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Abstract

Accurate and robust cohort definition is critical to biomedical discovery using Electronic Health 

Records (EHR). Similar to prospective study designs, high quality EHR-based research requires 

rigorous selection criteria to designate case/control status particular to each disease. Electronic 

phenotyping algorithms, which are manually built and validated per disease, have been successful 

in filling this need. However, these approaches are time-consuming, leading to only a relatively 

small amount of algorithms for diseases developed. Methodologies that automatically learn 

features from EHRs have been used for cohort selection as well. To date, however, there has been 

no systematic analysis of how these methods perform against current gold standards. Accordingly, 

this paper compares the performance of a state-of-the-art automated feature learning method to 

extracting research-grade cohorts for five diseases against their established electronic phenotyping 

algorithms. In particular, we use word2vec to create unsupervised embeddings of the phenotype 

space within an EHR system. Using medical concepts as a query, we then rank patients by their 

proximity in the embedding space and automatically extract putative disease cohorts via a distance 

threshold. Experimental evaluation shows promising results with average F-score of 0.57 and 

AUC-ROC of 0.98. However, we noticed that results varied considerably between diseases, thus 

necessitating further investigation and/or phenotype-specific refinement of the approach before 

being readily deployed across all diseases.
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1. Introduction

Clinical data collected from patient hospital visits are archived in electronic health records 

(EHR) as part of the healthcare process. These data consist of disease diagnoses, medication 

prescriptions, procedures performed, among others. EHR-based research enables countless 

opportunities for biomedical research [1–3] and precision medicine [4]. However, one of the 

cornerstones of EHR research is the requirement to reliably detect patients with a particular 

disease or phenotype for use in observational cohort studies. Accurately identifying patients 

with a disease of interest in an EHR system, however, is not trivial due to input errors, 

coding biases, medical reporting biases, data availability, sparsity, and limitations of how the 

data is structured. Defining case/control disease cohorts through presence of a single clinical 

concept, such as an International Statistical Classification of Diseases and Related Health 

Problems (ICD) code, is often not sufficient to produce reliable distinctions. Furthermore, 

these concepts vary greatly in their performance for identifying different diseases [5]. For 

example, relevant medication prescriptions may phenotype patients in some disease with 

high precision, but not help classification in another.

Advanced EHR phenotyping of diseases is best understood as an “expert system,” where 

researchers with advanced knowledge of a particular disease phenotype design a list of 

criteria which may be used to identify affected (i.e. cases) and sometimes assuredly non-

affected (i.e. controls) individuals by excluding those with ambiguous clinical status or lack 

of enough data [6]. This typically takes the form of intricate rule-based algorithms 

specifying the presence and/or absence of particular billing codes, pre-defined ranges for 

laboratory tests, the prescription of characteristic medications, processing of clinical notes, 

among others. These types of rule-based algorithms, called “electronic phenotyping 

algorithms” when working with EHR data, perform markedly better than simpler 

alternatives [7]. The Electronic Medical Records and Genomics (eMERGE) [8] consortium 

has led the effort in defining, implementing, and validating such algorithms for a number of 

diseases. The Phenotype KnowledgeBase (PheKB) [9] repository contains such algorithms 

from eMERGE as well as from other sources. While this approach is effective, there are also 

two main drawbacks. First, implementing each algorithm in a new dataset (for example, a 

researcher wanting to use a previously published algorithm on a different set of EHR 

records) is a time-intensive and sometimes demanding task. This may require dealing with a 

variety of data formats, getting access to specific laboratory or imaging test results, 

implementing natural language processing pipelines, and so on. Second, biomedicine deals 

with an enormous amount and variety of disease – establishing criteria for each new disease 

is an onerous process and does not scale well. In fact, a systematic analysis of 

commonalities in selection criteria for 24 eMERGE algorithms found that each algorithm 

had variable amounts and types of design patterns [10]. Due to these restrictions, relatively 

few algorithms have been created. Currently, there are only 42 public phenotypes in PheKB, 

