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ABSTRACT Robotic stroke rehabilitation therapy can greatly increase the efficiency of therapy delivery.
However, when left unsupervised, users often compensate for limitations in affected muscles and joints by
recruiting unaffected muscles and joints, leading to undesirable rehabilitation outcomes. This paper aims
to develop a computer vision system that augments robotic stroke rehabilitation therapy by automatically
detecting such compensatory motions. Nine stroke survivors and ten healthy adults participated in this study.
All participants completed scripted motions using a table-top rehabilitation robot. The healthy participants
also simulated three types of compensatorymotions. The 3-D trajectories of upper body joint positions tracked
over time were used for multiclass classification of postures. A support vector machine (SVM) classifier
detected lean-forward compensation from healthy participants with excellent accuracy (AUC = 0.98,
F1 = 0.82), followed by trunk-rotation compensation (AUC = 0.77, F1 = 0.57). Shoulder-elevation
compensation was not well detected (AUC = 0.66, F1 = 0.07). A recurrent neural network (RNN) classifier,
which encodes the temporal dependency of video frames, obtained similar results. In contrast, F1-scores
in stroke survivors were low for all three compensations while using RNN: lean-forward compensation
(AUC = 0.77, F1 = 0.17), trunk-rotation compensation (AUC = 0.81, F1 = 0.27), and shoulder-elevation
compensation (AUC = 0.27, F1 = 0.07). The result was similar while using SVM. To improve detection
accuracy for stroke survivors, future work should focus on predefining the range of motion, direct camera
placement, delivering exercise intensity tantamount to that of real stroke therapies, adjusting seat height, and
recording full therapy sessions.

INDEX TERMS Motion compensation, posture classification, rehabilitation robotics, stroke rehabilitation.

I. INTRODUCTION
Stroke is the result of a shortage of blood supply to the
brain leading to cell death. In America, stroke has become
the primary cause of disability [1]. Functional impairment in
the upper extremities caused by stroke often leads to loss of
independence in the performance of activities of daily living.
Post-stroke rehabilitative interventions for improving upper
limb function are effective in helping stroke survivors in early
stages regain motor function and range of motion [2]. These
interventions, which include constraint-induced movement
therapy and repetitive task practice [3], are often performed
under the supervision of a healthcare professional in an
in-patient setting with prolonged sessions [4]. This can be

costly to the healthcare system and may hinder patient access
to rehabilitation, especially in remote regions.

A. ROBOTIC STROKE REHABILITATION THERAPY
Robotic stroke rehabilitation therapy has the potential
to improve upper limb motor recovery for stroke sur-
vivors [5], [6]. Although robots are not designed to replace
therapists, they are a potentially cost-effective complement
to therapy assistance and can increase therapy time. For
instance, with robotic rehabilitation devices, a single therapist
could supervise the exercise sessions of multiple users simul-
taneously, rather than one patient at a time. This can greatly
increase therapy delivery efficiency. In the past, our team at
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the Toronto Rehabilitation Institute (TRI) developed a haptic
robot prototype with an end-effector that provides shoulder
and elbow movement therapy. Although the potential clin-
ical efficacy is promising [7], a major consideration when
using this robotic rehabilitation system is whether users can
correctly execute therapy exercises under minimal therapist
supervision [8]. During therapy, common movement deficits
are often present, including muscle weakness, abnormal pos-
tural adjustments, and loss of inter-joint coordination. When
stroke survivors attempt to move and encounter these deficits,
they naturally compensate with the available motor strategies
by recruiting unaffected muscles and joints to overcome limi-
tations in affectedmuscles and joints [9]. In the face of fatigue
or unclear instructions, stroke survivors also tend to resort
to compensatory motions during repetitive rehabilitation
exercises [10]. Such compensations hinder recovery progress
and can introduce additional orthopedic problems [11].

