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Summary

Understanding the sequence determinants that give rise to diversity among individuals and species 

is the central challenge of genetics. Despite ever-greater numbers of sequenced genomes, most 

genome-wide association studies cannot distinguish causal variants from linked passenger 

mutations spanning many genes. We report that this inherent challenge can be overcome in model 

organisms. By pushing the advantages of inbred crossing to its practical limit in Saccharomyces 
cerevisiae, we improved the statistical resolution of linkage analysis to single nucleotides. This 

‘super-resolution’ approach allowed us to map 370 causal variants across 26 quantitative traits. 

Missense, synonymous, and cis-regulatory mutations collectively gave rise to phenotypic diversity, 

providing mechanistic insight into the basis of evolutionary divergence. Our data also 

systematically unmasked complex genetic architectures, revealing that multiple closely linked 

driver mutations frequently act on the same quantitative trait. Single-nucleotide mapping thus 

complements traditional deletion and overexpression screening paradigms and opens new frontiers 

in quantitative genetics.

Graphical Abstract

A roadmap is presented for obtaining a systematic quantitative understanding between genotype 

and phenotype at single nucleotide resolution
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INTRODUCTION

Genetics is not destiny. However, the DNA polymorphisms that are inherited in families can 

affect our risk for disease, the physical dimensions of our bodies, and even our baseline 

behavioral tendencies (Visscher et al., 2012). Long before physical genomes could be fully 

sequenced, the early pioneers of quantitative genetics scoured the genome for mutations 

responsible for the most extreme manifestations of these traits (Botstein et al., 1980; Donis-

Keller et al., 1987). By harnessing the power of family pedigrees, investigators linked unique 

restriction endonuclease sites to disease alleles, creating the first linkage maps of our 

genomes (Hall et al., 1990).

Although linkage was a blessing that allowed geneticists to pinpoint genes responsible 

Mendelian diseases, it is now a curse for the vast majority of heritable traits, which are 

influenced by many variants of small effect (Manolio et al., 2009). Identifying these variants 

is hampered by the sparsity of meiotic crossovers. Even in a highly outbred human 

population, the average size of a haplotype block spans dozens of polymorphisms (Frazer et 

al., 2007; Gabriel et al., 2002), meaning that each causal polymorphism is inherited along 

with numerous statistically indistinguishable passenger mutations. Thus, despite rapid 

advances in identifying polymorphisms, modern genome-wide association studies (GWAS) 

are often unable to distinguish true causal mutations from nearby neutral variants. Current 

methods for fine mapping rely on functional profiling of candidate variants within each 

quantitative trait locus (QTL). However, in virtually all cases, attribution of causality is 

based on some prior knowledge from directed studies, preventing discovery of 

fundamentally new variants.
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Low genetic mapping resolution is especially pronounced for inbred crosses of laboratory 

organisms. Although such studies can capture a far greater degree of heritability than most 

GWAS (Flint et al., 2005), practical constraints dictate that their embedded crossing schemes 

involve a limited number of meioses. Inbred crosses in yeast with over 1,000 fully 

genotyped segregants can thus explain >90% of a trait’s heritability, but are only able to map 

QTLs with a resolution that spans dozens of genes in the compact yeast genome (10–100 kb) 

(Bloom et al., 2013). Identifying the causal variant within a QTL requires manually 

engineering dozens of candidate polymorphisms or performing laborious backcrosses. This 

last-mile problem in identifying causal variants has severely restrained the practical utility of 

inbred crossing strategies in systematically informing our understanding of how natural 

genetic variation drives phenotypic change.

Here we develop a theoretical framework for identifying causal variants with true statistical 

rigor and without the need for any additional experimentation. We put our theory into 

practice by mapping hundreds of causal variants in a highly inbred yeast cross. This 

carefully designed experiment liberated each site of genetic variation from its original 

genetic background, allowing us to decouple the phenotypic effects of variants separated by 

as few as 100 base pairs. Our data provide new insights into the richness of natural genetic 

variation and charts a roadmap for achieving a central objective of quantitative genetics: 

systematic understanding of the relationship between genotype and phenotype at single 

nucleotide resolution.

RESULTS

Mapping causal variants in theory

The statistical resolution of mapping genotype to phenotype is fundamentally limited by 

genetic linkage between adjacent variants. Closely related individuals share long haplotype 

blocks, where polymorphisms in the same gene or region are perfectly correlated. Such 

linkage can be broken by meiotic recombination. In highly outbred populations, 

recombination over thousands of generations fragments ancestral haplotypes into smaller 

and smaller pieces. However, outbreeding comes with the cost of introducing new 

haplotypes and de novo mutations that systematically confound genome-wide association 

studies (GWAS). Thus, studies in model organisms commonly employ inbreeding so that 

every allele can be traced to either a maternal or paternal haplotype. Within this restricted 

genotype space, DNA sequence can fully explain the heritability of most phenotypes (Bloom 

et al., 2013; Märtens et al., 2016). However, the quantitative trait loci (QTL) discovered in 

these crosses span dozens of highly linked variants and thus often cannot even identify a 

specific causal gene.

The phenotypic effect of adjacent variants can be distinguished in theory if a sufficient 

number of individuals contain meiotic breakpoints between the variants. The number of 

breakpoints between two loci scales with recombination rate (ρ) and the number of 

individuals genotyped (N). These design parameters are thus governed by choice of model 

organism and practical ability to sequence and maintain large cohorts of individuals. Across 

eukarya, we observed differences in recombination rate that spanned several orders of 

magnitude (Segura et al., 2013; Tiley and Burleigh, 2015; Wilfert et al., 2007) (Figure 1A). 
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Larger genome sizes correlated strongly with reduced recombination rates (with a power law 

exponent of −3/4, see Methods for further discussion). Thus, larger genomes incur two 

simultaneous costs: greater expenditure in sequencing and inferior resolution in mapping 

causal variants. We noticed that the yeast S. cerevisiae was a particularly favorable outlier 

with a 12 megabase (Mb) genome and an average of 3.4 recombinations per Mb (340cM/

Mb). Most other commonly studied model organisms had below average recombination rates 

(~3 crossovers per generation or 1.6 cM/Mb in flies, ~14 per generation or 0.4 cM/Mb in 

mice). To compensate for infrequent recombination, inbred lines in mice and flies have 

employed successive generations of inbreeding to boost crossover density. However, even 

after >50 generations of inbreeding, these crosses have been unable to map causal variants at 

even single gene level resolution, let alone to single nucleotides (Iraqi et al., 2012; King et 

al., 2012). Even with the unique advantages inherent to yeast, systematic mapping of causal 

variants has not been possible with existing designs.

We turned to computational modeling to define the practical requirements of an inbred yeast 

cross that would enable single nucleotide resolution mapping. We varied three key 

parameters in our model: 1) number of generations of inbreeding (G), 2) number of 

individuals genotyped (N), and 3) the mean physical distance between adjacent 

polymorphisms (μ). These simulations revealed a set of feasible designs that had not been 

previously explored (Figures 1B and 1C). A key new feature of these designs was their 

restricted degree of polymorphism– on the order of 1 per 1000 base pairs. Crosses with 

larger degrees of polymorphism required a proportional increase in the number of 

individuals genotyped. As a rule, the sensitivity of identifying causal variants scaled with the 

number of total crossovers versus the density of polymorphisms: 

. However, precision delineated an all or nothing boundary in 

parameter space. Not all traits we simulated mapped equally well. Highly heritable traits 

were more accurately mapped than weakly heritable traits, and the relationship between 

heritability and accuracy was non-linear (Figure 1D). This highlights a built-in advantage of 

investigating phenotypes with minimal environmental contributions. Considering the 

constraints of time and money on G and N, we selected a yeast cross design with 1 

polymorphism per 1000 base pairs. Because this is on par with the genetic divergence 

between individuals within a species, a cross with this design would have the potential to 

comprehensively illuminate how precise genetic differences between individuals manifest as 

heritable traits.

A highly inbred yeast cross

The degree of polymorphism present in a genetic cross determines both the complexity of a 

quantitative trait and the resolution at which causal variants can be mapped. Geneticists 

often employ large divergence between parents (heterozygosity = 1/μ ~ 0.01) because it 

ensures phenotypic diversity in progeny (Bloom et al., 2013; Iraqi et al., 2012; King et al., 

2012; Märtens et al., 2016). Yet in practice this also ensures that causal variants cannot be 

distinguished from adjacent passenger mutations. We re-examined this prevailing orthodoxy 

by constructing an inbred cross in S. cerevisiae with a ~10-fold reduction in the number of 

segregating variants compared to prior studies (Bloom et al., 2013; Märtens et al., 2016). We 

chose parents with uniform genetic variance across the genome (heterozygosity ~0.001), 
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derived from very different ecological and geographical niches (Liti et al., 2009): a vineyard 

in California (RM-11a) (Torok et al., 1996) and a patient in Italy (YJM975α) (McCullough 

et al., 1998; Strope et al., 2015). As a frame of reference, the degree of polymorphism, or 

number of genetic differences between the crossed strains, was comparable to the genetic 

distance between two individual humans and represents, on average, multiple mutations per 

gene.

A potential concern about reducing the genetic variance between parents is that it might 

unduly restrict diversification of biological traits in progeny. The phenotypic profiles of the 

two parents were indeed relatively well correlated (r~0.6) despite having been isolated from 

different ecotypes (Figures S1A). However, their meiotic progeny exhibited a high degree of 

variation across diverse traits (Figures S1B-S1H). Remarkably, they were as phenotypically 

diverse as the most distantly related strains on the S. cerevisiae phylogenetic tree (Figure 

S1E), underscoring the power of meiotic recombination to produce new traits by placing 

genetic variants in new genomic environments.

Our model predicted that six generations of inbreeding would produce a sufficient number 

meiotic crossovers to statistically resolve individual variants from adjacent variants (Figure 

2A; see Methods for further discussion). To prevent inadvertent fixation of one parental 

allele at some loci, we maintained a large pooled population at every step of inbreeding and 

clonal propagation (Figures S2A and S2B). After six generations, we isolated 1,125 F6 

haploid progeny and performed whole genome sequencing on clonal expansions of each 

individual (Figures S2C and S2D). In total, these F6 offspring contained over ten times more 

meiotic crossovers than sites of variation (SNPs), a ratio that our model predicted would be 

ideal for detecting genome-wide association at single nucleotide resolution.