which altogether represent only a small fraction of human disease. As such, methodologies 

to expedite the design and implementation of phenotyping algorithms, or better yet avoid the 

process overall, would be tremendously beneficial and could lead to better/more research of 

this kind.
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There are many well-established methodologies to automatically learn representations of 

data [11]. For instance, learning low-dimensional representations, such as word embeddings, 

is a common practice to transform high-dimensional data [12]. The use of word embeddings 

has been proven to be particularly effective in NLP-related tasks, such as language modeling 

and information extraction [13]. Several models have been proposed for learning distribution 

representations of words, the most popular of which being the skip-gram model 

implemented in the word2vec framework [14]. The success of neural networks for 

computing word embeddings has motivated adaptation of these algorithms for other types of 

data, such as clinical data. In fact, there have been several studies that automatically learned 

embeddings in biomedical informatics. Choi et al. [15] learned and compared low-

dimensional representations of medical concepts from medical journals (abstracted UMLS 

concepts from around 350,000 medical paper abstracts), medical claims (structured clinical 

data from an insurance company), and clinical narratives (notes from publicly available EHR 

data). They found that the embeddings from these different sources produced high-quality 

results but differed significantly based on data modality. Of particular relevance to the 

current study, Halpern and Horng et al. [16] used the anchor-and-learn framework to build 

phenotype libraries of features using emergency department EHR data. Specifically, this 

method identifies features as anchors for diseases that have both high positive predictive 

value as well as conditional independence from any other feature that could improve 

prediction. They built 42 phenotype definitions using this method, evaluating eight of them 

using physician responses to gauge performance. Rotmensch et al. [17] used three 

probabilistic models to automatically extract concepts and create a health knowledge graph 

of disease-symptom relationships from EHR data of approximately 275,000 patients. The 

resulting learned graphs compared encouragingly against a physician-constructed knowledge 

set.

Many other efforts to automatically extract phenotypes from EHRs have performed well. 

Miotto et al. [18] built Deep Patient, a three-layered stack of denoising autoencoders used to 

predict risk for future health states (i.e. disease risk) within EHR. Kandula et al. [19] 

developed an algorithm built through bootstrapping that iteratively selects data types to 

incorporate and tested their method for diabetes mellitus and hyperlipidemia cohort 

identification. Yu et al. [20] used NLP of clinical notes and machine learning to identify 

rheumatoid arthritis and coronary artery disease patients. Pivovarov et al. [21] developed 

UPhenome, an unsupervised, probabilistic graphical model to learn computational models of 

diseases. Chiu and Hripcsak [22] developed a three-tier, stacked architecture for ensemble 

learning and feature representations to define disease cohorts. While innovative and 

successful for their goals, these works have yet to benchmark their models against gold 

standard phenotyping algorithms to appropriately assess their utility for these types of 

studies. In fact, performances of these models were mainly evaluated using manual expert 

review of charts for a small subset of patients or from typical machine learning approaches 

(i.e. training and test). As such, there is still a gap to evaluate how these automated methods 

fare against established algorithms. Agarwal et al. [23] learned phenotype models of Type 2 

Diabetes and Myocardial Infarction using a semi-automatic (“silver standard”) procedure 

through the manual selection of relevant terms. Their models compared favorably against 

electronic phenotyping algorithms, demonstrating the feasibility of these methods for 
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research purposes. As they mention, however, this methodology was measured against only 

two diseases and not fully automatic.

To the best of our knowledge, there is no systematic evaluation of how fully automated 

disease-cohort characterization from EHR compares against research-grade, rule-based 

methodologies. In the current study, we build upon these previous works and compare 

performance of automatically derived patient cohorts using word embeddings for five 

diseases against established PheKB electronic phenotyping algorithms. In particular, we use 

the EHRs of over a million patients to learn embeddings of the medical concepts in the 

structured records, and use these embeddings to summarize the clinical history of the 

patients. For each disease of interest, we then select only a single meaningful clinical 

concept to use as query, and we rank patients based on the distance from the corresponding 

embedding of the query. From here, putative cohorts are systematically generated for the 

disease concept based on patient embeddings with highest similarity, and compared against 

the gold standards. From these comparisons, we have the unique opportunity to learn 

strengths and limitations of this embedding methodology on EHR data by comparing 

performance across diseases of different types that contain various data modalities and rule-

based algorithms. Ultimately we hope to generate automated disease representations suitable 

for research studies.

