measurements are performed around 

zero delay, i.e., τ = 0. The scattered field solutions for broadband source illumination are 

similar to the ones given in Eq. (2), but modified to incorporate the source spectrum [41]. 

For the transmission-mode TPM operation, using the forward scattering field solution, the 

integral in Eq. (5) can be evaluated to give the following reconstruction model:

(6)

where U = kx, V = ky, and  are the object frequency support, and 

Σ(U, V, W) is the 3D coherent transfer function (CTF) given by
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(7)

which is determined by the source spectrum S and the numerical aperture (NA) of the 

imaging system that limits the maximum value of k⊥. The transfer function determines the 

lateral and axial imaging resolution of the tomographic imaging system. As an example, Fig. 

3(a) shows the transfer function of a broadband illumination TPM system with a halogen 

lamp source that has 1.2 μm temporal coherent length and an imaging NA of 1.4 [41]. The 

3D point-spread function (PSF) is calculated from the transfer function. Cross-section planes 

x–y (z = 0) and x–z (y = 0) are shown in Fig. 3(c) and 3(d), respectively. The full width at 

half-maximum (FWHM) values of the PSF in the lateral and axial dimensions closely match 

the lateral resolution and temporal coherence length values.

Like in coherent illumination reconstruction, the incoherent illumination transmission-mode 

model also has the missing cone problem. In reflection-mode reconstruction, it is expected 

to have a better sectioning capability and suffer no missing cone. However, it is very difficult 

to build a reflection-mode TPM system with broadband illumination as the reflected signal 

is very weak. Lasers have high power, and, thus, using them as illumination sources for 

reflection-mode phase measurements would enable high phase signal contrast. In the next 

section, we discuss how to use spatially incoherent monochromatic light as illumination for 

3D imaging in TPM.

2. Spatially Incoherent Illumination—A monochromatic light source, such as a laser, 

can generate 3D patterned illumination through a multimode fiber (it generates speckle 

fields) and a grating to achieve 3D field confinement; this was demonstrated in wide-field 

fluorescence microscopy by Gustafsson et al. [38]. Recently, dynamic speckle field 

illumination has been implemented to achieve depth selectivity or depth sectioning in 

quantitative phase microscopes (QPMs) [14,73]. However, no reconstruction models have 

yet been fully developed for dynamic speckle illumination-based TPM systems. Recently, 

the depth sectioning effect in reflection-mode dynamic speckle QPM has been modeled [39]. 

Here we give a summary of the results in [39], which can potentially provide a guide on 

developing tomographic reconstruction models in TPM under such illumination sources. In 

this type of an incoherent illumination QPM system, the spatial cross-correlation function, 

Γ12(zR; kxi, kyi) along the focal axis (x, y is not considered in [39] by assuming a one-

dimensional object) for each speckle component, (kxi, kyi), is

(8)

where zR is the defocus position, P(kxi, kyi) is the speckle distribution over the back aperture 

of the imaging objective, and  through the dispersion relation. By 
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integrating over all the speckle components (kxi, kyi) over the back aperture, we obtain the 

overall spatial correlation function as

(9)

where θmax is the maximum speckle illumination angle in the object space, and the sinc 

function is defined as sinc(x) =sin(πx)/πx. For an 800 nm speckle illumination QPM system 

with an NA = 1.0 imaging objective, we can calculate the spatial correlation function and 

determine the depth sectioning as shown in Fig. 4. The FWHM value of depth sectioning or 

depth resolution is determined to be 1.06 μm. It has been found that the depth resolution 

follows a λ/NA2 law.

C. Beam Propagation Model-Based Reconstruction

In the Born or Rytov approximation-based tomographic reconstruction models covered in 

Sections 2.A and 2.B, we have to assume weak light scattering or single scattering in the 

unknown objects. A BPM-based tomographic reconstruction model, proposed by Kamilov et 
al. [43,48], allows considering multiple scattering events by dividing the object into multiple 

layers and subsequently forming an artificial neural network geometry to model the RI 

distribution. Therefore, the BPM reconstruction model applies to thicker or highly 

inhomogeneous biological objects. Instead of using iterative phase retrieval [59,74], the RI 

reconstruction in [43,48] uses complex field measurements from a typical angle scanning 

TPM system [18]. In the following paragraphs, we briefly introduce the concepts of 

retrieving RI distributions using the BPM model.