Mapping causal variants in practice

We first used our cross to map resistance to azoles, the most commonly used class of 

antifungal drugs. We measured the growth all 1,125 F6 offspring upon exposure to seven 

azoles from three major classes: first generation imidazole-based drugs, second and third 

generation triazoles in widespread clinical use, and agricultural azoles. Although these drugs 

harbor distinct functional groups around their central heterocyclic rings, they share a 

common drug target: Erg11, the rate-limiting enzyme in ergosterol biosynthesis (Ghannoum 

and Rice, 1999). Consequently, we observed a relatively correlated response to all classes of 

azole-based drugs in the meiotic progeny (mean r2 = 0.41) (Figures S1G and S1H). To 

identify the genetic determinants of pan-azole resistance, we performed QTL mapping. This 

standard analysis established a locus of strong effect on the right arm of Chromosome 4 

(Figure 2B, see Methods). In previous yeast crosses, the statistical boundaries of such a QTL 

(1.5 ΔLOD) would typically span 10–100kb, hundreds of candidate mutations, and dozens 

of genes in the highly compact yeast genome (Bloom et al., 2013; Ehrenreich et al., 2010). 

However, due to the increase in meiotic crossovers inherent to our inbreeding scheme, the 

same statistical cutoffs allowed us to identify a single causal gene: UPC2. UPC2 is a positive 

regulator of ergosterol biosynthesis that is activated in response to sterol depletion, 

providing a logical link between this gene and pleiotropic azole resistance (Yang et al., 

2015).
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Next, we attempted to increase our resolution from a single causal gene to a specific causal 

polymorphism. UPC2 harbored 5 candidate mutations (Figure 2C). In addition to one 

promoter variant, the UPC2 ORF contained two synonymous and two nonsynonymous 

variants. Currently, investigators employ computational approaches that integrate prevailing 

experimental intuition and conservation metrics to estimate the likelihood that individual 

polymorphisms are responsible for diseases or other traits. These algorithms (e.g. SIFT 

(Kumar et al., 2009) and PolyPhen-2 (Adzhubei et al., 2010)) would miss UPC2, as both 

missense mutations were predicted to be ‘tolerated’ and the other classes of mutations (e.g. 

synonymous variants) are uniformly ignored. To test these assumptions experimentally, we 

performed ‘gold-standard’ allele replacement experiments where we swapped each 

candidate SNP at its endogenous locus via homologous recombination (Jarosz and 

Lindquist, 2010; Steinmetz et al., 2002). Unexpectedly, one of the synonymous mutations in 

UPC2 (2694C->T) was responsible for the pan-azole resistance (Figures S3A–S3C).

However, this brute-force approach is not amenable to systematic discovery of causal 

variants, and it is especially ill-suited for the large confidence intervals inherent to most 

QTLs. It often fails entirely when dissecting the loci of minor effect that give rise to 

genetically complex traits. Fortunately, the density of meiotic recombination in our cross 

allowed us to discriminate among candidate variants with genetics alone. We noticed that 

multiple meiotic crossovers within the UPC2 locus created natural allele replacements. 

Although most segregants contained only clinical or wine variants at all UPC2 positions, 

thirty-eight harbored crossovers between the two parental haplotypes at this locus. When 

these meiotic crossovers swapped passenger mutations in UPC2, no phenotypic change was 

observed (Figure 2D). In contrast, swapping the single true causal variant (2694C->T) was 

equivalent to swapping all five mutations in the haplotype block. We used these natural 

allele replacements to formalize a new fine mapping statistic (QTN score) that enhanced the 

statistical resolution of most QTLs to single nucleotide resolution (Figures 2E, S3D–S3H, 

and S4, see Methods for extended discussion).

We extended this fine mapping analysis to all loci associated with azole-resistance. The 

locus of strongest effect typically accounted for roughly a quarter of the variance of a trait. 

Yet dozens more variants were generally required to fully explain heritability. Although 

mapping was less reliable for such variants of small effect, many were still resolved to single 

nucleotides and most to single genes. We discovered a coherent network of 35 causal 

variants that contributed to resistance across multiple classes of azoles (Figure 2F). The 

network included polymorphisms in some known antifungal resistance genes (ERG11, 

PDR16, OLE1) and as a whole was strongly enriched in genetic and physical interactions (P 
< 10−4). We observed virtually no overlap with the causal variants of an orthogonal 

antifungal drug (amphotericin B) (Figure S1H), establishing the specific relationship 

between these individual polymorphisms and azole resistance. Across all of the complex 

traits that we studied, pleiotropic alleles tended to reside in genes already annotated as such 

by other functional genomic methods including PDR1, the major transcription factor that 

regulates pleiotropic drug response elements.
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Complex genetic architecture within a QTL

Our ability to distinguish the effects of adjacent SNPs prompted us to investigate whether 

multiple mutations within a single gene might influence the same quantitative trait. We 

found one such locus at SKY1 (Figure 3A), an SR kinase that contained two mutations 

associated with sensitivity to the chemotherapeutic drug 5-fluorouracil (5-FU). SKY1 
deletion causes 5-FU hypersensitivity, and in colorectal cancer patients low expression of its 

human homolog (SRPK1) correlates with prolonged survival after 5-FU chemotherapy 

(Huang et al., 2005; Sigala et al., 2016). To gain structural insight into the molecular basis of 

this phenotypic change, we mapped the two Sky1 polymorphisms onto its crystal structure 

(Lukasiewicz et al., 2007) (Figures 3B and 3C) (PDB: 2JD5). One allele (T666A), which 

was recently derived in the clinical isolate, would likely alter the position of a key residue 

for substrate recognition (K668). The other allele (D738N) modifies the charge balance of 

the highly basic C-terminal fragment of Sky1 (DHKRH).

To examine the phenotypic consequences of these perturbations, we measured the fitness all 

four allelic combinations of SKY1 in 5-FU. Remarkably, both the parental clinical and wine 

haplotypes exhibited nearly neutral fitness. Thus, the entire SKY1 locus would have been 

overlooked in a traditional genome-wide association test, despite its well-established 

connection to 5-FU (Figure 3A). However, even though the two variants were separated by 

only 216 nucleotides, we observed 21 hybrid alleles with one variant from each parent. 

These hybrid alleles revealed that T666A is detrimental for growth in 5-FU, whereas D738N 

is beneficial (Figure 3D). The resolution afforded by our cross thus enabled us to explore a 

complex genetic interaction between two tightly linked variants that would be missed by 

other crossing strategies.

Multiple causal variants within the same gene were common across diverse complex traits. 

For growth in the oxidative stressor cupric sulfate (CuSO4), we mapped two such variants to 

IXR1, a repressor of hypoxia genes during normoxia (Vizoso-Vázquez et al., 2012) (Figure 

3E). Using phylogenetic analysis, we found that the beneficial mutation (Q299K) arose 

uniquely in the wine strain and was not shared by any other S. cerevisiae strains (Figure 3F). 

In contrast, the deleterious mutation (T45A) arose independently in both the clinical strain 

and a genetically distant baking strain, perhaps reflecting a tradeoff between tolerance to 

oxidative stress and growth in anaerobic conditions. These examples establish that a critical 

pragmatic assumption in quantitative genetics – that a single causal mutation underlies each 

quantitative trait locus – may vastly oversimplify the complexity of naturally evolving 

genomes (Steinmetz et al., 2002).

Pervasive functional coupling of linked mutations

The genomes of yeast and most eukaryotes, in contrast to most prokaryotes, are not 

organized in operons (Osbourn and Field, 2009; Slot and Rokas, 2010). Consequently, QTLs 

are generally assumed to harbor one driver and multiple neutral passenger mutations. Yet 

across the 26 quantitative traits we measured, 52 pairs of mutations that influenced the same 

trait fell within 10 centimorgans (cM) of each other (90% linkage; ~35kb) (Figures 3G, 3H, 

and S5A–S5E). These functionally coupled driver mutations often occurred in different 

genes (41/52) and vastly exceeded the number that would expected by random chance if 
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causal variants for complex traits were located randomly in the genome (P < 10−5, Poisson 

distribution, P < 10−16 with more lenient cutoffs, see Methods).

We observed examples of beneficial mutations working together to exert greater selective 

effect, and examples of deleterious mutations coupling to beneficial mutations to dampen 

extreme phenotypes, or perhaps even escape selection (Figure S5A). These linked variants 

were commonly derived from the same parental haplotype (23/52), suggesting that the effect 

was not simply due to the formation of novel recombinant genotypes (Figure S5B). Such 

close linkage of variants producing a complex trait would ensure that a phenotype could 

persist across generations despite the recombination inherent to sexual reproduction. 

Although exploring the broader implications of these data stands as a goalpost for future 

studies, our data underscore that throughout the evolution of species it is haplotype blocks, 

rather than individual genes and mutations, that serve as the fundamental unit of inheritance.

Functional genomics using nature’s genetic toolkit

Our collection of causal SNPs allowed us to explore whether the mutations that underlie 

quantitative traits exhibited unique properties compared to all variants that segregated in the 

cross. Across the numerous conditions we tested, we mapped a total of 370 causal variants. 

A handful of the traits in our study were monogenic (Mating type, Hygromycin B resistance, 

MMS, quinidine), but most were complex, (arising from on average 14 single nucleotide 

variants; Figure 4A, see Methods for bootstrapping analysis). This was not an intentional 

design choice, but instead reflects the prevalence of complexity for most heritable traits that 

have been studied (Fay, 2013; Jelier et al., 2011).

As might be expected, we observed a strong enrichment for missense mutations among 

causal SNPs, especially among alleles of large effect (P < 10−6, binomial distribution) 

(Figure S5F). In contrast, mutations directly adjacent to the causal SNPs exhibited no 

deviation from random expectation (Figure S5F). However, missense variants represented 

less than half of all causal variants (Figure 4B). Mutations in regulatory regions and 

synonymous mutations each comprised roughly a quarter of causal variants. Indeed, the 

complex traits we observed were fuelled by polymorphisms of all molecular classes. The 

relative contributions of coding and regulatory variants to evolutionary change have been 

vigorously debated. Our data illustrate, across many traits and on a genome-wide scale, that 

even in a highly compact genome both types of variation can exert a strong influence on 

phenotype.

Strikingly, the average effect sizes of synonymous and missense mutations were similar 

(Figure 4C). The effects of non-coding mutations were generally weaker, but still very 

significant. The effects of non-coding variants are potentially simpler to verify than missense 

mutations because non-coding variants are likely to alter the transcript level or protein level 

of a gene. We first validated a proximal promoter variant for the small plasma membrane 

proteolipid PMP3. Artificial overexpression of this gene promotes resistance to the 

antifungal drug amphotericin B (Bari et al. 2015).

In our cross, the wine allele at the PMP3 promoter was strongly associated with 

amphotericin B resistance. To test whether this arose from increased PMP3 expression, we 
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used qRT-PCR to measure its RNA levels. In rich nutrient conditions (YPD), PMP3 
expression levels were similar for both promoter variants (Figure S5J). However, upon 

Amphotericin B treatment, PMP3 transcripts were upregulated by ~2-fold in segregants with 

the wine allele but remained unchanged in segregants with the clinical allele (Figure S5K). 