2. Methods and Materials

We present an overall workflow of the study and methodologies in Figure 1.

2.1. Research Cohort and Resource

We utilized clinical data from the EHRs of the Mount Sinai Hospital (MSH). MSH is an 

urban, tertiary care hospital located in on the Upper East Side of Manhattan in New York 

City. Clinical data within the EHRs includes disease diagnoses, lab test results, vital signs, 

medication prescriptions, and procedures among others. For the current study, we restricted 

our research cohort to individuals with at least one recorded clinical feature, leaving 

1,304,192 unique patients for subsequent analyses. Due to HIPAA requirements, the ages of 

patients within the research cohort are right censored at age 90. The mean age of the cohort 

is 45.24 ± 22.71 (std). The self-reported sex breakdown of the cohort is 56.7% female, 

43.3% male, and 0.02% not available. The self-reported race breakdown of the cohort is: 

36.9% Caucasian (White), 14.2% African American (Black), 8.88% Hispanic/Latino, 3.99% 

Asian, 3.1% Other, and 35.7% not available.

2.2. Disease Phenotyping Algorithms

For gold standard disease cohort selection, we utilized electronic phenotyping algorithms 

from PheKB. We selected diseases by first restricting algorithms to those that are public and 

are of the type “Disease or Syndrome” and then to disease only (e.g. dementia, but not 

peanut allergy). We did not consider algorithms that require Natural Language Processing 

(NLP) of clinical notes as part of the selection criteria. After filtering, we selected five of the 

remaining seven algorithms: Attention Deficit Hyperactivity Disorder (ADHD) [24], 

Dementia [25], Herpes Zoster [26], Sickle Cell disease (Sickle Cell) [27, 28], and Type 2 
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Diabetes (T2D) [29]. While some of these algorithms include control inclusion criteria, we 

attempted only case selection.

2.2.1. Electronic Phenotype Algorithm Implementation—For all algorithms, the 

data types included are ICD-9 for disease diagnoses; Current Procedural Terminology (CPT) 

and CPT-Healthcare Common Procedure Coding System (HCPCS) codes for procedures; 

Logical Observation Identifiers Names and Codes (LOINC) codes and descriptions for lab 

tests and vital signs. Unless explicitly specified otherwise, we used wildcard characters at 

the end of all non-five digit ICD-9 codes (e.g. 314.xx). Medications terms can include 

dosage and route of administration in addition to the drug name (e.g. CLONAZEPAM 0.5 

MG TAB), and as such, we obtained records by querying each term surrounded with 

wildcard characters (e.g. “%Melipramine%”). We were able to successfully implement all 

algorithms with only a few minor modifications as necessary, which we describe in this 

section. As we do not perform association testing using the disease cohorts in the current 

study, we did not implement covariate-related procedures, specifically antiviral medication 

minimum dosage threshold, in our application of the Herpes Zoster algorithm. In the T2D 

algorithm, for the glucose lab test results, we were not able to distinguish “fasting” from 

“non-fasting” measurements, and as such, considered all records as “non-fasting”. We 

retrieved diabetes medical supplies information using the same search approach as for 

medication data, necessitated by the fact that the authors of the algorithm utilize RxNorm 

codes, which we did not have mappings for. For “Blood-glucose meters and sensors”, we 

queried: 1. “glucometer” and 2. “%glucose%” [AND] (“%meter% [OR] “%monitor%” [OR] 

“%sensor%”), producing 6,104 records and 47 distinct terms. For “Insulin syringes”, we 

queried “%insulin%” [AND] (“%syringe%” [OR] “%inject%” [OR] “%pen%” [OR] 

“%innolet%” [OR] “%flextouch%” [OR] “%solostar%” [OR] “%cart%”), resulting in 

117,469 records and 356 unique items.

