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ABSTRACT

The gastrointestinal (GI) tract is considered the largest immunological organ in the body having a
central role in regulating immune homeostasis. Contrary to earlier belief, the intestinal epithelial
barrier is not a static physical barrier but rather strongly interacts with the gut microbiome and cells
of the immune system. This intense communication between epithelial cells, immune cells and
microbiome will shape specific immune responses to antigens, balancing tolerance and effector
immune functions. Recent studies indicate that composition of the gut microbiome affects immune
system development and modulates immune mediators, which in turn affect the intestinal barrier.
Moreover, dysbiosis may favor intestinal barrier disruption and could be related to increased
susceptibility to certain diseases. This review will be focused on the development of the intestinal
barrier and its function in host immune defense and how gut microbiome composition throughout
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life can affect this role.

The gastrointestinal tract and its role
in host defense

The gastrointestinal (GI) tract is the largest interface in
the body that is in contact with the external environment,
fulfilling the function of food processing and allowing the
survival of commensal symbiotic microbes while elimi-
nating pathogens. The GI tract is therefore, a major line
of defense in which epithelial cells provide a physical bar-
rier and work in concert with immune and stromal cells
to fight off pathogens and limit their direct contact with
the epithelium." The immune system of the GI tract is
constantly challenged with antigens from the lumen and
therefore must be able to distinguish which antigens
should be tolerated or not (self-antigens, food, symbiotic
microbes vs. pathogens, toxins). The epithelium is consti-
tuted of a single layer of different intestinal epithelial cells
(IECs) that strongly participates in innate immunity
(Fig. 1). Endocrine cells and stem cells at the base of the
intestinal crypts give rise to IECs with specialized func-
tion (enterocytes, goblet cells, Paneth cells and enteroen-
docrine cells). Enterocytes and Paneth cells (PC) produce
antimicrobial peptides, such as alpha-defensins, lysozyme
C, phospholipases, C-type lectin, and regenerating islet-

derived 3-gamma (Regllly),” that are important to keep
pathogens under control. Goblet cells secret mucins that
lubricate and protect the epithelial intestinal surface, as
well as, participate as antigen presenting cells (APCs)
delivering luminal antigens to CD103" dendritic cells
(DCs), which promote the development of regulatory T
cells (Tregs).” Furthermore, the continuous regulated
turnover of IECs serves as a defense mechanism by help-
ing to prevent pathogen attachment to the intestinal wall
and colonization of the gut.*> Another essential piece of
the intestinal barrier machinery are tight junction com-
plexes, consisting of claudins, occludins, zonula occlu-
dens and junction adhesion molecules, which create a
seal between neighboring IECs and impede entry of
pathogens while regulating permeability to water, ions
and nutrients.>® Under normal circumstances there is a
dynamic regulation of tight junction components, how-
ever sustained inflammation or infections can lead to
dysregulation in the expression of adhesion molecules,
leading to barrier breach and entry of microbes."

In general, it is estimated that the GI tract can har-
bour up to 70% of the bodys lymphocytes population,
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Figure 1. Schematic representation of mucosa, villi, crypts of Lieberkiihn and cells of the small intestine. The intestinal lining of the
lower intestine is highly folded to maximize absorption and contains finger-like mucosal projections that form structures called villi, in
between the villi downward invaginations, called crypts of Lieberkuhn, extend down to the muscularis mucosae. Underlying the epithe-
lium, the lamina propria, harbors dendritic cells, important antigen-presenting cells, which regulate humoral and cellular gut immunity.
The muscularis externa layer contains two layers of smooth muscle that enable continuous peristaltic activity of the small intestine. On
the left, the epithelium of a crypt and part of a villus are represented and different epithelial cells can be identified: enterocytes, tall
columnar absorptive cells with ‘brush-like border’ on the apical surface, called microvilli; goblet cells, which secrete mucin, for lubrica-
tion of the intestinal contents and protection of the epithelium; enteroendocrine cells that secrete various gut hormones; stem cells
that lie near the base of the crypt and give rise to the specialized epithelial cells; above the stem cells are transit amplifying cells; and
Paneth cells, which have a defensive function secreting antimicrobial molecules into the lumen.

making it the largest immunological organ in the
body” (Fig. 1). Under the epithelium, the lamina prop-
ria (LP) harbours dendritic cells (DCs), which are
important APCs,® and the gut-associated lymphoid
tissue (GALT), that includes Peyers patches (PP), LP-
lymphocytes and intraepithelial lymphocytes (IELs).
The PP, more frequent in the ileum where bacterial
load is greater, are important induction sites that con-
tain all the immune-competent cells necessary to
induce antigen-specific responses.” They also have a
specialized follicle epithelium of microfold (M) cells,
capable of sampling and transporting antigens from
lumen to the underlying immune machinery.'® M cells
can be considered double-edged swords because they
mediate the passage of the antigens to the mucosal
lymphoid tissue for initiation of immune responses
but can also serve as an entry point for microbes."
Finally, the adaptive immune system contributes to
intestinal barrier defense by secreting effector factors,
such as immunoglobulins (Ig), into the intestinal
lumen to combat pathogen attachment and invasion
of mucosal tissue."'