The proximal promoter mutation occurs in a potential binding site for Pdr3, a transcription 

factor that upregulates membrane transporters in response to a wide range of drugs. Our 

observations thus provide a logical explanation for how this promoter mutation could lead to 

amphotericin B resistance.

We next examined whether newly arising (derived) mutations in the wine or clinical parents 

would provide a fitness benefit or detriment compared to ancestral alleles. In contrast to 

random mutagenesis, where the vast majority of new alleles are deleterious (Firnberg et al., 

2014), the derived mutations in each parent were frequently beneficial (Figures 4D, S5G, 

and S5H). The functional genetic variation present in our cross thus comprises a natural 

toolkit of diverse genetic perturbations beyond simple loss-of-function alleles.

Although traditional genetic approaches have annotated a large fraction of the genome, 

hundreds of genes still have unknown function, even in an organism as well studied as S. 
cerevisiae (Peña-Castillo and Hughes, 2007). We uncovered polymorphisms in dozens of 

genes that have not previously been linked to the quantitative traits we examined via 

homozygous or heterozygous deletion screens (Hillenmeyer et al., 2008; Hoepfner et al., 

2014) (Figure 4E). Yet genes that spanned both approaches acted as hubs for an integrated 

network of genes specific to each methodology (Figures 4F, S6A and S6B). Our approach 

thus provides a strategy for using natural genetic variation to establish a more complete 

genetic architecture for biological traits.

Untangling the biochemical consequences of natural genetic variation

Although genetics provides a link between changes in primary sequence and subsequent 

phenotypes, each mutation has its own unique mechanistic impact. For missense mutations, 

this likely involves some perturbation to a protein’s fold, conformational ensemble, or cohort 

of binding partners. A comprehensive understanding of structure and function across the 

hundreds of variants we identified would require exhaustive follow-up work for each 

protein. Indeed this goalpost has not been achieved even for clinically important sets of 

variants in proteins that have been studied structurally for decades (Millot et al., 2012). 

Thus, in an attempt to obtain some level of systematic insight, we restricted our analyses to 

statistical associations between the identity of causal missense mutations and the broad 

structural properties of proteins.

We first asked whether such missense variants tended to perturb highly conserved amino 

acid positions. Indeed, causal missense variants were three times more likely to occur at a 

highly conserved residue compared to causal synonymous mutations (Figure 5A) (P = 1.1 × 

10−8, binomial CDF). Missense mutations at conserved sites had larger effect sizes on 

average than those at non-conserved sites (P = 5.7 × 10−10, two-tailed t-test), although many 

variants of large effect also occurred at poorly conserved residues (Figure S6C). We also 

examined whether any of these poorly conserved sites were enriched in regions of high 

disorder or aggregation propensity. They were not (Figure S6D–E).
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We next used structural modeling to evaluate all causal missense mutations. We predicted 

secondary structure motifs with a widely used neural network based method (Jpred4) 

(Drozdetskiy et al., 2015). Between 5–10% of causal missense mutations changed the 

predicted secondary structure at the mutated residue (Figure 5B). However, virtually all 

mutations had indirect effects on the secondary structure of nearby residues (Figure 5C). 

Mutations in predicted beta-sheet domains were the most perturbative, as has been recently 

found for human genetic variation (Abrusán and Marsh, 2016). Mutations in alpha helixes 

were in turn slightly more perturbative than those in unstructured regions. Overall, these 

structural predictions correlated well with our experimental observations: causal mutations 

in predicted beta sheets also tended to have the largest effects on phenotypes (P = 2.3 × 10−7, 

two-tailed t-test) (Figure 5D).

Despite these structural associations, computational models were extremely poor predictors 

of functional significance. Causal missense mutations were not accurately identified by the 

SIFT algorithm, which predicts whether an amino acid substitution impairs protein function 

and has been commonly used to define pathological variants in humans (Figures S6F–G) 

(Kumar et al., 2009). The shortcomings of simple loss-of-function or conservation-based 

heuristics highlight the complex biological effects that underlie drivers of naturally arising 

phenotypic change (Lehner, 2013). Our genetic inferences thus provide a “ground truth” 

foundation on which to train future models of the structure-function relationships that give 

rise to complex traits.

The functional impact of synonymous mutations

The many synonymous mutations that contributed to heritable traits contradicted our naïve 

assumption these mutations would be predominantly neutral. Because synonymous 

mutations preserve the amino acid sequence of a gene, they are often overlooked as sources 

of genetic diversity. Yet use of rare codons can sometimes affect the co-translational fold of 

a nascent polypeptide (Buhr et al., 2016) and the expression levels of recombinant proteins 

can vary widely based on codon usage. We therefore investigated whether the casual 

synonymous mutations we identified were linked to altered gene expression levels.

For each synonymous mutation, we used codon adaptation index (CAI) as a universal metric 

for the abundance or rarity of a codon (Sharp and Li, 1987). CAI operates under the 

parsimonious assumption that highly expressed genes have been codon optimized over 

evolutionary time, and uses the distribution of codons within these genes to define an 

“optimal” codon for each amino acid. For each synonymous mutation, we classified the wine 

and clinical alleles as “ancestral” or “derived” based on comparison to a distant outgroup. 

The newly derived alleles were unusually likely to exchange a non-optimal codon for an 

optimal codon (P ~ 1.3 × 10−5, binomial CDF) (Figure 6A). Furthermore, mutations that 

increased CAI tended to occur in genes with lower protein expression levels (P < 0.05, two-

tailed t-test) (Figures S6H–S6J). These data suggest that newly acquired mutations in the 

wine and clinical lineages may often enhance the expression of underutilized genes.

We directly tested the effects of one such synonymous mutation in the peroxisomal ABC-

transporter PXA1 that conferred resistance to rapamycin. We expressed epitope-tagged wine 

and clinical alleles of PXA1 under a constitutive GPD promoter to specifically examine 

She and Jarosz Page 10

Cell. Author manuscript; available in PMC 2019 January 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



post-transcriptional effects. As expected, we observed identical levels of RNA expression 

between the two alleles (Figure 6B). However, the recently derived wine allele produced 

higher levels of Pxa1 protein than the clinical allele (2.5-fold; Figure 6C), providing a 

molecular means through which this synonymous mutation could precipitate a change in 

biological phenotype.

Dramatic changes in codon usage frequency were common among causal synonymous 

mutation. In striking contrast, we noticed that the majority of missense mutations had 

virtually no effect on CAI (Figure 6B). Simulations with random mutations revealed this 

property to be a general feature of yeast codon usage: missense mutations with Hamming 

distance of 1 tended to conserve codon usage frequency, whereas synonymous mutations 

resulted in large changes in codon usage frequency (Figure S6I). We investigated whether 

this property held true in other organisms. Indeed, synonymous mutations were far more 

likely to modulate CAI than missense mutations in virtually all sequenced organisms, 

despite extreme variation in codon usage frequency (Figure 6C). These findings suggest that 

missense and synonymous mutations act on two orthogonal evolutionary axes: missense 

mutations act to diversify protein function, whereas synonymous mutations are intrinsically 

poised to tune protein expression levels.

DISCUSSION

More than fifty years ago the power of recombination (and the ability to select for rare 

events) enabled phage geneticists to discover the triplet nature of the genetic code (Benzer, 

1955; Crick et al., 1961). In the current genomic era, recombination is again poised to serve 

as a workhorse for genetic discovery. Our data demonstrate that a dense recombination map 

enables statistical differentiation of individual causal variants from a multitude of 

confounding, highly linked mutations. We mapped hundreds of genome-wide associations 

with single nucleotide resolution, allowing us to systematically explore the functional 

properties of natural genetic variation. We found that numerous missense, synonymous, and 

cis-regulatory mutations collectively gave rise to phenotypic diversity, in contrast to 

prevailing models that systematically discount non-coding variation or synonymous 

mutations within ORFs. Indeed, most traits we examined were genetically complex, and 

were driven by both coding and non-coding variants.

The consistent impact of synonymous mutations across a diverse panel of traits has strong 

implications for our fundamental understanding of how genotype determines phenotype. 

Most measures of positive selection in evolution assume that all synonymous mutations are 

neutral and can only become fixed via random chance (drift). In contrast, we found that a 

substantial number of naturally occurring synonymous mutations exert strong effects of 

growth. These synonymous mutations, in aggregate, deviated substantially from the 

expected random distribution for such mutations – providing evidence that they have been 

shaped by selection pressures in the wild. For pragmatic reasons, genome-wide association 

studies in humans systematically discount any influence of synonymous mutations on 

phenotype. Yet a handful of targeted investigations have reported that synonymous 

mutations can modulate phenotypic severity or penetrance (Bartoszewski et al., 2010; Sauna 

and Kimchi-Sarfaty, 2011). Our data thus challenge an assumption in bioinformatics and 

She and Jarosz Page 11

Cell. Author manuscript; available in PMC 2019 January 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



clinical diagnostics that is born out of expediency: that synonymous mutations are 

universally neutral. Instead, we find that synonymous mutations can commonly exert 

significant impacts on biological traits.

Remarkably, mutations that influenced the same trait tended to cluster in linkage groups. In 

sexually reproducing organisms this close physical coupling may allow genetically complex 

traits to persist over long evolutionary timescales. Several attempts to fine-map QTLs in 

mice, flies, plants, and humans have also uncovered multiple causal variants within a single 

locus (Flint and Mackay, 2009; Sekar et al., 2016; Steinmetz et al., 2002; Yalcin et al., 

2004), but such fine mapping has not been possible systematically. Our data suggest that 

clusters of causal mutations – which confound traditional genome-wide association studies – 

may be a general feature of natural genetic variation.

Genetics in inbred crosses holds several crucial advantages over efforts to sequence greater 

numbers of outbred individuals: i) allele frequency is ~50% in the progeny, enabling 

accurate assessment of alleles that are rare in the population as a whole, ii) the degree of 

polymorphism in a cross can be carefully controlled through selection of founder parents, 

and iii) recombination can be enhanced by multiple generations of mating. Our cross 

balanced the costs of reducing genetic variation with the practical challenges of sequencing 

and maintaining a large cohort of inbred progeny. Crucially, our results suggest that 

judicious selection of ecologically and geographically diverse parents preserves a high 

degree of phenotypic complexity despite reduced genetic divergence.

Extensive modeling of the parameter space of all possible inbred cross designs suggests that 

achieving single nucleotide mapping resolution could be possible in metazoa. In flies, 

precision mapping could be achieved with a ~100-fold increase in the number of total 

meiotic crossovers for the degree of polymorphism in current crosses. It would require a 

10,000-fold increase in mice (Figure 7A). We also simulated an inbred cross in mice with 

1,000,000 F6 individuals and 1,000,000 sites of variation. Even with this extreme number of 

potential false positive sites, our statistical method retained >95% precision and estimated 

effect sizes with remarkable accuracy (r = 0.98, Figure S7).