B. COMPENSATION DETECTION
To take full advantage of robotic stroke rehabilitation ther-
apy, measures should be taken to correct compensations.
Posture correcting exoskeletons provide a solution by con-
trolling joint movement [12]. However, the TRI robotic pro-
totype contains an end-effector, allowing for many degrees
of freedom at various joints. Controlling joint movement
will inevitably hamper such movement freedom. There-
fore, exoskeletons are not applicable in this scenario. Other
robotic systems utilize physical constraint such as straps to
keep users in the chair, which is non-ideal due to safety
concerns and discomfort. Furthermore, visual marker-based
and wearable-based kinematic assessments can detect com-
pensation, and feedback from the system interface can
be issued to prompt users to correct their postures. Yet,
expensive or complex equipment are required [12], [13].
Compared to the other approaches, marker-free vision-based
methods are more unobtrusive, convenient, economical, and
adaptable [12], [13]. Marker-free methods also demonstrated
sufficient accuracy and precision for many common clinical
imaging applications [13]–[19].

A marker-free vision-based posture assessment prototype
to detect and categorize compensations during robotic reha-
bilitation therapy was previously developed using the TRI
robotic platform [20]. The system used a commercial depth
camera (Microsoft Kinect) and its associated skeletal tracking
algorithms to track upper body posture of healthy partic-
ipants. Each participant sat in front of the robot and per-
formed five repetitions of forwards-backwards movement
of the robot end-effector. The exercise was repeated five
times using either no compensation or one of four common
compensatory strategies being simulated: shoulder elevation,
trunk rotation, lean forward, or slouching. Compensatory
postures were manually labeled and a multiclass classifier
was trained based on the orientation of 3-D line segments
connecting relevant skeletal points. The four common types
of compensation were detected with high accuracy (86%)
using a Hidden Markov Support Vector Machine classifier

with a modified loss function [21]. However, the classifier
was trained and tested on a relatively small sample size (n=8)
of healthy participants and the clinical efficacy of the sim-
ulation was not validated. Therefore, expanding the dataset
and evaluating the algorithms on stroke survivors are a natural
extension of this work.

We recently released a more extensive clinical dataset –
the Toronto Rehab Stroke Posture (TRSP) dataset [22]. This
dataset includes the motions of 10 healthy volunteers and
9 stroke survivors while performing a series of upper limb
exercises with the rehabilitation robot developed at TRI.∗

Two expert raters annotated the postures of stroke survivors.
To assess how well the dataset discriminated between differ-
ent types of compensation, a simple thresholding method was
explored which relied on the angle of the spine, or the angle
of the line segment connecting the left and right shoulders.
The simple thresholding method did not yield satisfactory
classification performance and the analysis concluded that a
supervised machine learning algorithm considering multiple
upper body joints should be explored as a possible way to
improve compensation detection accuracy. In this study, we
experimentally evaluate supervised classification algorithms
to automatically detect compensations in the TRSP dataset.

C. OBJECTIVES
This study targets two objectives. First, we investigated if a
classifier could detect common compensations simulated by
healthy participants. Second, we examined if a classifier –
based solely on patient data – could detect common compen-
sations occurring in stroke survivors.

There are two advantages of using simulated data instead
of data acquired from patients directly. First, post-stroke
fatigue is a frequently reported and debilitating consequence
of stroke [23]. Post-stroke fatigue deprives patients of the
physical endurance required to consistently execute therapy
exercises and the fatigue generally cannot be temporarily alle-
viated by rest [23]. Therefore, it is difficult to obtain sufficient
training data exclusively from patients. Furthermore, due to
varying degrees of physical impairment in stroke patients,
somemight be incapable of performing motions for a specific
or challenging task [24]. The simulated motions, on the other
hand, provides a valuable source of data to train the classifiers
which can later be used to detect compensations in patients.

Lastly, validating the classifiers against patient data will
inform the feasibility of a stand-alone system that detects
compensation in real-time and prompts users to correct their
posture when necessary.

II. METHODOLOGY
A. EXPERIMENTAL SETUP
The robot used was a tabletop device designed to provide
adaptive post-stroke rehabilitation exercises [8]. To operate
the robot, the user sat in front of the robot and maneuvered

∗The dataset is available at https://www.kaggle.com/derekdb/toronto-
robot-stroke-posture-dataset
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FIGURE 1. (a) Rehabilitation robot (b) color image of a participant (c) depth image with tracked skeleton overlaid. The tracked joints – marked by red
dots - are base of the spine, middle of the spine, spine at the shoulder level, shoulders, elbows, wrists, hips, and neck.