In the BPM model, an inhomogeneous sample is virtually divided into thin slices along the 

propagation direction z. Light propagation is modeled as phase modulation based on the 

paraxial wave equation. After each layer, the optical field is described as [43]

(10)

where a(r) is a complex envelope function that models light diffraction in each sample layer. 

The sample RI distribution n(r) is decomposed into a constant medium nm and a 

perturbation δn(r) due to inhomogeneity. Therefore, the propagation constant in the sample, 

βs(r), is written as

(11)

The complex envelope a(r) evolves along the optical axis as [43,75]
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(12)

where δz is the step size or sample slice size along z direction. The right-hand side of this 

equation can be decomposed into two parts: the first term eiβ0δn(r)δz takes refraction into 

account, whereas the other term deals with the diffraction. By repeatedly using this equation 

step-by-step, we can get to know how the complex field evolves after propagating over an 

arbitrary distance along the optical axis. In other words, once given the initial condition, the 

optical field distribution can be obtained anywhere in space (note that reflected light has not 

been considered in the current BPM model). Compared with the ODT reconstruction model, 

BPM no longer uses the scattering potential to represent the RI in a quadratic function. 

Instead, it directly seeks an equation to link RI and the measured electromagnetic field, 

which makes the BPM model nonlinear. Compared with its linear counterpart, this nonlinear 

physical model can be more accurate when the scattering effects are strong. Kamilov et al. 
[43,48] successfully demonstrated the tomographic reconstruction of RI distribution by 

iteratively minimizing the error between the measured field and estimated field computed 

based on BPM; they used the complex field measurements from an angle scanning TPM 

system.

3. REGULARIZED TPM

In TPM systems based on the laser beam angle scanning technique, the range of illumination 

angle is limited to around 60° by the NA of the condenser lens. The same situation also 

applies to TPM systems employing an object in motion, where a high-NA condenser lens is 

used to create a line-focused beam, which can be viewed as a combination of infinite plane 

waves of a limited range of illumination angles [36]. Correspondingly, in the 3D Fourier 

domain, the coverage of accessible spatial frequency along kz, which determines the focus 

sectioning capability, is limited. Additionally, the whole accessible 3D spatial frequency 

region has a donut-shaped distribution, which is manifested by the missing cone problem 

rooted in transmission measurements as shown earlier in Fig. 2, leaving the center with no 

frequency information. The missing cone problem can cause the elongation of an object 

along the z-axis (i.e., the optical axis), thus deteriorating axial resolution. Importantly, this 

issue results in underestimation of RI values [46,76], which is also a common issue in x-ray 

CT [77] and magnetic resonance imaging (MRI) [78]. In the case of object rotation TPMs, a 

complete spatial frequency map can be recovered and thus the missing cone problem can be 

eliminated if and only if the rotation can fully cover a range of 360° along two axes 

[29,79,80]. It has also been proposed that by combining angle scanning and sample rotation 

techniques, one can also fill the whole Ewald sphere to achieve isotropic resolution in TPM 

[81]. As for the wavelength scanning method, the missing cone problem still exists if the 

measurements are done in the transmission geometry [32]. In summary, the missing cone 

problem is difficult to be solved in transmission TPM systems.
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Over the past several decades, there has been intensive research work on relieving the 

missing cone (data) problem and improving the accuracy of reconstructed tomograms 

mainly in the areas of CT, electron microscope, and MRI [82–84]. Over the past decade, 

some of the ideas have been innovatively introduced into TPM to significantly enhance the 

quality of reconstructed RI maps [18,24,42,43,46,48,76]. Basically, all these methods are 

based on constructing a cost function comprising one quadratic ℓ2 norm error term and one 

regularization term, which is expressed as

(13)

where f is the unknown variable to be solved, A is the forward operator characterized by the 

reconstruction model, Af represents the computed field, g is the measured field, α is the 

regularization coefficient, and R(f) is the regularization term.

Specifically, for ODT employing the beam scanning method, the error term in the cost 

function in Eq. (13) can be further expressed as

(14)

where m denotes different illumination angles; f corresponds to the scattering potential to be 

reconstructed (note that earlier we used χ); A(m)f can be interpreted as the mth diffraction 

projection of f onto the sample plane z = 0, which provides a 2D scattering field of a 3D 

object with respect to the mth incident beam illumination direction unit vector 

; and g(m) is the mth measured scattered field.

According to the ODT theorem [76], the forward operator can be further specified as a 2D 

Fourier transform relation

(15)

where f is the scattering potential function in the 3D Fourier space (U, V, W) as indicated by 

its variables, , and 

.