Because genotyping and phenotyping such a large cohort of individuals is presently 

infeasible, a more immediately practical strategy would be to restrict genetic variation 

between founding parents. One major hurdle to this strategy is the frequency of outcrossing 

events observed in wild populations, which create mosaic genetic architectures with regions 

of dense variation (King et al., 2012; Yang et al., 2007). Thus, careful selection of parents, 

ideally from highly bottlenecked and isolated populations (Robinson et al., 2016), provides a 

feasible route (Jones et al., 2012).

Our model suggests a second fruitful strategy for high-resolution mapping: increasing the 

frequency of meiotic crossovers relative to genome size. Among metazoans, social insects 

such as bees and ants exhibit the highest known recombination rates (>8 times greater than 

D. melanogaster). Sequential inbreeding could prove challenging in these organisms, but 

would have far greater mapping power. Alternatively, methods that artificially enhance 

recombination rates – which have been deployed in a handful of studies (Chaganti et al., 
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1974; Sadhu et al., 2016) – would also yield large dividends. Although the establishment of 

a dense recombination map is a prerequisite for mapping causal variants, our crossing 

scheme enables even deeper inspection the genetic architecture of heredity. Because all 1152 

segregants in our cross are fully genotyped haploids, they can be crossed to each other in an 

arrayed format to generate ~250,000 unique diploids without any further sequencing 

(Märtens et al., 2016). A genotype to phenotype map at this larger scale would be 

statistically competent to illuminate how pairwise epistasis among natural genetic variants 

might contribute to the “missing heritability” problem.

As sequencing costs fall and methods for enhancing recombination rates advance, the scope 

of genetic variation accessible to inbred crossing strategies will increase. Naturally occurring 

polymorphisms are thus poised to provide a parallel genetic toolkit that captures a range of 

biochemical perturbations not present in traditional deletion, siRNA, and CRISPR-based 

screens. However, the natural variation mapped in any one cross represents only a fraction of 

the mutational space available to an organism. To saturate annotation of natural variants and 

enable truly comprehensive functional genomics, it will be necessary to perform additional 

crosses between new pairs of parents, as inspired by the famous Heidelberg screens 

(Nüsslein-Volhard et al., 1984). Many such pairs of wild yeast strains with unique ecological 

origins and constrained genotypic divergence are presently available and can be crossed with 

minimal genetic manipulation (Figure 7B–C) (Parts et al., 2011) (1002 Yeast Genomes 

Project). The ability to systematically identify the individual polymorphisms that give rise to 

quantitative traits provides new possibilities for understanding the relationship between 

genetic variation and phenotypic diversity on a genome-wide scale.

STAR★METHODS

CONTACT FOR REAGENT AND RESOURCE SHARING

The full collection of F6 segregants is available through the National Collection of Yeast 

Cultures (NCYC) (http://www.ncyc.co.uk/). Further information and requests for resources 

and reagents should be directed to and will be fulfilled by the Lead Contact Daniel F. Jarosz 

(jarosz@stanford.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Yeast strains—S. cerevisiae isolates from the Saccharomyces Genome Resequencing 

Project (SGRP) Strain Set 2 were used as founder strains (https://catalogue.ncyc.co.uk/sgrp-

sets). The genotypes were as follows: RM11 MATa ho::kanMX ura3Δ0 leu2Δ0 and YJM975 

MATα ho::HygMX ura3Δ::KanMX-barcode(ACCGGT) his3Δ::NatMX. F6 segregants were 

selected on YPD+ClonNat such that all individual progeny are auxotrophic for both uracil 

and histidine. However, both mating types are equally represented among F6 segregants and 

should be pooled separately for bulk experiments. Lastly, leucine auxotrophy and 

hygromycin B resistance both segregate 50/50 among the progeny and can confound certain 

phenotypes such as rapamycin resistance.
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METHOD DETAILS

Crossing strategy—The intercross was propagated with a large population of >107 cells 

at all steps after the initial mating to minimize the effects of genetic drift. Diploids were 

selected in bulk by mating on YPD followed by selection on SD-His+ClonNat with 

monosodium glutamate as the nitrogen source. Since the RM haplotype contains wild-type 

HIS3 while the YJM975 haplotype contains the NatMX cassette at the same locus, haploid 

segregants cannot obtain both markers through recombination. Sporulation was performed 

for 5 days on a room temperature roller wheel in 1% potassium acetate (KAc). Sporulation 

efficiency at each generation was verified by microscopy (Figures S2A–S2B).

Because sporulation is not 100% efficient, spores were chemically and mechanically 

enriched, bypassing the need for designer genes that enable spore selection. Diploids were 

killed off by resuspending a sporulating culture in 1:1 diethyl ether:H2O for 10 minutes, 

followed by 3 washes with H2O. Next, the pellet was treated with 1 mg/mL zymolyase 

(ZT100) in 1M sorbitol for 1 hour at room temperature to remove the ascus and further kill 

diploids. To mechanically enrich for single dissociated spores, the suspension was pelleted 

and resuspended in H2O in a standard polypropylene eppendorf tube (E&K Scientific, Cat. 

280150). The suspension was vortexed vigorously for 30–60s, thereby binding the 

hydrophobic spores to the tube wall. The liquid was then dumped, and the tube was washed 

once with 1mL H2O and dumped again (terrifying the first time you try this). Spores on the 

tube wall were resolubilized with a 0.01% solution of the non-ionic detergent NP-40 (EMD 

Millipore, cat. 492018). The resuspension was pelleted, and the mechanical enrichment was 

repeated for a total of 3 times. 1μl of resuspension was observed via microscopy at each step 

for verification, and after 3 total enrichment steps, over 95% of cells could be classified as 

single spores based on cell size (Figure S2B).

The spore enrichment technique described above enables sequential intercrossing between 

any two wild strains of S. cerevisiae with only minimal genetic perturbation, namely the 

introduction of an auxotrophy and an antibiotic resistance marker at the same locus to allow 

for diploid selection.

Genotyping—DNA was extracted in 96 well format using the Norgen Biotek Fungi/Yeast 

Genomic DNA Isolation Kit (Cat. 27300) with minor modifications such as not using the 

bead tubes and using a swinging bucket centrifuge instead of a vacuum manifold for elution 

to prevent cross-contamination between wells. Library preparation was performed using a 

standard Nextera tagmentation reaction, according to a yeast-specific protocol developed by 

the Desai lab (Kryazhimskiy et al., 2014). During PCR, unique i5 and i7 barcode 

combinations (hamming distance ≥ 3) were attached to enable pooled sequencing. The 

concentration of the pooled library was measured by qPCR against known standards (KAPA 

Cat. KK4903) and adjusted to 4nM. The pool was first sequenced on a MiSeq, and based on 

the number of reads mapping to each barcode, the composition of the pool was renormalized 

to provide equal coverage for each barcode. The renormalized pool was then sequenced via 

3 runs on a NextSeq 500 to a mean coverage > 15. Strains with low coverage were 

resequenced in a new pool via 1 NextSeq 500 run, resulting in adequate coverage for 1125 

out of the original 1152 individuals isolated. The second pool was renormalized by binding 
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each individual library prep to a 1:20 dilution of AMPure XP beads (Beckman Coulter Cat. 

A63881), thus saturating the bead binding capacity. After washing and elution into a 

constant volume, the uniform concentration of each library prep was verified by qPCR prior 

to equal volume pooling.

Sequencing data were processed according to GATK best practices. Adapters were removed 

using Trimmomatic-0.33, sequences were trimmed by quality score using sickle, and aligned 

to the yeast genome using Bowtie2. Variants were called in batches of 96 using GATK and 

VCFs for all segregants and the original founders were merged. Variants were annotated to 

the yeast genome using SnpEff. Due to the density of open reading frames within the yeast 

genome, upstream and downstream annotations were only extended 200bp past the start and 

stop codons respectively. Variants with allele frequency <5% and >95% were removed. All 

genotypes were phased according to parental genotype. For variants not present in the 

parental VCF, haplotypes were imputed if the Pearson correlation coefficient to the nearest 

phased SNP was greater than 0.5. Markers with missing data were not imputed.

Phenotyping—Phenotypes were measured in quadruplicate using a Singer ROTOR in 384 

well format on solid agar plates and an EPSON V700 Photo Scanner (Figure S2C). Cells 

were grown at 30°C in rich media plus drug. Phenotypes were quantified as colony area size 

using SGAtools (http://sgatools.ccbr.utoronto.ca/) (Figure S2C). For sparse plates that failed 

alignment in SGAtools, manual thresholding in ImageJ was used to quantify colony area. 26 

diverse chemical perturbations were chosen among a screen of > 100 chemical and dosage 

combinations, screened in a 96 F6 segregant subset (Table S1). Conditions were chosen to 

maximum phenotypic variation. All phenotypes were subsequently normalized to mean 0 

and variance 1. Edge effects and plate-by-plate effects were removed by including edge and 

plate pseudo-genotypes in all multiple regressions.

Phenotypes for parental strains and all SGRP strains were re-plotted from data collected by 

(Warringer et al., 2011) Pearson correlations between each pair of strains was calculated and 

made into a heat map representation (Figure S1A).

Mapping causal variants—All genotype and phenotype data are shared freely in the 

additional data (link will be provided here upon publication). 1-dimensional LOD plots were 

calculated according to the equation  where ri is the Pearson correlation 

coefficient between the genotype at markeri and the phenotype. To build a model 

incorporating the effects of multiple allelic variants ( ), we performed 

linear regression via stepwise selection and compared to selection via a generalized linear 

model with an elastic-net penalty 

( ). These methods allow us 

to select a subset of candidate variants among a superset of predictors that vastly exceeds the 

number observations in each phenotype. Significance was calculated based on the fraction of 

total variance explained by each individual genetic marker.
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Fine mapping was performed for each candidate variant by performing pairwise 

comparisons with all other variants within a 20 kb window. For each comparison between 

variants i and j, we used ANOVA to evaluate the null hypothesis (H0) that varianti is a causal 

variant and variantj is a neutral variant. We also evaluated the alternative hypothesis (H1) 

that variantj is a causal variant and varianti is a neutral variant (Figures S4A-C). For each 

varianti, we used the probability of the most likely alterative hypotheses (max(H1)) as the 

primary metric for significance (Figures S4D–F). A more conservative calculation, which 

was not used for this study, would be to use the probability that all alternative hypothesis are 

false: 1 − Π(1 − H1), which can be approximated as Σ H1 by a first order Taylor expansion. 

We defined QTN score = − log10(max(H1)) for each variant within a 20kb window of the 

QTL peak. For densely clustered variants, we iteratively picked subsets of variants for which 

alternative hypotheses to all variants outside of the subset fell below a threshold. These 

subsets are reported as a confidence interval for QTL that cannot be identified with single 

SNP accuracy.