2.3. Phenotype and Patient Embedding

We learn a set of low-dimensional representations (i.e., “embeddings”) of medical concepts 

from the structured EHR. These representations put all ICD-9 diagnosis and procedure 

codes, laboratory codes, and drug codes in a common metric space where similarity is 

inversely proportional to pairwise distance. Next, we use these embeddings to summarize 

the patient history by weighted average of the medical concepts over time windows. For 

each disease of interest, we then use a query consisting of a representative medical concept 

(e.g. ICD-9 code) as a seed and then expand it to other related concepts. Lastly, we use these 

representations to identify patients with each disease by measuring the distance of each 

patient from the query.

2.3.1. Data pre-processing—In order to systematically create embeddings, the various 

data types within the EHR have to be pre-processed. In particular, we normalized all ICD-9 

codes to four digits resulting in 6,272 terms. We normalized medication data using Open 

Biomedical Annotator [30] yielding 4,022 terms. We normalized vital signs and encounter 

descriptions (e.g. “Outpatient”) into seven and 10 terms respectively. Procedures and lab 

tests were normalized based upon sub-string prefixes and similarity, which generated 2,414 

Glicksberg et al. Page 5

Pac Symp Biocomput. Author manuscript; available in PMC 2018 January 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and 1,883 terms respectively. In total, we derived 14,608 distinct clinical concepts to be used 

in embedding procedures.

2.3.2. Learning Embeddings of Medical Concepts—We take inspiration from Choi 

et al. [15] and use the skip-gram algorithms to learn embeddings of the medical concepts 

reported in the EHRs. For each patient, we organize the normalized clinical concepts into an 

irregularly-sampled temporal sequence, where concepts adjacent to each other in the 

sequence should cluster together in the learned metric space. To this end, we first partitioned 

the patient data in consecutive time intervals composed by fifteen days (Figure 1B). Second, 

we removed duplicates from each time interval and third, we random-shuffled the concepts 

in each interval. Each time interval represented as a sequence of unique medical concepts 

was then considered as a “sentence” to be given to the word2vec algorithm, which was 

trained using stochastic gradient descent and used as dynamic context the number of 

concepts in each sentence. At the end, every medical concept was represented as a 200-

dimensional embedded vector, with all the medical concepts mapped in the same metric 

space. Figure 2 shows a visualization of the embeddings learned from the medical concepts 

in the EMR, going from the raw low-dimensional data (A) to seeding with the ADHD 

concept (B) and clustering using t-SNE (C, D).

2.3.3. Deriving Patient Representations from Medical Concept Embeddings—
For every time interval considered in the patient clinical history, we used the simple sentence 

aggregation method proposed by Arora et al. [31]. In particular, we computed the weighted 

average of the medical concept embeddings and subtracted the projections of the average 

vectors on their first principal component. This facilitates the removal of the largely shared 

components from the vectors, leading to more discriminative aggregated embeddings. The 

weight of a phenotype w was computed as: w = a/(a + p(w)) with a being a parameter and 

p(w) being the (estimated) phenotype frequency across the whole dataset. At the end of this 

process, every patient was characterized by a bag of clinical status embeddings, lying in the 

same space of the medical concepts, which are used for performing the automated 

phenotyping.

2.3.4. Automatic Disease Phenotyping from the Embeddings—For the diseases of 

interest, we used the following representative concepts as seed queries: ICD-9 code 314.0× 

for ADHD; ICD-9 code 290.xx for Dementia; ICD-9 code 053.xx for Herpes Zoster; ICD-9 

code 282.6× for Sickle Cell; and ICD-9 code 250.xx for T2D. For each disease query, we 

sought to capture related concepts through query expansion (Figure 1C). Here, we added the 

top five closest ICD-9 codes, medications, and procedures to the original seed query. We 

used cosine distance to measure the relationship between each patient and query vectors, 

using the closest patient vector (i.e. sentence) as a summarized score. We then repeat this 

process for each vector in the expanded query pool and retained the average of all the 

distances as a final value. For sake of comparison, we derived disease cohorts using ICD-9 

presence only, embeddings only, and embeddings with the query expansion.
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2.4. Evaluation Design

For every disease considered, we evaluate the embeddings for annotation and retrieval and 

report the precision, recall, and F-score. In the annotation task, we assigned a positive label 

to each patient for the disease if the distance from the query was below a certain threshold. 