TABLE 1. Description and measurement of different motions and compensations performed by participants.

the end-effector horizontally with two degrees of freedom.
During rehabilitation exercises, the robot intelligently applies
resistive or assistive forces to augment the tasks [8]. However,
for simplicity, the robot was powered off during the study to
remove the effect of resistive or assistive forces. A Microsoft
Kinect v2 sensor was placed approximately 90 cm behind the
robot and 30 cm above the tabletop, facing the participant in
a slightly oblique direction. Fig. 1 illustrates the robot and
a participant operating the end-effector of the robot in color
and depth images. Color and depth streams were captured at
30 frames per second using Kinect Studio.

B. DATASET
This study was approved by the Research Ethics Board
at the Toronto Rehabilitation Institute – University Health
Network (TRI-UHN) University Centre. All participants pro-
vided written informed consent.

Data extracted from the TRSP dataset contains
3-D skeletal joint positions of 9 stroke survivors with
varying degrees of mobility impairment, and 10 healthy
participants with no mobility issues. The recruited stroke
survivors had varying degrees of upper limb impairment:
Chedoke-McMaster Stroke Assessment (CMSA) [25] arm
stages 2-6. The healthy participants were matched approx-
imately in height and weight with the stroke survivors.

Only the upper body joint positions were useful for classi-
fication because the patients remained seated throughout the
exercises and the table occluded vision of the lower body.
The joints used for classification included base of the spine,
middle of the spine, spine at the shoulder level, shoulders,
elbows, wrists, hips, and neck.

Both groups were instructed to perform a series of motions
in a seated position using the robot. The patient group com-
pleted two basic types of motions defined as reach-forward-
back and reach-side-to-side. They were each performed
for five repetitions with the unaffected arm and the hemi-
paretic arm, at a comfortable pace and range of motion for
the participant. The details of the motions are shown
in Table I. The motions were intended to elicit three types
of common post-stroke compensatory synergies: shoulder
elevation, trunk rotation, and lean-forward. Participants were
allowed to take breaks between repetitions and motions.
Because the stroke survivors had varying physical impair-
ment, some of them did not complete all of the motions.
The healthy participants also performed the basic motions.
Additionally, they simulated the three types of compensations
during the basic motions with instructions and demonstration
from the research team.

An expert rater with a background in kinesiology visually
examined each frame in color streams, and labeled each frame
for the presence of compensation and type of compensation,
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if applicable. Because the healthy participants did not have
compensations during basic motions, all the frames in those
motions were labeled as no compensation (NC). For more
details on the motions, compensation types, annotation, and
participant demographics, please refer to [22].

C. DATA PREPROCESSING
To detect compensations, a supervised machine learning
model needed to be trained based on the Kinect skeletal
tracking information. Because four classes of labels were
involved, a multiclass classifier was required. The Kinect
tracking data included joint positions in 3D space (x-y-z)
coordinates and joint orientations expressed as quaternions.
Experimental results presented here incorporate only the joint
positions as features, because preliminary analysis based on
both joint positions and orientations did not significantly
improve results.

The skeletal joint positions contain noise due to occa-
sional unstable tracking. To reduce such effects, we used
a Savitzky–Golay filter with a window size of 31 frames
(1.03 s), and a polynomial order of 2. The resulting joint
positions and line segments connecting them were animated
and visually validated.

The tracked joint positions were expressed in the Kinect-
centric coordinate system. Therefore, it was necessary to
rotate and translate the coordinates to a participant-centric
coordinate system, invariant to sensor placement and orienta-
tion [26], [27]. To do so, from the beginning of each recorded
segment, a frame was manually selected at the neutral sitting
position as the baseline frame. In this frame, the line segment
connecting the neck to the head defined the up-and-down
direction (y-axis); a component of the line segment connect-
ing the left and right shoulders perpendicular to the y-axis
defined the x-axis; and the cross product of the x and y axes
defined the z-axis to form a right-handed coordinate frame.
The positive directions along the x, y, and z axes respectively
pointed toward the left, up, and from the person and toward
the camera. By applying a rotation, joint positions were
mapped to this coordinate system. Then, the joint coordinates
were translated so that the origin (0,0,0) of the new coordinate
system was located at the spine-shoulder joint.