To empirically calculate our false discovery rate (FDR), we performed extensive 

bootstrapping analyses. Permutation tests were performed at each step of stepwise selection 

to establish a significance cutoff for adding new terms to the model. 200 permutation tests 

were also performed on the raw data of each genotype-phenotype pair, and analyses were 

carried out in full to establish an orthogonal 95% FDR cutoff for significant terms in the 

model (this cutoff was generally ~100-fold more stringent than permutation at each step of 

stepwise selection). We used the more stringent cutoff for all analyses presented, except for 

Figures S5D and S5E, where the more lenient cutoffs illustrate the robustness our finding of 

highly linked causal variants. To evaluate the statistical accuracy our fine mapping method, 

the full analysis was carried out for simulated phenotypes consisting of effects at known 

positions plus random Gaussian noise. Even with a magnitude of noise greater than the 

technical noise of our phenotypic assay, we easily identified virtually all of the simulated 

causal variants, even for variants of small effect size (<1% of variance explained).

Modeling—We simulated genotypes under the following assumptions: random distribution 

of variants across the genome (non-uniform distance) and uniform recombination rate 

between any two sets of variants. Although mutational hotspots and recombination hotspots 

exist in nature, we chose not to include these factors as the empirical data for these 

phenomena are not necessarily generalizable across species and across different pairs of 

parents. We modeled missing genotypes as a Poisson process, with mean coverage below a 

threshold precluding accurate variant calling. We simulated the changes in genotype over the 

course of a sequential intercross by choosing random sites for meiotic recombination at each 

generation of the intercross.

To simulate phenotypes, we randomly selected 100 markers to exert an effect on the 

phenotype, with all other markers exerting no effect. We chose effect sizes either out of a 

random Gaussian distribution or a linear distribution from −1 to 1. We calculated phenotypes 

for each individual based on its genotype and added random Gaussian noise equal to 20% of 

the total variance – this level of noise is roughly equal to the residual unexplained variance 

from our empirical data. Next, we mapped genotype to phenotype using our stepwise linear 

regression + fine mapping method. We compared the resulting causal variant predictions to 
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the known, pre-selected effect sites and calculated sensitivity (TP/(TP+FN)), specificity 

(TN/(TN+FP)), and precision (TP/(TP+FP)). We iterated our simulations with 10–100 trials 

across a large parameter space of genome size, number of sites of variation, interbreeding 

generations, and total number of individuals (Figures 1B, 1C, and S7).

Throughout our simulations, we noticed that mapping resolution was strongly influenced by 

the magnitude of the genetic component of the trait (narrow-sense heritability h2). Our linear 

regressions were unable to detect variants of small effect size in traits with a strong 

environmental noise component or technical noise component (Figure 1D). However, while 

sensitivity to minor variants was hindered, the precision of our fine mapping method was 

maintained, as the ANOVA calculation explicitly takes residual noise into account when 

calling causal variants (Figure S7A).

These simulations highlight an inherently difficulty in mapping low heritability traits, or 

traits that are hard to measure accurately (such as behavioral traits). In our simulations, 

achieving the same sensitivity for a trait with h2 = 0.4 requires about 8-fold more individuals 

than for a trait with h2 = 0.8 (Figure 1D). In addition, the relationships appear to be non-

linear across parameter space.

Modeling metazoan genomes—We modeled inbred crosses in larger metazoan 

genomes, including D. melanogaster, M. musculus, H. sapiens, and A. echinatior. These 

larger genomes had lower recombination rates, resulting in fewer meiotic crossovers per 

generation (2–3 in flies, 13–14 in mice). As a result, our ability to identify causal variants 

was worse in these simulations. We found three ways for regaining the same sensitivity for 

causal variants as in S. cerevisiae: 1) increasing the number of individuals, 2) increasing the 

number of generations of inbreeding, or 3) reducing the number of segregating variants. 

Each of these changes increased the ratio R of total meiotic crossovers to total SNPs. 

Sensitivity as a function of R was roughly linear in the range that we examined, with a ratio 

of R = 10 being sufficient to detect causal variants for < 4,000 individuals. This ‘goldilocks’ 

ratio means in practice that for the average causal variant, there were 10 meiotic crossovers 

that distinguished it from its nearest adjacent variant. Our QTN score tests these ~10 

individuals with crossovers between the two variants to determine which variant is causal, 

and thus requires that these 10 individuals exhibit a degree phenotypic variance that is less 

than effect size of the genetic variant itself. Thus, quantitative traits with low heritability or 

high measurement noise may require more than R=10 crossovers per adjacent SNP to meet 

statistical significance. For mapping quantitative traits in 1 million F6 mice, we used a ratio 

R~40 to demonstrate the robustness of the QTN score, even at the extremes of the parameter 

space of an inbred cross.

Sky1 crystal structure—The Sky1 crystal structure (2JD5) contains poor or no electron 

density for the 5 c-terminal residues, even though these residues are present in the original 

construct. We modified the crystal structure to include the c-terminal residues using Coot for 

display purposes only. No positional inferences for these residues should be made from our 

modified structure.
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Comparison to genome-wide deletion screens—Causal variants were compared to 

heterozygous deletion screens (HIP) and homozygous deletion screens (HOP) from 

(Hoepfner et al., 2014). Deletion hits were classified by z-score < −5. A significant overlap 

was detected between deletion hits and causal variants by Poisson test, and results from 

different conditions were combined using Fisher’s method.

Comparison to prior yeast crosses—Our inclusion of the wine strain RM11 as a 

parent allowed us to compare the causal variants we identified to QTL found in the classic 

BYxRM yeast cross (Bloom et al., 2013). There are some important caveats to consider in 

making such a comparison: 1) among the 26 quantitative traits we tested, only 7 were 

examined in this prior study; 2) Many causal SNPs that segregate between BYxRM are 

thought to be loss-of-function mutations that have arisen through laboratory propagation of 

the BY strain. These SNPs were not present in our cross between two wild parents. In total, 

~1/20 of the SNPs present in BYxRM also segregated our RM11xYJM975 cross; 3) Only 

very few QTL mapped BYxRM have been fine mapped to single nucleotide resolution, 

meaning that comparisons needed to be made over an entire haplotype block; 4) Epistasis 

means that causal mutations in the BYxRM cross might have different effects (or no effect) 

when placed in a different genetic backgrounds – especially since the BYxRM cross was 

done in F1 progeny that contain large, unbroken BY haplotypes.

We examined seven conditions that were previously tested in BYxRM. In this prior study, 

variation in phenotype in the seven shared conditions was linked to 93 QTL. From our 

experiments with the same seven conditions, we found 19 causal variants within the 1.5 

LOD intervals defined by Bloom et al., suggesting a high degree of congruence between our 

work and prior studies. In addition, the effect sizes of shared QTL were larger than those 

that were not found in both experiments. A key limitation in interpreting these data is that 

the BYxRM confidence intervals were sometimes as large as 100kb. However, when we 

artificially narrowed the confidence intervals to within 10kb of the LOD peak, we retained 

10 shared QTL, again significantly more than would be expected from random simulations.

Gene interaction networks—Gene interaction networks were made via STRING (http://

string-db.org/) and visualized in Cytoscape. Standard cutoffs were used for interaction score, 

with edge weights calculated as a standard composite score from all protein-protein 

interaction metrics (excluding gene fusions).

Structural predictions for missense variants—Multiple sequence alignments were 

generated in batch using NCBI BLAST+ 2.6.0 and the Uniprot database. Sequences were 

aligned using Clustal Omega and conservation was calculated at each site using the Jensen-

Shannon divergence as implemented by Capra and Singh. Secondary structure predictions 

were made using a local instance of JPred. Independent predictions were run for amino acid 

sequences containing either the wine or clinical variant at the causal position. Disordered 

residues were defined using DISOPRED3.

Synonymous mutations and Codon Adaptation Index—Codon Adaptation Index 

(CAI) was used as the primary metric for codon optimality (Sharp and Li, 1987). We 

calculated CAI and codon abundance across 945 sequenced organisms from all branches of 
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life. Coding sequences for the sequenced organisms were collected from the Codon Usage 

Database (http://www.kazusa.or.jp/codon/). Only organisms with >200 defined coding 

sequences were analyzed. We made the simplifying assumption that codon usage frequency 

for each codon is equal to its abundance or rarity among all coding sequences in the 

organism. This assumption does not account for which coding sequences are more highly 

expressed, since RNA expression data is not available for all organisms. In addition, this 

assumption does not explicitly consider tRNA copy number or absolute measurements of 

tRNA abundance, which are also only available for a few organisms.

We simulated the effects of random mutation on CAI in each organism. We assumed an 

equal frequency of mutation at each codon position, though in nature, mutations at the 

wobble position are observed most frequently (after selection). We simulated transition to 

transversion ratios (Ts/Tv) ranging from 0 to 10, and we assumed that the two transversions 

would be generated at equal frequencies. The results were qualitatively invariant to Ts/Tv, so 

we chose to show a plot with Ts/Tv = 4, though we are aware that this ratio can differ 

between organisms (it is hard to measure Ts/Tv for de novo mutations in wild organisms 

before selection has the chance to act). We weighted the mutational outcomes of each codon 

by the abundance of the codon, and we classified each mutation as missense or synonymous 

based off the standard amino acid table.

Allele Replacements—Allele replacements were performed via delitto perfetto. Briefly, 

UPC2 was first knocked out in 6 unique segregants with a URA3 + KanMX cassette 

amplified off of pGSKU. The cassette also contained a Gal-inducible endonuclease I-SceI, 

which cuts at a specific 18-nt site that does not exist in the nuclear yeast genome. An I-SceI 

cut site was introduced at the UPC2 locus along with the two selection markers. The 

replacement UPC2 allele was then reintegrated via homologous recombination at its original 

genomic locus via selection on 5-FOA. Successful transformants were further verified by 

sensitivity to G418 and by two flanking PCR products that were Sanger sequenced.

Each of the 6 segregants was allele swapped with a genomic template that changed only the 

causal UPC2 variant (2694C->T), but kept the other four candidate mutations unchanged. As 

a negative control, each segregant was also swapped with a genomic template that kept the 

causal variant the same while swapping all four other variants. The resulting allele swaps 

were phenotyped in three azole conditions, with the original strains, deletion strains, and a 

standard laboratory strain serving as additional controls (Figures S3A–S3C).