To facilitate the definition of the threshold, we mapped the distances to probabilities 

(ranging from 0 to 1). Precision is the number of correct positive results divided by the 

number of all positive results, recall is the number of correct positive results divided by the 

number of all true positive results, and F-score is the harmonic mean of them both. We set 

the threshold to 0.7, with this value optimizing the tradeoff between precision and recall for 

all diseases examined. In the retrieval task we sorted the patients by their distance from the 

query and evaluated the ranking lists obtained. As metrics, we report Precision-at-10 

(Prec@10) and R-precision (Prec@R). Specfically, Prec@10 measures the ratio of relevant 

patients (i.e., patients with the disease in the ground truth) within the top 10 positions of the 

ranked embedding output list (i.e., top 10 closest patients to the query) for each disease. 

Prec@R is the precision-at-R of the query disease, where R is the number of patients with 

that disease in the ground truth.

3. Results

3.1. Evaluating Performance of Embeddings

We ran the electronic phenotyping algorithms mentioned above to obtain gold standard 

patient cohorts for each disease of interest. The patient count for each cohort is as follows: 

7,487 individuals for ADHD, 10,782 for Dementia, 1,618 for Herpes Zoster, 943 for Sickle 

Cell, and 56,687 for T2D.

3.1.1. Phenotype Embedding Methodologies—The first goal of evaluating phenotype 

embeddings was to assess overall performance across three different models: ICD-9 only, 

(Phenotype) Embedding Only, and (Phenotype) Embedding with Query Expansion. We 

present the evaluation metrics of each model in Table 1. For “Annotation”, the ICD-9 Only 

method interestingly achieved highest precision (0.609) but lowest Recall and F-Score, 

implications of which we address in the Discussion. The Embedding with Query Expansion 

performed best in terms of Recall (0.795) and, more importantly, F-Score (0.569), which 

combines the other metrics. The Embedding Only method outperformed the ICD-9 Only 

method in the same metrics, but to a lower degree. The Query Expansion improved upon 

Embeddings in all metrics but most notably in Recall (0.795 vs. 0.489). For “Retrieval”, 

Embedding with Query Expansion outperformed Embedding Only and ICD-9 Only in all 

metrics, enhancing our confidence in using this method.

3.1.2. Phenotype Embedding with Query Expansion at the Disease Level—We 

present the evaluation metrics using the Phenotype Embedding with Query Expansion 

method for all five diseases of interest in Table 2. For “Annotation”, it is clear that this 

embedding procedure exhibits variable performance depending on disease. ADHD, Sickle 

Cell, and T2D performed relatively well with F-scores of 0.74, 0.72, and 0.67. The 

Dementia query performed the poorest with an F-score of 0.28, primarily due to low Recall 

(0.20). These trends mostly carried over for “Retrieval” assessment.
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To illustrate the utility of the query expansion, we present the concepts adopted for the 

embedding of Herpes Zoster in Table 3.