The joint coordinates were then normalized to keep the
shoulder width at unit length, in order to account for varia-
tions in body size and height. Finally, during each task, only
one armwas used tomanipulate the end-effector and the other
one was kept at rest. Because the arm at rest did not contribute
to the motions, the x coordinates were inverted so that the
actuating arm was always on one side – in our case, the
right side.

D. MULTICLASS CLASSIFICATION
A multiclass linear Support Vector Machine (SVM) clas-
sifier and a Recurrent Neural Network (RNN) classifier
were trained to classify the posture of the participants.
The RNN classifier contains a hidden Long Short-Term
Memory (LSTM) layer, which captures dynamic temporal

behavior of the data. Leave-one-participant-out cross-
validation (LOPOCV) was used to assess classifier perfor-
mance. In each fold of cross-validation, an inner loop of
LOPOCV was used for hyperparameter tuning. We also
experimented with a multiclass Random Forest classifier and
a Softmax classifier, but only the result from the SVM and
the RNN was reported because the other classifiers did not
achieve superior results.

To replicate the previously reported results in [20] on
the simulated compensations, we first trained and tested the
classifiers on the posture of healthy participants. Afterwards,
we repeated the same method on the stroke survivors. The
Receiver Operating Characteristic (ROC) and F1-score for
each class were used as performance metrics. F1-score –
calculated as the harmonic mean of precision and recall – is
more useful than accuracy for unbalanced class distribution.

III. RESULTS
The rater visually examined 115 motions (49,910 frames) of
the healthy participants and 35motions (15,895 frames) of the
stroke patients, excluding 5 motions where skeletal tracking
failed.

The posture labels are extracted and their distributions
are shown in Fig. 2. Compensations are scarcer in patients
since the healthy participants were each asked to simulate
all compensation while the stroke survivors completed the
motions at their own comfort and ability level. Consequently,
the label distribution is more unbalanced in the patient group
than in the healthy group.

FIGURE 2. The scatterplot of the #Frames for each participant, sorted by
the posture types. NC: no compensation; SE: shoulder-elevation;
TR: trunk-rotation; LF: learn-forward.

The ROC curves of postures in healthy participants and
patients are presented in Fig. 3 using both classifiers. A sep-
arate ROC curve is plotted for detecting each type of posture
(LF, TR, SE, and NC). Micro-average and macro-average
ROC curves are also shown. The figures also report the area
under the ROC curve (AUC). Larger AUC values (closer
to 1) indicate better classification. Details of the classification
results are presented in Table II.
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FIGURE 3. The ROC curves for classification. LF: learn-forward; TR: trunk-rotation; SE: shoulder-elevation; NC: no compensation; SVM: support vector
machine; RNN: recurrent neural network. (a) Healthy Group - SVM. (b) Patient Group - SVM. (c) Healthy Group - RNN. (d) Patient Group - RNN.

IV. DISCUSSION AND LIMITATIONS
In this study, we aimed to detect compensations dur-
ing robotic stroke rehabilitation therapy. To our knowl-
edge, this is the first study to investigate the efficacy of
marker-free vision-based motion assessment in experiments
with stroke survivors. Results demonstrated that supervised
machine learning based on the Kinect tracked joint posi-
tions can discern certain compensations that occurred in
motions simulated by healthy participants. Using the SVM
classifier, LF compensations were detected with excellent
performance (AUC=0.98, F1=0.82), followed by TR com-
pensation (AUC=0.77, F1=0.57). SE compensations were
not well detected (AUC=0.66, F1=0.07). The performance
of the RNN was similar. Results from the motion captured
from stroke survivors could not be used to train an accurate
posture detection classifier. Despite moderate AUC values
with both SVM and RNN, F1-scores were low for all three
compensations (Table II). Because the dataset contains unbal-
anced class distribution, F1-scores are a better indicator of
classification performance.