Power law of recombination rate—The relationship between physical genome size and 

recombination rate appears to follow a power law with an exponent of −3/4. If the exponent 

were −1, then organisms would have a constant number of meiotic recombination crossovers 

across the genome regardless of genome size. We observe an additional skew towards more 

recombination in the smaller genomes, perhaps due to the more compact nature of these 

genomes (6,000 genes in 12Mbp of the yeast genome vs. 20,000 genes in 3Gbp in the 

human genome). Larger genomes could also have a larger “effective” gene size, due to an 

expansion in intron size and cis-regulatory regions that might scale with a power law of 1/4 

relative to total size.
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Quantitative RT-PCR—3 biological replicates of each strain were grown at 30°C to late 

exponential phase (OD600 ~ 1) in either YPD or YPD + 2 μM amphotericin B (17h post 

dilution for YPD, 41h for amphotericin B). Approximately 5 mL of cells were spun down 

for 1 minute at 6500g. Cells were resuspended in 333μL of TES buffer (10 mM Tris-HCl 

pH7.5, 10 mM EDTA, 0.5% SDS), transferred to an eppendorf tube, spun at 6500g for 30 

seconds, and flash frozen in liquid nitrogen. RNA was extracted via acid phenol/chloroform, 

with phase lock tubes (http://cshprotocols.cshlp.org/content/2012/10/pdb.prot071456.full.pdf

+html) and ethanol precipitated overnight at −20°C. DNA was digested with the Ambion 

Turbo DNA-free kit (Cat# AM1906). cDNA synthesis was carried out with Oligo-dT 

primers and Superscript IV Reverse Transcriptase (cat. 18091050). Quantitative PCR was 

performed with KAPA SYBR FAST qPCR Master Mix (2X) (Cat No: KM4114), 2μL of 

cDNA, and 0.25μM of each primer (20μL total volume) in optical-grade 96-well plates on a 

BioRad CFX Connect setup. All amplifications were carried out with an initial step at 95°C 

for 5 min followed by 40 cycles of 95°C for 30 s, 57°C for 1 min, and 72°C for 1s followed 

by a melt curve analysis (65°C–95°C in steps of 0.5°C). Melt curve analysis for every 

reaction indicated a single product. The CQ was determined automatically by the instrument. 

No product was detected in control reactions in which primers, cDNA, or Reverse 

Transcriptase were omitted.

PMP3 expression was quantified with two separate primer sets, which correlated nearly 

perfectly (r2 > 0.99). Correlation between technical replicates was also nearly perfect (r2 > 

0.99). Expression for each sample was calculated using the standard ΔCQ method, 

normalized to TAF10.

Quantified strains with wine allele at PMP3: Plate 1 wells A1, A2, B2, B6, C2, C5, C6, C7, 

C8, C10.

Quantified strains with clinical allele at PMP3: Plate 1 wells A4, A6, B1, B4, C1, C3, C4, 

C9, C11, D1.

Primers used:

TAF10 fw: AGAGAGGCTGTAGTGGATGA

TAF10 rv: ATCGGGAATGATAGGAGGAGTA

PMP3 fw1: GGATTCTGCCAAGATCATTAACA

PMP3 rv1: CACCCACGGGCTAGAAAAACG

PMP3 fw2: CTTTTCTTACCACCAGTCGCCG

PMP3 rv2: GGTCAAAATGATATCCACTATACAG

Western blot—Wine and clinical alleles of PXA1 were Gateway cloned from genomic 

DNA onto donor vector pDONR221, and then onto the low copy number (CEN) destination 

vector pAG416-ccdB-EGFP, which provides constitutive expression via a GPD promoter 

(https://www.addgene.org/kits/lindquist-yeast-gateway/). Cells were grown at 30°C to late 

exponential phase (OD600 ~ 1) in uracil dropout media (SD-URA). Approximately 5 mL of 

cells were spun down for 1 minute at 6500g. Cells were washed once in sterile H2O and 
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resuspended in 300μL of cold H2O with protease inhibitor (1 tablet per 5 mL, Sigma cat. 

11873580001). Trichloroacetic acid (TCA) was added up to 20% of total volume. 

Approximately 50μL of acid-washed glass beads were added, so that a thin layer of liquid 

remained on top of the beads. Eppendorf tubes containing the beads were beat at 50 Hz at 

4°C for 7 minutes. Supernatant was transferred to a new tube. Beads were washed once with 

20% TCA and added to existing supernatant. TCA precipitation was performed on ice for 30 

minutes. Protein was then pelleted at max speed (~21,000 rcf) for 30 minutes at 4C. The 

pellet was washed once with cold acetone (−20°C), and left to air dry for 30 minutes. Pellets 

were resuspended in 100μL 2.5x Laemli buffer diluted with 1M Tris pH 8.5. Samples were 

boiled for 3 minutes and spun down for 10 minutes at 3000g to remove debris. 50μL was run 

on an SDS-PAGE gel at 140V for 70 minutes. Transfer was performed using PVDF 

membranes and a Bio-Rad Trans-Blot Turbo using the high molecular weight program run 

for 14 minutes. Membranes were blocked with TBST + 5% milk for 1 hour. Primary 

antibodies were incubated at room temperature for 1 hour (Chicken α-GFP 1:1000, abcam 

ab13970; rabbit α-Histone H3 1:5000, abcam ab1791). After washing, secondary antibodies 

were also incubated at room temperature for 1 hour (Goat α-chicken 1:10000, abcam 

ab97135; goat α-rabbit 1:3000, Bio-rad 170–6515). Chemiluminescent reactions were 

visualized on an ImageQuant LAS 4000 with a 3 minute exposure time. Densitometry was 

performed using ImageJ by calculating the background subtracted integrated intensity for 

each band.

QUANTIFICATION AND STATISTICAL ANALYSIS

Software used for analysis of Illumina sequencing reads: Trimmomatic, Bowtie2, GATK, 

SnpEff, MATLAB (custom scripts).

Software used for data analysis and visualization: MATLAB, PRISM, PyMol, Cytoscape, 

DISOPRED3, NCBI BLAST+, Uniprot database, JPred, Clustal Omega.

Software used for image analysis: ImageJ, SGAtools.

Colony Area quantification—All F6 segregants were pinned onto YPD + agar + drug 

plates from saturated liquid cultures that were manually resuspended via multichannel 

pipette. Segregants were pinned in quadruplicate with 96-format long pins. Plates were 

scanned at several time points using an EPSON V700 Photo Scanner with color restoration 

on. Colony areas were quantified via SGAtools and raw colony area was parsed into a 

custom MATLAB script. For sparse plates that failed alignment in SGAtools, manual 

thresholding in ImageJ was used to quantify colony area. Manually thresholded objects were 

filtered for size and eccentricity and centroids were matched to well positions according to a 

hard coded grid. For each drug condition, colony areas were normalized to a mean of 0 and a 

variance of 1. Edge effects and plate-by-plate effects were removed by including edge and 

plate pseudo-genotypes in all multiple regressions.

STRING enrichment—All causal variants that were shared between multiple classes of 

azoles were compiled into a list and entered into the STRING browser application (http://

string-db.org/). Enrichment for genetic and physical interactions (P < 10−4) were 

automatically calculated based on the number of edges in the resulting network.
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Statistical analysis of closely linked mutations—For each trait, we identified all 

pairs of causal mutations that occurred within a linkage block of 10 cM (~30kb). We 

simulated the random expectation for the frequency of paired mutations within 10 cM by 

randomly selecting the same number of causal mutations from the set of all variants. 

Significance was calculated based on the cumulative Poisson distribution 

where x is the actual number of paired mutations and λ is the random expectation. The 

analysis was repeated for linkages from 0.2 cM to 40 cM.

Our estimate of the number of paired mutations affecting the same trait was likely an 

underestimate, as our study is underpowered for identifying the most closely linked 

mutations. Furthermore, mutations in a haplotype block that exert effects in the same 

direction are harder to distinguish statistically than mutations that exert opposite effects, 

since the hybrid alleles have convergent phenotypes rather than divergent phenotypes. Thus 

our finding that 62% of paired mutations exhibited opposing phenotypic effects is almost 

certainly an overestimate (Figure S5A).

Among the paired mutations there was no skew for recombination of one variant from each 

parent. Rather, it was just as likely for two mutations to arise from the same haplotype as 

compared to one derived from each lineage (Figure S5B). Among these mutations, we 

observed that ancestral alleles were on average slightly more fit than derived alleles (Figure 

S5C), though there were examples of both deleterious hitchhiker mutations and linked 

beneficial mutations.

We repeated the linked mutation analysis with the more lenient bootstrapping cutoffs, which 

results in about a 3-fold increase in the number of causal variants. This set of causal variants 

results in an even more significant enrichment of tightly linked variants, even when 

accounting for an increased random expectation (Figures S5D and S5E).

Statistical tests for significance using the Poisson distribution—Enrichment for 

causal variants in intrinsically disordered proteins (IDPs) was calculated using a Poisson 

distribution. The null expectation for the number of causal variants in such proteins (λ) was 

assumed to be the fraction of IDPs among all ORFs multiplied by the number of causal 

variants mapped. The reported p-value is the probability of randomly obtaining our observed 

degree of depletion in causal missense mutations, executed as poisscdf(x, λ) in MATLAB.

Statistical tests for significance using the Binomial distribution—Binomial tests 

were carried out for several significance tests. The observed number of causal missense 

variants was compared to the null expectation that the fraction of causal missense variants be 

equal to the fraction of missense variants among all variants. The reported p-value is the 

probability of randomly obtaining at least our observed degree of enrichment in causal 

missense mutations, executed as binocdf(x, N, p, ‘upper’) in MATLAB. Similar binomial 

tests were used to calculate enrichment of casual missense variants at highly conserved 

residues and for the observed enrichment of derived alleles that exchange a non-optimal 

codon for an optimal codon.
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Two-tailed t-test—Two-tailed t-tests were carried out either in MATLAB using the ttest2 

function or in PRISM. The null hypothesis assumed normal distributions, equal means, and 

equal but unknown variances.

DATA AND SOFTWARE AVAILABILITY

The full genotypes of all segregants are provided in the additional data (https://

www.dropbox.com/sh/ny97iot222wh25c/AADNk5NcRMYAWWDuaiL9fui-a?dl=0), along 

with annotated code for data analysis.

Raw sequence reads are available at https://www.ncbi.nlm.nih.gov/sra (SRR5634347- 

SRR5634826, SRR5629781- SRR5630260, SRR5630261- SRR5630452).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

This work was supported by a National Institutes of Health New Innovator Award (NIH-DP2-GM119140), a Searle 
Scholar Award (14-SSP-210), a Kimmel Scholar Award (SKF-15-154), and by a Science and Engineering 
Fellowship from the David and Lucile Packard Foundation to D.F.J, and the Gerald J. Lieberman Fellowship and 
the Stanford Graduate Fellowship for R.S. We thank R. Matt for modifying the Sky1 crystal structure, M. Desai 
(Harvard) for advice with sequencing protocols, to J. McCusker (Duke) for guiding the selection of the clinical 
parent, and to L. Steinmetz, M. Snyder, D. Petrov, and M. Feldman (Stanford) for critical reading of the manuscript.