The error term in Eq. (13) measures the difference between the computed field and 

experimentally measured field, and the regularization term imposes certain constraints on 

the reconstructed image by using prior knowledge of target samples. Then an iterative 

algorithm is utilized to minimize this cost function until a convergence is reached. The first 
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used prior information is the non-negativity constraint (NNC), which is grounded in the truth 

that the difference between the RIs of samples and the surrounding medium should always 

be non-negative. This method was first demonstrated in TPM by Choi et al. in [18] with the 

missing cone issue significantly reduced compared with when no regularization is imposed. 

NNC is easy to implement and can always be combined with other methods [76,85]. Later 

on, the TV regularization method, which measures the total image gradient and possesses 

stronger constraining effects, has been implemented to TPM [42,46,48]. The TV regularizer 

has two common variants [86]; one is isotropic TV,

(16)

and the other is anisotropic TV,

(17)

In Sections 3.A and 3.B, these two TV variants will be discussed in more detail.

A. Isotropic TV

The cost function for an isotropic TV regularizer specifically uses RiTV(f) as the 

regularization term. It is not convex due to the TV regularizer term, which makes it 

impossible to be minimized by a direct gradient descent method. Delaney and Bresler [47] 

proposed converting this cost function to a half-quadratic version by inserting an auxiliary 

variable b, following which a global convergence can be reached by alternating 

minimization with respect to f and b [47]. A fast iterative shrinkage/thresholding algorithm 

(FISTA), proposed by Beck and Teboulle in [86], relies on efficient evaluation of the 

gradient of the error term and iteratively solves out the regularization term via a dual 

optimization approach, where a global rate of convergence is also proven. This algorithm is 

applicable to both isotropic and anisotropic TV regularizers.

The isotropic TV prior, first introduced by Rudin et al. [87] as a constraint imposed on the 

noises of images, has the capability of denoising, de-blurring, and invasively yielding sharp 

edges. It works best for piece-wise smooth images that consist of piece-smooth regions 

separated by sharp edges. In this case, this functional can smooth out noise while well 

preserving the boundaries [88]. On the other hand, this isotropic TV regularizer can be 

interpreted as an ℓ1 penalty on the magnitudes of the image gradient, which bears the sparsity 

promoting effects on the gradient components of images [89]. This sparsity property has 

achieved great success in the field of compressive sensing, which recovers images from 
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insufficiently sampled signals [90]. Kamilov et al. in [43] demonstrated that even when the 

number of measured holograms used for tomogram reconstruction is reduced by a factor of 

32, the reconstructed RI map preserves descent quality and similar signal-to-noise ratio. This 

proves that sparse regularization plays a critical role to significantly enhance the accuracy of 

the solution to ill-posed inverse problems that are under high under-sampling conditions.

Benefitted from the edge-preserving (EP) characteristic of the isotropic TV regularizer, the 

so-called EP regularization was proposed by further adding a function to the ℓ2 norm of the 

image gradient. Therefore, this regularizer can be formularized as [47,88]

(18)

where ϕ is determined by prior knowledge about sample edges that need to satisfy certain 

defined conditions. For example, ϕ(t) = T2 ln(1 + t/T)is one of the choices, where the 

parameter T can be tuned depending on how sharp the edges need to be kept. Therefore, in 

the case when sharp edges of samples are highly desired, this functional ϕ(t) can be 

implemented.

Figures 5(a)–5(d) feature a comparison of different regularization methods, including no 

regularization, NNC, EP regularization, and TV regularization, for 3D RI reconstruction of a 

hepatocyte cell (the figure is reproduced from [46] with permission). As can be seen in Fig. 

5(d), the isotropic TV regularizer can significantly smooth out the noise, while making the 

edges of the cell’s inner structures sharp and clear. Furthermore, the RI values are no longer 

underestimated compared with the case using no regularization as shown in Fig. 5(a). By 

sacrificing some noise removal capability, EP regularization, as shown in Fig. 5(c), can 

further sharpen the edges.