There are multiple protocol-related issues that may explain
the undesirable performance of the classifier when trained
and tested on the patient group. First, the number of compen-
sations in the patient group was limited, which made training
a classifier to detect those compensations difficult. Thismight
be due to the fact that the stroke survivors only repeated each
motion five times. In contrast, real therapy sessions typically
last significantly longer and compensations become more
frequent with fatigue.Moreover, the robotic armwas powered
off to keep the resistive force consistent for all participants,
but this failed to deliver the intensity of real stroke exercises.
Additionally, stroke survivors with milder impairments may
have recovered enough to regain the motor functions neces-
sary for the completion of the motions in this study without
compensation. It is expected that inclusion of more complex
tasks involved in a real robotic therapy session will elicit
more compensations. Furthermore, there was a large variation
in the range of motions, i.e. the distance between the two
end-effector stop points during the reach-forward-back and
reach-side-to-side motions. As no instructions were given for
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TABLE 2. Classification result using SVM and RNN. LF: learn-forward; TR: trunk-rotation; SE: shoulder-elevation; NC: no compensation; SVM: support
vector machine; RNN: recurrent neural network.

stop points, participants whose range of motion was small
may have only moved within a comfortable range, thereby
not presenting any compensation. Compared to the healthy
participants, the stroke survivors generally had smaller range
of motion and fewer compensations. This is illustrated in
Fig. 4 that compares the postures of a stroke patient and
a healthy participant at the rightmost point of their reach-
side-to-side motion. It can be clearly seen that at the critical
points where TR is most likely to occur, the compensation
of the stroke survivor is much less conspicuous compared
to that of the healthy participant with an exaggerated simu-
lation of TR. Lastly, the Kinect sensor was pointing at the
participant in a slightly oblique direction. As a result, part of
the upper body was occluded. When the occluded limb was
moving the end-effector, inaccurate tracking occurred, which
impacted detection of TR and SE compensations. As such,
the aforementioned protocol-related issues may amount to
insufficiently amount of compensations in stroke survivors.

FIGURE 4. A comparison between the compensations of a patient (left)
and a healthy participant (right). Both were labeled as TR.

Raters can also be subject to visual bias [28] and visual
bias that lead to inconsistent labeling. When a rater watches
a motion in which compensations don’t occur frequently,
a slight deviation in the posture might appear to be more
pronounced than it is, and subsequently be labeled as com-
pensation. However, when the rater watches a motion fully
of serious compensations, a frame identical to the previous
one may be labeled as no compensation, because itis less
obvious compared to other compensations. Another issue was

associatedwith the structure of the robotic arm. Duringmove-
ments, the user rests their elbow on a support attached to the
robotic arm (See Fig. 1b). The end-effector of the robotic
arm was raised roughly 2 cm from the table, causing the
participant to raise the shoulder of the active arm during arm
retraction. From the annotator’s point of view, the shoulder
was clearly elevated, although the shoulder elevation might
not be due to the compensation, per se. The annotator, there-
fore, had to mentally account for this contributing factor and
assume compensations when they are most likely to occur.

V. CONCLUSIONS
Automated compensation detection using Kinect-tracked
joint positions of healthy participants during robotic-
assisted rehabilitation achieved excellent performance for LF,
followed by TR and SE. However, the same classifiers fared
poorly when trained on the data of stroke survivors. We pro-
vide potential explanations for low F1-scores. In future
research, we recommend the following improvements to
the experimental design that should improve compensation
detection. Stop points for motions should be pre-defined to
elicit compensation, the Kinect sensor should directly face
the participant, and the seat should be adjusted so that the
shoulder is not elevated at natural sitting position. Further,
the robotic arm should be programmed to provide a con-
stant baseline resistive force to match the intensity of real
stroke exercises. It will also be useful to record and analyze
compensations during a full therapy session when fatigue
gradually increases the rate of compensations. The results of
our study provide useful information towards development
of a posture monitoring system capable of prompting users to
correct erroneous postures in real-time.
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