References

Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, Kondrashov AS, Sunyaev 
SR. A method and server for predicting damaging missense mutations. Nature Methods. 2010; 
7:248–249. [PubMed: 20354512] 

Bartoszewski RA, Jablonsky M, Bartoszewska S, Stevenson L, Dai Q, Kappes J, Collawn JF, Bebok Z. 
A synonymous single nucleotide polymorphism in ΔF508 CFTR alters the secondary structure of 
the mRNA and the expression of the mutant protein. Journal of Biological Chemistry. 2010; 
285:28741–28748. [PubMed: 20628052] 

Benzer S. Fine Structure of a Genetic Region in Bacteriophage. PNAS. 1955; 41:344–354. [PubMed: 
16589677] 

Bloom JS, Ehrenreich IM, Loo WT, Lite TLV, Kruglyak L. Finding the sources of missing heritability 
in a yeast cross. Nature. 2013; 494:234–237. [PubMed: 23376951] 

Botstein D, White RL, Skolnick M, Davis RW. Construction of a genetic linkage map in man using 
restriction fragment length polymorphisms. American Journal of Human Genetics. 1980; 32:314–
331. [PubMed: 6247908] 

Buhr F, Jha S, Thommen M, Mittelstaet J, Kutz F, Schwalbe H, Rodnina MV, Komar AA. Synonymous 
Codons Direct Cotranslational Folding toward Different Protein Conformations. Molecular Cell. 
2016; 61:341–351. [PubMed: 26849192] 

Chaganti RSK, Schonberg S, German J. A manyfold increase in sister chromatid exchanges in 
Bloom’s syndrome lymphocytes. Proceedings of the National Academy of Sciences of the United 
States of America. 1974; 71:4508–4512. [PubMed: 4140506] 

Crick FHC, Barnett L, Brenner S, Watts-Tobin RJ. General nature of the genetic code for proteins. 
Nature. 1961; 192:1227–1232. [PubMed: 13882203] 

Donis-Keller H, Green P, Helms C, Cartinhour S, Weiffenbach B, Stephens K, Keith TP, Bowden DW, 
Smith DR, Lander ES, et al. A genetic linkage map of the human genome. Cell. 1987; 51:319–337. 
[PubMed: 3664638] 

She and Jarosz Page 23

Cell. Author manuscript; available in PMC 2019 January 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.dropbox.com/sh/ny97iot222wh25c/AADNk5NcRMYAWWDuaiL9fui-a?dl=0
https://www.dropbox.com/sh/ny97iot222wh25c/AADNk5NcRMYAWWDuaiL9fui-a?dl=0
https://www.ncbi.nlm.nih.gov/sra


Ehrenreich IM, Torabi N, Jia Y, Kent J, Martis S, Shapiro JA, Gresham D, Caudy AA, Kruglyak L. 
Dissection of genetically complex traits with extremely large pools of yeast segregants. Nature. 
2010; 464:1039–1042. [PubMed: 20393561] 

Fay JC. The molecular basis of phenotypic variation in yeast. Current Opinion in Genetics and 
Development. 2013; 23:672–677. [PubMed: 24269094] 

Firnberg E, Labonte JW, Gray JJ, Ostermeier M. A comprehensive, high-resolution map of a Gene’s 
fitness landscape. Molecular Biology and Evolution. 2014; 31:1581–1592. [PubMed: 24567513] 

Flint J, Mackay TFC. Genetic architecture of quantitative traits in mice, flies, and humans. Genome 
Research. 2009; 19:723–733. [PubMed: 19411597] 

Flint J, Valdar W, Shifman S, Mott R. Strategies for mapping and cloning quantitative trait genes in 
rodents. Nature Reviews Genetics. 2005; 6:271–286.

Frazer KA, Ballinger DG, Cox DR, Hinds DA, Stuve LL, Gibbs RA, Belmont JW, Boudreau A, 
Hardenbol P, Leal SM, et al. A second generation human haplotype map of over 3.1 million SNPs. 
Nature. 2007; 449:851–861. [PubMed: 17943122] 

Gabriel SB, Schaffner SF, Nguyen H, Moore JM, Roy J, Blumenstiel B, Higgins J, DeFelice M, 
Lochner A, Faggart M, et al. The structure of haplotype blocks in the human genome. Science. 
2002; 296:2225–2229. [PubMed: 12029063] 

Ghannoum MA, Rice LB. Antifungal agents: Mode of action, mechanisms of resistance, and 
correlation of these mechanisms with bacterial resistance. Clinical Microbiology Reviews. 1999; 
12:501–517. [PubMed: 10515900] 

Hall JM, Lee MK, Newman B, Morrow JE, Anderson LA, Huey B, King MC. Linkage of early-onset 
familial breast cancer to chromosome 17q21. Science. 1990; 250:1684–1689. [PubMed: 2270482] 

Hillenmeyer ME, Fung E, Wildenhain J, Pierce SE, Hoon S, Lee W, Proctor M, St Onge RP, Tyers M, 
Koller D, et al. The chemical genomic portrait of yeast: Uncovering a phenotype for all genes. 
Science. 2008; 320:362–365. [PubMed: 18420932] 

Hoepfner D, Helliwell SB, Sadlish H, Schuierer S, Filipuzzi I, Brachat S, Bhullar B, Plikat U, 
Abraham Y, Altorfer M, et al. High-resolution chemical dissection of a model eukaryote reveals 
targets, pathways and gene functions. Microbiological Research. 2014; 169:107–120. [PubMed: 
24360837] 

Huang RY, Eddy M, Vujcic M, Kowalski D. Genome-wide screen identifies genes whose inactivation 
confer resistance to cisplatin in Saccharomyces cerevisiae. Cancer Research. 2005; 65:5890–5897. 
[PubMed: 15994967] 

Iraqi FA, Mahajne M, Salaymah Y, Sandovski H, Tayem H, Vered K, Balmer L, Hall M, Manship G, 
Morahan G, et al. The genome architecture of the collaborative cross mouse genetic reference 
population. Genetics. 2012; 190:389–401. [PubMed: 22345608] 

Jarosz DF, Lindquist S. Hsp90 and environmental stress transform the adaptive value of natural genetic 
variation. Science. 2010; 330:1820–1824. [PubMed: 21205668] 

Jelier R, Semple JI, Garcia-Verdugo R, Lehner B. Predicting phenotypic variation in yeast from 
individual genome sequences. Nature Genetics. 2011; 43:1270–1274. [PubMed: 22081227] 

Jones FC, Grabherr MG, Chan YF, Russell P, Mauceli E, Johnson J, Swofford R, Pirun M, Zody MC, 
White S, et al. The genomic basis of adaptive evolution in threespine sticklebacks. Nature. 2012; 
484:55–61. [PubMed: 22481358] 

King EG, Macdonald SJ, Long AD. Properties and power of the Drosophila synthetic population 
resource for the routine dissection of complex traits. Genetics. 2012; 191:935–949. [PubMed: 
22505626] 

Kryazhimskiy S, Rice DP, Jerison ER, Desai MM. Global epistasis makes adaptation predictable 
despite sequence-level stochasticity. Science. 2014; 344:1519–1522. [PubMed: 24970088] 

Kumar P, Henikoff S, Ng PC. Predicting the effects of coding non-synonymous variants on protein 
function using the SIFT algorithm. Nature Protocols. 2009; 4:1073–1082. [PubMed: 19561590] 

Lehner B. Genotype to phenotype: Lessons from model organisms for human genetics. Nature 
Reviews Genetics. 2013; 14:168–178.

Liti G, Carter DM, Moses AM, Warringer J, Parts L, James SA, Davey RP, Roberts IN, Burt A, 
Koufopanou V, et al. Population genomics of domestic and wild yeasts. Nature. 2009; 458:337–
341. [PubMed: 19212322] 

She and Jarosz Page 24

Cell. Author manuscript; available in PMC 2019 January 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Lukasiewicz R, Nolen B, Adams JA, Ghosh G. The RGG Domain of Npl3p Recruits Sky1p Through 
Docking Interactions. Journal of Molecular Biology. 2007; 367:249–261. [PubMed: 17239901] 

Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ, McCarthy MI, Ramos EM, 
Cardon LR, Chakravarti A, et al. Finding the missing heritability of complex diseases. Nature. 
2009; 461:747–753. [PubMed: 19812666] 

Märtens K, Hallin J, Warringer J, Liti G, Parts L. Predicting quantitative traits from genome and 
phenome with near perfect accuracy. Nature Communications. 2016; 7

McCullough MJ, Clemons KV, Farina C, McCusker JH, Stevens DA. Epidemiological investigation of 
vaginal Saccharomyces cerevisiae isolates by a genotypic method. Journal of Clinical 
Microbiology. 1998; 36:557–562. [PubMed: 9466776] 

Millot GA, Carvalho MA, Caputo SM, Vreeswijk MP, Brown MA, Webb M, Rouleau E, Neuhausen 
SL, Hansen TVO, Galli A, et al. A guide for functional analysis of BRCA1 variants of uncertain 
significance. Human Mutation. 2012; 33:1526–1537. [PubMed: 22753008] 

Nüsslein-Volhard C, Wieschaus E, Kluding H. Mutations affecting the pattern of the larval cuticle in 
Drosophila melanogaster. Wilhelm Roux’ Archiv. 1984; 193:267.

Osbourn AE, Field B. Operons. Cellular and Molecular Life Sciences. 2009; 66:3755–3775. [PubMed: 
19662496] 

Parts L, Cubillos FA, Warringer J, Jain K, Salinas F, Bumpstead SJ, Molin M, Zia A, Simpson JT, 
Quail MA, et al. Revealing the genetic structure of a trait by sequencing a population under 
selection. Genome Research. 2011; 21:1131–1138. [PubMed: 21422276] 

Peña-Castillo L, Hughes TR. Why are there still over 1000 uncharacterized yeast genes? Genetics. 
2007; 176:7–14. [PubMed: 17435240] 

Robinson JA, Ortega-Del Vecchyo D, Fan Z, Kim BY, Vonholdt BM, Marsden CD, Lohmueller KE, 
Wayne RK. Genomic Flatlining in the Endangered Island Fox. Current Biology. 2016; 26:1183–
1189. [PubMed: 27112291] 

Sadhu MJ, Bloom JS, Day L, Kruglyak L. CRISPR-directed mitotic recombination enables genetic 
mapping without crosses. Science. 2016; 352:1113–1116. [PubMed: 27230379] 

Sauna ZE, Kimchi-Sarfaty C. Understanding the contribution of synonymous mutations to human 
disease. Nature Reviews Genetics. 2011; 12:683–691.