B. Anisotropic TV

The cost function with an anisotropic TV regularizer is very similar to that of the isotropic 

case, but the regularizer form is replaced with RaTV(f). This anisotropic TV regularizer can 

be interpreted as an ℓ1 penalty directly on the image gradient. It is a very strong regularizer, 

which offers improvements on reconstruction quality to a great extent compared with the 

isotropic counterpart [91]. However, its usage is limited to samples whose inner function can 

be approximated by a piecewise-constant function, thus making it inapplicable to biological 

samples with complex inner structures. Krauze et al. [42] innovatively used this regularizer 

to retrieve the 3D external geometry of samples, and accordingly made a binary 3D mask to 

mark out the sample profile. This mask, as the external geometry constraint, can be further 

applied to existing iterative tomographic reconstruction solvers. Here, the anisotropic TV 

regularizer can free the retrieved 3D external geometry of the samples from deformation 

caused by the missing cone problem. Given this prior knowledge, any normal iterative 

tomographic algorithm can generate a descent reconstruction result with accurate non-

piecewise-constant information and correct sample shape.
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4. APPLICATIONS

Basically, TPM can noninvasively retrieve the 3D RI distributions of biological samples, 

providing rich information about live cells without any exogenous contrast agents. Based on 

the RI maps, both morphological and biochemical information can be further extracted to 

achieve comprehensive label-free visualization and quantification of livng cells, which opens 

a new avenue to the investigation of their functionalities and mechanisms at the individual 

level. The following section will highlight some of the applications of TPM for cellular 

studies.

A. 3D RI Distribution of Living Cells

Three-dimensional RI mapping of living cells by itself can implicate some pathological 

states that accompany human diseases. RI distribution has been intensively explored for 

visualizing the morphological alterations of RBCs caused by parasitic protozoa, such as P. 
falciparum [52,53] and B. microti [54]. The human malarial parasite, P. falciparum, invades 

and develops within host human RBCs during the 48-h asexual cycle and can lead to 

sequestration of RBCs in the microvasculature, which is linked to vital organ dysfunctions 

under severe malaria conditions [92]. As P. falciparum matures and differentiates within a 

growth-permissive parasitophorous vacuole, the RBCs undergo extensive structural changes, 

which can be non-invasively monitored by TPM. Figure 6 illustrates the RI maps of P. 
falciparum-invaded human RBCs (Pf-RBCs) during all intra-erythrocytic stages: healthy 

stage in Fig. 6(a), ring stage in Fig. 6(b), trophozoite stage in Fig. 6(c), and schizont stage in 

Fig. 6(d) (figures are reproduced from [52] with permission). As shown in Fig. 6(a), healthy 

RBCs show homogeneous distribution of RI; however, as the stages of parasite development 

proceed, the Pf-RBCs are becoming more and more optically heterogeneous, as indicated in 

Figs. 6(b)–6(d). Three main factors contribute to this RI change: (1) the vacuole of the 

parasite occupies a fraction of the volume in the cytoplasm of the RBCs; the vacuole 

possesses relatively low RI values as indicated by black arrows in Figs. 6(b)–6(d); (2) 

hemoglobin (Hb), as the main protein content of RBCs, is digested, metabolized, and 

converted into hemozoin crystals in the parasite membrane, which have very high RI values 

as indicated by gray arrows in Figs. 6(c) and 6(d); (3) various parasite proteins are excreted 

from the parasites into the cytoplasm of the Pf-RBCs [93].

B. Morphological Parameters Accessible by TPM

For the entirety of cells, it is easy for TPM to profile the 3D cell boundary by using the 

distinct difference of RI values between cells and their surrounding medium; therefore, the 

morphological parameters over the whole cell scale can be extracted accordingly. Within a 

cell, the RI distributions of subcellular organelles are also distinguished from the RI 

distributions of their surrounding cytoplasm; this has enabled TPM to segment out 

intracellular structures with high accuracy.

1. Cell Entirety Morphology—Given the cell boundary between the intracellular space 

and surrounding medium, the volume V and surface area A can be effectively calculated for 

basic and general quantification of cell size. To better extract the cell shape information, 

different sets of shape parameters can be further adapted. For instance, when the cell shape 
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is modeled as a 3D ellipsoid, R1, R2, and R3 can be measured as the radii along the three 

axes in the Cartesian coordinate [94]. On the other hand, if the cell is approximated as a 

rectangle, the width x and length y can be retrieved to calculate the total edge leading length 

L = x + 2y, which is correlated to cell migration speed and protrusion rate [95]. 

Nevertheless, after obtaining the basic geometric parameters of cells mentioned above, 

several dimensional or dimensionless 3D shape descriptors can be further generated to get a 

higher level sense of cell morphology, which can be potentially linked to significant 

biological discoveries. For example, surface-to-volume ratio is a typical parameter, which is 

known to have an influence on the uptake of light, digestion of nutrients, and release of 

waste of a cell [96]. The compactness c = 36πV2/A3 and sphericity S = C1/3 factors, which 

are parameters used very popularly for evaluating cellular morphological changes, are used 

to describe how far a cell is from an ideal sphere [97]. The surface area index A/AS, where 

AS is the surface area if the cell is an ideal sphere of the same volume, is often used to 

describe the deformability of RBCs [98,99].