4. Discussion

For the first time, we assessed how disease cohorts automatically generated from an EHR 

system compare to research grade gold standard electronic phenotyping algorithms from 

PheKB for five diseases: ADHD, Dementia, Herpes Zoster, Sickle Cell, and T2D. As an 

automated method, this approach is purely data driven and requires no manual effort beyond 

selection of a single seed concept. Specifically, we employed the word2vec algorithm to 

create medical concept embeddings of the phenotype space. For each disease of interest, we 

query the embeddings using a representative seed concept, which is automatically expanded 

to include highly related concepts nearby in the low-dimensional space. Overall, both 

embedding methods (i.e. with and without expansion) outperformed using ICD-9 codes 

alone; precision, however, was higher than the other methods but is most likely due to fact 

that the manual phenotyping algorithms themselves incorporate the code. Further, the much 

lower recall and poorer Retrieval outcomes indicate that using ICD codes likely miss many 

cases. Querying with expansion improved all metrics over using the raw embeddings alone, 

which is one of the strongest aspects of this work. While the performance at the disease level 

varied, the overall evaluation metrics are encouraging, especially instances like Sickle Cell, 

which performed the best.

4.1. Limitations and Future Directions

Many factors likely affected the performance comparison between our automated 

phenotyping method and the PheKB algorithms. For instance, many of the PheKB 

algorithms incorporate selection criteria based on amount and/or temporal length of data in a 

patient’s record, which was not considered in the current iteration of our method. These 

scenarios might lead to mismatched labels due to non-phenotype related properties. Another 

important drawback is our seeding of the queries with ICD codes. Although we overcome 

many of the limitations of using ICD codes alone to electronically phenotype (i.e., low 

recall), it is difficult to learn across the branches of the ICD structure: for instance, it may be 

desirable to delineate between related phenotypes at the same hierarchical level (e.g. type 1 

vs. type 2 diabetes mellitus) but since these are both branches of the major diabetes ICD 

code used as a seed for Type 2 Diabetes, our algorithm was not able to easily distinguish 

between them and lead to subpar performance. While the expanded query still performed 

moderately well, this caveat exemplifies that room for improvement exists. Specifically, the 

seed and query expansion might perform better as a learned subgraph of related concepts, 

such as the anchor and learn framework utilized by Halpern and Horng et al. Additionally, 

one of the largest limitations of the current study is that of weak labels: we could not 

evaluate performance of the embeddings separately and in addition to the electronic 

phenotyping algorithms via access to patient charts. We expect even the gold standard 

phenotyping algorithms to erroneously include and exclude patients. Compared to the true 

phenotype, we could potentially be identifying patients that are captured in the automated 

method but not in the phenotyping algorithms. In future work, we will also obtain clinical 

notes to expand our comparison to all disease-related algorithms in PheKB.
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There are many extensions we wish to pursue that can address current limitations as well as 

strengthen performance. We hope to enhance performance through advancing the patient 

embedding representation, testing other methodologies such as GloVE [32], as well as 

developing superior ways to summarize clinical history that keeps into account timeline. To 

bypass the need for data pre-processing and harmonization, we plan to standardize our raw 

EHR data to OMOP Common Data Model, from the Observational Health Data Sciences 

and Informatics (OHDSI). Further, the OHDSI framework would enable cross-validation 

experiments within other coordinated hospital EHR systems.
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Figure 1. 
Workflow design of the current study. A) Framework for comparing gold standard PheKB 

algorithms to our automated method. B) Embeddings procedure. C) Retrieval and disease 

cohort identification
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Figure 2. 
Disease embedding for ADHD with the top 50 closest neighboring concepts from A) the raw 

low-dimensional space, B) to query C), to clustering (D is zoomed in section).
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Table 3

Features incorporated in the Herpes Zoster model in the expanded query for each modality.

Modality Feature Similarity

ICD-9

Herpes zoster w/out complication (053.9) 0.788

Herpes zoster w/ other nervous system complications (053.19) 0.724

Herpes zoster w/ ophthalmic complications (053.29) 0.599

Herpes zoster w/ other specified complications (053.7) 0.568

Genital herpes (054.1) 0.538

Medication

Valacyclovir 0.607

Famciclovir 0.587

Valacyclovir hydrochloride 0.522

Capsaicin 0.515

Valtrex 0.506

Procedure

Varicella zoster 0.503

Hiv-1 viral load 0.439

T helper 0.431

Tsh w/ free t4 reflex 0.410

Virus identification 0.385
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