Segura J, Ferretti L, Ramos-Onsins S, Capilla L, Farré M, Reis F, Oliver-Bonet M, Fernández-Bellón 
H, Garcia F, Garcia-Caldés M, et al. Evolution of recombination in eutherian mammals: Insights 
into mechanisms that affect recombination rates and crossover interference. Proceedings of the 
Royal Society B: Biological Sciences. 2013; 280

Sekar A, Bialas AR, De Rivera H, Davis A, Hammond TR, Kamitaki N, Tooley K, Presumey J, Baum 
M, Van Doren V, et al. Schizophrenia risk from complex variation of complement component 4. 
Nature. 2016; 530:177–183. [PubMed: 26814963] 

Sharp PM, Li WH. The codon adaptation index-a measure of directional synonymous codon usage 
bias, and its potential applications. Nucleic Acids Research. 1987; 15:1281–1295. [PubMed: 
3547335] 

Sigala I, Tsamis KI, Gousia A, Alexiou G, Voulgaris S, Giannakouros T, Kyritsis AP, Nikolakaki E. 
Expression of SRPK1 in gliomas and its role in glioma cell lines viability. Tumor Biology. 2016; 
37:8699–8707. [PubMed: 26738865] 

Slot JC, Rokas A. Multiple GAL pathway gene clusters evolved independently and by different 
mechanisms in fungi. Proceedings of the National Academy of Sciences of the United States of 
America. 2010; 107:10136–10141. [PubMed: 20479238] 

Steinmetz LM, Sinha H, Richards DR, Spiegelman JI, Oefner PJ, McCusker JH, Davis RW. Dissecting 
the architecture of a quantitative trait locus in yeast. Nature. 2002; 416:326–330. [PubMed: 
11907579] 

Strope PK, Skelly DA, Kozmin SG, Mahadevan G, Stone EA, Magwene PM, Dietrich FS, McCusker 
JH. The 100-genomes strains, an S. cerevisiae resource that illuminates its natural phenotypic and 
genotypic variation and emergence as an opportunistic pathogen. Genome Research. 2015; 
125:762–774.

Tiley GP, Burleigh G. The relationship of recombination rate, genome structure, and patterns of 
molecular evolution across angiosperms. BMC Evolutionary Biology. 2015; 15

She and Jarosz Page 25

Cell. Author manuscript; available in PMC 2019 January 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Torok T, Mortimer RK, Romano P, Suzzi G, Polsinelli M. Quest for wine yeast - An old story revisited. 
Journal of Industrial Microbiology. 1996; 17:303–313.

Visscher PM, Brown MA, McCarthy MI, Yang J. Five years of GWAS discovery. American Journal of 
Human Genetics. 2012; 90:7–24. [PubMed: 22243964] 

Vizoso-Vázquez Á, Lamas-Maceiras M, Becerra M, González-Siso MI, Rodríguez-Belmonte E, 
Cerdán ME. Ixr1p and the control of the Saccharomyces cerevisiae hypoxic response. Applied 
Microbiology and Biotechnology. 2012; 94:173–184. [PubMed: 22189861] 

Warringer J, Zörgö E, Cubillos FA, Zia A, Gjuvsland A, Simpson JT, Forsmark A, Durbin R, Omholt 
SW, Louis EJ, et al. Trait variation in yeast is defined by population history. PLoS Genetics. 2011; 
7

Wilfert L, Gadau J, Schmid-Hempel P. Variation in genomic recombination rates among animal taxa 
and the case of social insects. Heredity. 2007; 98:189–197. [PubMed: 17389895] 

Yalcin B, Fullerton J, Miller S, Keays DA, Brady S, Bhomra A, Jefferson A, Volpi E, Copley RR, Flint 
J, et al. Unexpected complexity in the haplotypes of commonly used inbred strains of laboratory 
mice. Proceedings of the National Academy of Sciences of the United States of America. 2004; 
101:9734–9739. [PubMed: 15210992] 

Yang H, Bell TA, Churchill GA, Pardo-Manuel De Villena F. On the subspecific origin of the 
laboratory mouse. Nature Genetics. 2007; 39:1100–1107. [PubMed: 17660819] 

Yang H, Tong J, Lee CW, Ha S, Eom SH, Im YJ. Structural mechanism of ergosterol regulation by 
fungal sterol transcription factor Upc2. Nature Communications. 2015; 6

She and Jarosz Page 26

Cell. Author manuscript; available in PMC 2019 January 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



HIGHLIGHTS

• A new inbred crossing scheme systemically links causal variants to heritable 

traits

• Variation in phenotype is driven by missense, regulatory, and synonymous 

mutations

• Linkage between causal variants is common and creates complex genetic 

architectures

• Natural genetic variation is a toolbox for creating new functional genomic 

networks

She and Jarosz Page 27

Cell. Author manuscript; available in PMC 2019 January 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. Mapping causal variants in theory
(A) Physical genome size versus recombination rate across the tree of life has a power law 

exponent of −3/4. S. cerevisiae and social insects (hymenoptera) are outliers in 

recombination rate. (B–C) Sensitivity (TP/(TP+FN)) and precision (TP/(TP+FP)) for 

mapping causal variants to single nucleotide resolution in simulated inbred cross designs in 

S. cerevisiae, assuming 6 generations of inbreeding (G=6). Sensitivity scales with the 

number of individuals genotyped (N) and the density of polymorphisms (1/μ), but precision 

using the QTN score exhibits an all or nothing boundary. (D) Simulations in traits with 

variable degrees of heritability. See also Figures S1, S2 and Table S2.
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Figure 2. QTL mapping azole resistance loci at single nucleotide resolution
(A) Six generations of inbreeding produces a dense recombination map with ~10 meiotic 

crossovers between each causal mutation and adjacent passenger mutation. (B) Traditional 

LOD (logarithm of odds) score plot for 3 classes of azoles (top) and zoom in of a 

chromosome IV QTL centered on UPC2 (bottom). (C) Candidate mutations within UPC2. 
(D) Meiotic crossovers within the UPC2 locus act as intrinsic allele swaps. Swapping a 

neutral missense variant (left) has no phenotypic effect, while swapping the true casual 

variant (right) has the same effect as swapping the entire haplotype block. (E) QTN score is 

calculated at each candidate mutation via ANOVA between hybrid alleles and the parental 

haplotypes. (F) Pan-azole resistance loci are highly enriched in experimental interactions 

(purple edges) and include many known azole resistance genes (beige nodes) and 

membrane-associated proteins (teal octagons). See also Figures S3 and S4.
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Figure 3. Complex genetic architecture within a QTL
(A) Standard LOD score plot for chemotherapeutic 5-FU (orange) and oxidative stressor 

CuSO4 (grey). LOD score does not reach significance at IXR1 and SKY1 loci. (B–C) 

Crystal structure of SR kinase Sky1. The beneficial mutation D738N changes the charge 

balance of the highly basic C-terminal peptide shown in red (DHKRH). The deleterious 

mutation T666A (blue) eliminates a hydrogen bond to a backbone carboxyl (D663) and 

removes a steric interaction to an adjacent methyl group (A676). In combination, these 

effects potentially alter the position of a key substrate-binding residue (K668, orange). (D–

E) Fitness for all 4 allelic combinations of SKY1 and IXR1 (data are represented as mean ± 

SEM). Both the original clinical and wine haplotypes are neutral (represented as 2 blue or 

red x’s), but hybrid alleles with one mutation from each parent reveal underlying effects for 

each mutation. (F) Multiple sequence alignment across the S. cerevisiae phylogenetic tree 

for the two IXR1 missense mutations. (G) Number closely coupled driver mutations that 

affect the same quantitative trait and also fall within 10 centimorgans (cM) of physical 

distance (Significance calculated by Poisson cumulative distribution, see Methods.). (H) 

Enrichment for linked driver mutations as a function of physical distance measured in cM. 

See also Figure S5.
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Figure 4. Functional genomics using nature’s genetic toolkit
(A) Number of causal variants identified in each of 26 unique chemical perturbations. (B) 

Classification of causal variants identified in this study compared to the distribution of all 

SNPs between the founder strains (baseline frequency). (C) Effect sizes for each 

biochemical class of causal SNPs. (D) Frequency of deleterious derived alleles (new 

mutations arising in the wine or clinical lineage) compared to random mutagenesis. (E) 

Causal variants (QTNs) identified in this study complement existing homozygous deletion 

screens (grey fill) and heterozygous deletion screens (black borders) on the same 

quantitative traits. (F) Combined interaction network with the deletion screen hits (grey 

nodes) and QTNs (pink nodes). Shared hits (pink fill) act as hubs for genes specific to each 

methodology. Genes with no significant interactions to the network appear as single nodes 

along the bottom. See Figure S6A and S6B for high-resolution images with legible gene 

labels for each node. See also Figures S5, S6, and Tables S1 and S3.
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Figure 5. From unbiased genetics to structural biology
(A) Causal missense mutations are highly enriched at conserved amino acid positions 

compared to synonymous mutations. (B) Computational prediction of protein secondary 

structure for both the clinical and wine allele reveals that 5–10% of missense mutations alter 

the predicted secondary structure at the site of mutation. Mutations that originate in beta 

sheets are more likely to perturb structures, whereas alpha helices are relatively robust. (C) 

Even when the site of mutation is unperturbed, ~5% of nearby residues can be affected. (D) 

Beta sheet mutations are both more likely to change structure and more likely to have large 

phenotypic effects, as measured by unbiased genetic mapping. See also Figure S6.
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Figure 6. The functional impact of synonymous mutations
(A) Fraction of ancestral and derived alleles where an optimized codon is mutated into a 

non-optimal codon. (B) qRT-PCR for PXA1-EGFP RNA levels. (C) Western blot for Pxa1-

EGFP protein expression with histone H3 as a loading control. (D) Change in codon 

adaptation index (CAI) for missense vs. synonymous causal variants (inset). The degree to 

which each type of mutation tends to change CAI (ΔCAI) is measured as the variance (σ2) 

of ΔCAI. Scatter plot shows variances in >900 sequenced organisms across all domains of 

life. Synonymous mutations always modify CAI more than missense mutations, despite a 

wide range of codon usage frequencies between organisms. See also Figure S6.
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Figure 7. Inbred crosses in metazoans and other wild yeasts
(A) Parameter space for existing inbred cross designs in M. musculus (CC), D. melanogaster 
(DGRP), A. thaliana (MAGIC), and S. cerevisiae (SGRP-4x) (BYxRM). Dotted line 

represents the threshold for single nucleotide resolution mapping, defined as a 10x ratio of 

meiotic crossovers compared to sites of variation. The total number of meiotic crossovers 

can be increased by genotyping more individuals (N), inbreeding for more generations (G), 

or by enhancing the recombination rate (ρ). (B) Genetic divergence between pairs of wild 

strains of S. cerevisiae (heterozygosity = polymorphisms per bp), plotted against the ratio of 

the total number of nonsynonymous mutations (Nd) over the total number of synonymous 

mutations (Sd). Isolates colored by ecological backgrounds. (C) Isolates colored geographic 

origin. The North American/European clade currently contains the greatest density of 

sequenced isolates, but as more non-mosaic strains from other clades are sequenced, we 

expect to observe many more pairs of parents with heterozygosity ~0.001. See also Figure 

S7.
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