Thanks to the 3D imaging capability, all these geometric parameters discussed above can be 

easily obtained by TPM, making it a powerful tool to deeply explore the cells in the 

morphological world. RBC is one of most popular candidates due to its special biconcave 

shape and simple inner structures [100–104] [Fig. 7(a)]. Based on the TPM technique, Park 

et al. [100] found out that the volume and surface area of the cord RBCs of newborn infants 

are much larger than those of the RBCs of non-pregnant women, and these cord RBCs are 

also flatter than those of adults. By monitoring stored blood without the preservation 

solution CPDA-1 for around 6 weeks, the 3D RI tomograms showed that RBCs experience 

significant morphological changes during this storage period, transforming from disco-cytes 

to echinocytes on day 5 and finally becoming spherocytes after 2 weeks [101]. 

Quantitatively, the RBC volume, surface area, and sphericity parameters were compared 

between stored blood with and without CPDA-1 after different storage periods [101]. 

Besides RBCs, TPM has also been widely utilized to study the morphological features of 

other types of eukaryotic cells, such as white blood cells [Fig. 7(b)], neurons [Fig. 7(c)], 

hepatocytes [Fig. 7(d)], phytoplanktons, and cancer cells [26,105,106]. By visualizing 

neurons treated with the 1-methyl-4-phenylpyridinium ion (MPP+), known to cause 

Parkinson’s disease, for 5 h with the help of 3D RI mapping, it was found that MPP+ can 

lead to neuron membrane blebs, cytoskeleton disruption, neurite shortening, cell shrinkage, 

and rounding, which are typically linked to apoptotic morphology and are highly consistent 

with previous reports using other techniques [107].

2. Subcellular Structures—Since the RI maps of subcellular organelles are also different 

from those of the surrounding cytoplasm, 3D RI tomograms derived by TPM can effectively 

retrieve the inner structural boundaries by accurately profiling the isosurfaces of organelles 

based on RI and gradients of RI information simultaneously. Thanks to the high RI 

sensitivity of TPM, these subcellular morphological features can add greater value to the 

study of cellular inner functional activities and biological responses to external stimuli such 

as drug treatment, osmotic pressure, shear stress, etc.

Under TPM, the most distinguishable subcellular organelles are the nucleoli and the nucleus 

excluding nucleoli, where the higher RI of nucleoli compared with the remaining part of the 
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nucleus can be associated with the active ribosomal assembly and rRNA synthesis in the 

nucleoli [108]. By comparing the nucleus zone of different categories of white blood cells 

plotted out by RI tomograms, T cells were shown to have a much more spherical shape of 

the nucleus, in comparison with monocytes and neutrophils. With respect to the ratio of 

nucleus to cytoplasm volume, T cells are the largest, followed by monocytes, while 

neutrophils rank the last [79,107,109]. Sung et al. [24] distinguished chromosomes from the 

surrounding cytoplasm in HeLa, HT-29, and T84 cells, so that the chromosomal dry mass 

can be calculated individually; this can be potentially used to detect chromosomal 

abnormalities and differentiate cell types in a label-free manner.

LDs are subcellular organelles with important roles in lipid storage and metabolism in most 

cell types; they are related with various pathologies, including cancer, obesity, and diabetes 

mellitus [110,111]. However, the underlying mechanisms of growth, movement, and 

biosynthesis of LDs have not been well understood. The fact that the RI values of LDs are 

distinctly higher than that of the cytoplasm offers TPM an opportunity to segment out LDs 

and act as a 3D label-free tool for their imaging and quantification [31,55,112]. Using TPM, 

Kim et al. [55] obtained the time lapse of the 3D RI distributions of LDs inside a hepatocyte 

cell. By 3D tracking of individual LDs over 93 s, they revealed that the diffusive motions of 

LDs have a great variety, ranging from sub-diffusion to active transport. This complex 3D 

dynamic of LDs inside live cells originates from the interaction between LDs and 

surrounding cellular architectures.

Although possessing high RI sensitivity, conventional TPM still cannot detect very small 

subcellular organelles with size of less than 400 nm. One of the main reasons is the 

diffraction-limited lateral and axial resolutions. With the help of a complex deconvolution 

method that uses an experimentally measured CTF to correct the aberrations of the optical 

system, one can push the lateral resolution to the sub-100 nm region and improve the axial 

resolution to 150 nm [45]. Leveraging this significantly improved resolution, subcellular 

coil-like structures of Escherichia bacteria (Escherichia coli) can be discerned out [44], and 

the synaptic network remodeling processes during neuronal development can be monitored, 

where the growth of thin dendrites (~150 nm) can be precisely measured (~400 nm/min) 

[45].

C. Biochemical Information Retrievable by TPM

Besides being able to unfold biophysical features, RI maps of living cells can also carry 

biochemical information about cells. This is due to the established fact that there is a linear 

relationship between the RI value of a biological sample, n, and the dry mass concentration 

(or called dry mass density) of organic molecules, C, which can be described by the equation 

n = nm + αC, where nm is the RI value of the medium surrounding the sample and α is the 

refraction increment [113,114]. Fortunately, for the majority of chemical components within 

a cell, the linear coefficient α relating RI and dry mass concentration remains constant 

regardless of the chemical identity of the biomaterial [115,116]. More specifically, the mean 

value of α for the entire set of human proteins is 0.190 ml/g with a standard deviation of 

only 0.003 ml/g [117]. Therefore, the RI map obtained by TPM can be straightforwardly 

converted to the dry mass (non-aqueous) concentration, C, which can indeed be viewed as 
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the concentration of the biochemical components of a cell. As mentioned before, the cell 

volume parameter can be extracted from the RI map; then, together with the newly 

introduced dry mass density, the dry mass value that quantifies the total mass of all the non-

aqueous contents of a cell can be computed. To make use of the 3D RI map from TPM 

better, the volume integral of the dry mass density of a specific subcellular organelle 

(segmented out) can give us the dry mass of that particular organelle. This biochemical 

parameter is inaccessible through a 2D QPI modality. To be noted, although TPM can 

measure the total dry mass of all the proteins in cells, it lacks the molecule specificity, that is 

to say, it cannot quantify the mass for each kind of protein.

The cytoplasm of RBCs is mainly composed of Hb, which is the iron-containing oxygen-

transport metalloprotein. The properties of Hb are sensitive to subtle alterations of 

pathological states of RBCs resulting from infectious diseases and genetic disorders, e.g., 

malaria and sickle cell diseases [118,119]. To quantify Hb, mean corpuscular Hb 

concentration (MCHC) and mean corpuscular Hb content (MCH) are being used for medical 

diagnosis on a daily basis in medical laboratories [120]. MCHC and MCH values can be 

measured with TPM, which can be used to quantitatively investigate the responses of RBCs 

to exogenous stimuli or their endogenous functional disorders [52,54,102–104]. By 

comparing the MCHC and MCH values of RBCs from healthy humans and patients with 

iron deficiency anemia (IDA), high reticulocyte content, and hereditary spherocytosis, Kim 

et al. [120] found that the IDA RBCs have significantly decreased MCH values, whereas 

reticulocytes have relatively larger MCH values, which is consistent with the fact that the 

oxygen carrying capacity of RBCs is primarily determined by the amount of Hb. 

Interestingly, in all four groups, there are negative correlations between cell MCHC values 

and volume, and cell surface area and membrane fluctuations [120].

Cell size, balanced by cell growth and division, is an important phenotypic characteristic of 

any type of cell [121,122]. Although the process of how it is regulated has fascinated 

generations of biologists, details have remained largely obscure, mainly because accurate 

measurements at the single-cell level were difficult to carry out [123]. Cell size can be 

quantified by geometric size, i.e., cell volume, or dry mass. Previous methods can only 

measure either cell volume or dry mass, and are largely limited to unattached spherical cells. 

With high image contrast, TPM can conveniently, accurately, and effectively retrieve cell 

volume and dry mass parameters simultaneously, without any exogenous labeling agents. 

Even more, the third parameter, dry mass density, can be calculated easily. All these amazing 

features undoubtedly make TPM a perfect tool for quantifying cell size in the study of cell 

growth, proliferation, apoptosis, etc. By quantitatively monitoring the dry mass of 

lymphoblasts and epithelial cells during cell division, Sung et al. [124] found out that both 

cell types maintain a linear relationship between average growth rate and cell mass over the 

majority of size range. With unprecedented accuracy, they discovered the asymmetry of 

division, which led to the conclusion that there must be a cell-autonomous size regulator that 

requires feedback control and couples cell growth to cell cycle. Utilizing TPM to take time-

lapse measurements of cell volume, dry mass, and dry mass density of mouse chondrocytes 

simultaneously, Cooper et al. [19] concluded that there are three distinct phases of 

hypertrophic cell enlargement. More detailed, in phase 1, the dry mass density is maintained, 

whereas cell volumes increase threefold; then in phase 2, cell volume experiences a fourfold 
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increase, which is disproportionate with the unchanged rate of dry mass production, thus 

resulting in a dramatic dilution of dry mass density; finally, in phase 3, dry mass density 

again stabilizes and cell volume increases another twofold with a proportionate increase in 

dry mass. This result is remarkable as it reveals the mechanism of cell size increase and the 

regulation of growth rate [19].

D. Light Scattering Property

Angle- and wavelength-dependent light scattering distributions provide information about 

the morphological changes accompanying early-stage malignancy of cancers, thus making 

light scattering a valuable tool for cancer diagnosis over the past decade [125–127]. Light 

scattering is governed by the complex RI distribution of the samples. Therefore, in order to 

remodel light scattering in a sample, the 3D RI map is needed, which can be provided by 

TPM, regardless of various other methods. By modifying the originally measured 3D RI 

tomograms in a certain way to eliminate the contribution of a specific organelle of interest, 

the contributions of that specific organelle can be determined and accessed, which can be 

helpful in diagnosing the precursors of many cancers, where only a certain intracellular 

organelle, such as the nucleus, undergoes morphological changes [128]. The light scattering 

analysis, conducted by Hsu et al. [129], for instance, showed that the total light scattering 

cross section and backscattering cross section of cancerous cell lines (CA9-22, BCC) were 

both significantly higher than those of normal cell lines (HaCaT, SG).

5. CONCLUDING REMARKS

So far, the fundamental physical principles, 3D RI reconstruction algorithms, and various 

applications of TPM have been thoroughly discussed. Basically, in TPM we solve the 

inverse scattering problem and reconstruct the 3D RI maps through multiple measurements 

of complex scattered fields in different ways, such as object rotation, scanning illumination 

laser beam angles or wavelengths, and sample focus scanning under incoherent 

illuminations. With 3D Fourier space mapping or BPM, combined with regularization 

algorithms, accurate 3D RI maps of samples are calculated from TPM data. In addition, 

starting from the RI distribution, plenty of morphological and biochemical parameters can 

be retrieved accordingly, which opens the door to cell biology studies. Compared with other 

3D imaging modalities, such as confocal microscopy, OCT, and multiphoton microscopy, the 

3D quantitative amplitude and phase imaging capability and the label-free characteristic are 

the most significant features of TPM. As an emerging optical imaging technique, TPM can 

be used individually or combined with other imaging modalities to effectively and efficiently 

tackle many unresolved but important biological and medical problems in the future.

Over the past 4 years, it has been exciting to witness the successful promotion of the TPM 

technique into industry for much wider applications. Two representative cases are NanoLive 

Inc. (founded in 2013) [45] and TomoCube Inc. (founded in 2016) [130]. Both companies 

use the angle scanning ODT technique to obtain label-free 3D images of entire cells and 

tissue slices, and promise to open numerous unexplored applications in biology and 

medicine. This is the first time that the TPM technique is extended from lab research to 
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public use, and we believe that TPM’s high speed, high resolution, and noninvasive 

characteristics can soon make it popular among biologists and physicians all over the world.

Although TPM has been intensively developed over the past 10 years, its applications are 

still limited to cell biology studies; thus, it needs to be fully explored for more translational 

research. Due to the shortcomings of the currently available methods, many long-standing 

problems remain in the biomedical field, but they can be potentially solved with TPM. For 

instance, immunocyte phenotyping, stem cell multipotency identification, cancer cell 

screening, and tissue pathology are promising directions in which TPM may contribute. 

However, in order to achieve actual success in these important topics, there still are many 

important technical issues of TPM waiting to be solved such as throughput and reflection-

mode measurement capability.

The biophysical state of a cell is potentially a rich source of information, indicative of cell 

identity and physiology. Among the various biophysical parameters, mechanical stiffness 

may serve as predictive markers of cellular fate [131], and nuclear membrane fluctuations 

have been used to distinguish the multipotent stem cells and mesenchymal stromal cells 

from osteochondral progenitor subpopulations [132]. For measuring both parameters by 

TPM, very high lateral and axial resolution and RI sensitivity for accurate cell nucleus 

segmentation are required. This is one of the significant technical improvement directions 

for future TPM development.

Besides biophysical properties, the biomolecule information of cells and tissues can also 

offer us clues about their metabolic activities, thus helping to study the pathophysiology of 

human diseases and obtain early diagnosis of them [133]. With the help of new light sources 

with broad wavelength bands and appropriate detectors, TPM can provide a label-free 

noninvasive spectroscopic approach for assessing the molecular specificity of live cells via 

optical dispersion [134]. Jung et al. [33] demonstrated the first wavelength-dependent 3D RI 

tomography of cells and used it to quantify the dispersive characteristics of the Hb molecule. 

We hope that this type of hyperspectral RI dispersion measurement could be used in more 

important biological or clinical research in the future to provide useful molecular 

information about live cells and tissues.

One of the ultimate goals of developing various optical imaging techniques is to transfer 

them from laboratory research to clinics as they become mature enough in the final 

developing stage. In the past several decades, we have witnessed several successful 

examples, such as OCT, Raman spectroscopy, PC microscopy, multiphoton microscopy, etc. 

It is natural to envision that TPM will also gradually step on this path to broaden its 

applications. However, in order to make TPM really compatible with the already established 

clinical procedures, at least two main major improvements should be critically addressed: 

high-throughput feature and in-vivo capability. First of all, clinical diagnostics on cells, such 

as blood testing, usually need to deal with millions of cells to obtain statistical understanding 

on the cell populations. However, current reported TPM systems in the literature have a very 

limited field of view (~50 μm × 50 μm), with which only a few cells can be observed in one 

3D RI tomogram, and at least tens of measurements are needed to generate one tomogram, 

which takes a lot of time. As mentioned previously, active illumination schemes using a 

Jin et al. Page 18

J Opt Soc Am B. Author manuscript; available in PMC 2018 January 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



DMD or LED array combined with high-speed cameras can accelerate the data acquisition 

process to potentially solve this problem to a certain extent [31,135]. Nevertheless, a TPM 

system with a much larger field of view still needs to be developed in order to further 

enhance imaging throughput in the future. Second, current TPM techniques rely on 

measuring the scattered fields transmitted from the samples, and, thus, require the 

illumination part and sensing part of the optical system to be on opposite sides of the 

samples, which is not suitable for in-vivo imaging. To solve this issue, the reflected scattered 

fields from samples need to be measured for obtaining the 3D tomograms [14,39].

In conclusion, TPM is still in its early stage of development, and has only been applied to a 

small number of areas in the biomedical field. There are still several important 

aforementioned directions to make breakthroughs to broaden and deepen TPM applications. 

We have witnessed rapid growth of this field in the past decade, which in turn consolidates 

our belief that TPM will undoubtedly play important and even irreplaceable roles in various 

biomedical studies in the future.
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Fig. 1. 
Illustration of optical diffraction tomography. (Figure reprinted from Ref. [61] with 

permission.)
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Fig. 2. 
Illustration of angle scanning-based scattered field measurements and frequency domain 

mapping.
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Fig. 3. 
Temporally incoherent ODT reconstruction illustration. (a) Coherent transfer function. (b) 

The 3D PSF in x–y (z = 0) and x–z (y = 0) planes obtained from the CTF. (Figure reprinted 

from Ref. [41].)
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Fig. 4. 
Overall spatial correlation function for 800 nm speckle illumination with NA = 1.0. (Figure 

reprinted from Ref. [39] with permission.)
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Fig. 5. 
Comparison of the 3D RI distribution of a hepatocyte cell reconstructed by (a) direct Fourier 

mapping, (b) NNC, (c) EP regularization, and (d) isotropic TV regularization. (Figure 

reprinted from Ref. [46] with permission.)
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Fig. 6. 
3D RI maps of Pf-RBCs during all intra-erythrocytic stages: (a) healthy RBCs, (b) ring 

stage, (c) trophozoite stage, (d) schizont stage. Images in rows show three different x–y 
cross sections: 0.6 μm above the focused plane (top), on the focused plane (middle), and 0.6 

μm below the focused plane (bottom). Two color maps show the RI (top right) and Hb 

concentration (bottom right) (scale bar, 1.5 μm). (Figure reprinted from Ref. [52] with 

permission. Copyright (2008) National Academy of Sciences, U.S.A.)
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Fig. 7. 
Representative 3D RI tomograms of (a) an RBC, (b) a macrophage, (c) a neuron, and (d) a 

hepatocyte. (Figures reprinted from Ref. [26] with permission.)
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