In recent years, microbiota has been linked to host
immunity. Studies have shown that not only gut
microbiota is important for the metabolism of essen-
tial nutrients for the organism but it also plays a

crucial role in gut development and is necessary for
the development of a fully functional immune sys-
tem.'>"? In the next sections, the influence of micro-
biota in the development of the intestinal barrier and
the immune system will be discussed.

Microbiota shapes the development of the
immune system and host immune responses

The skin and mucosa are covered by a wide range of
microorganisms, including fungi, virus, parasites and
bacteria, a large percentage colonizes the GI tract and
therefore are called gut microbiota.'>'*'> The human
GI tract contains approximately 100 trillion bacteria
and renders this location the primary site of interac-
tions between microbes and the host immune sys-
tem.'>'® Millions of years of co-evolution with our
microbiota have ensured a beneficial mutualistic rela-
tionship, in which the microbiota contributes to many
physiological functions of the host, while in return the
host offers nourishment and habitat. Beyond aiding in
the digestion and fermentation of food that is impor-
tant for production of certain vitamins, the microbiota
is also essential in the defense against pathogens once
they compete for nutrients and adhesion sites, some
even actively eliminating competition by secreting



antimicrobial peptides.'*'> A stable microbiota
together with mucus layers are essential to prevent
pathogenic bacteria from causing host infections.

Recently, experiments conducted in germ-free (GF)
animals demonstrated that microbiota colonization in
early life is necessary for optimal development of the
immune system. In the absence of microbiota, intesti-
nal mucosal immunity is underdeveloped and animals
present smaller mesenteric lymph nodes, PP and
reduced numbers of immune cells such as IgA-pro-
ducing plasma cells, CD4" LP T-cells and intraepithe-
lial B T-cell receptor CD8™" cells, resulting in a
weakened capacity to fight off pathogenic bacteria.'”
Earlier studies had already suggested that housing
conditions affecting microbiota colonization led to
immune alterations, for example, absence of micro-
biota generated GF mice with unstructured spleen and
lymph nodes with disorganized B- and T-zones and
reduced serum levels of IgG in comparison to mice
raised in conventional housing.'®'” Furthermore, lack
of intestinal bacteria in GF animals, decreased func-
tional CD4*CD25" Tregs.' Littman et al.** demon-
strated that the balance between pro-inflammatory
interleukin (IL)-17-producing effector T helper
(Th17) cells and Foxp3™ Tregs in the gut, required sig-
nals from intestinal bacteria and was dependent on the
composition of the gut microbiota.

One of the possibilities of host physiological regula-
tion by microbiota is their production of an extremely
diverse metabolite repertoire that results from anaero-
bic fermentation of leftover food in the digestive tract.
The major products that results from bacterial fer-
mentation of fibers in the colon are short-chain fatty
acids (SCFAs), including acetic acid, butyric acid and
propionic acid, which gain access through the intesti-
nal epithelia and are able to interact with host cells,
thus influencing immune responses and disease risk.*'
Not only are SCFAs important energy sources for the
gut microbiota itself but also for IECs and have diverse
regulatory functions in host physiology and immunity,
in general being regarded as beneficial metabolites
with anti-inflammatory properties.”> Microbial gut
composition and fiber availability in diet influence
SCFA concentration in the colon. A diet rich in fibers
can favor the presence of bacteria capable of cellulose
and xylan hydrolysis, including members of the genus
Prevotella, Xylanibacter and the butyrate-producing
Faecalibacterium prausnitzii (F. prausnitzii).*>*> It has
also been hypothesized that high abundance of F.
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prausnitzii along with other SCFA-producing bacteria
could protect the host from inflammation and nonin-
fectious colonic diseases. To that effect, reports have
correlated a low abundance of F. prausnitzii with
Crohns Disease (CD) and others inflammatory bowel
diseases (IBDs).>**> SCFAs are inhibitors of histone
deacetylases (HDAC:) that tend to promote a tolero-
genic, anti-inflammatory cell phenotype that is crucial
for maintaining immune homeostasis."> A strong
example of microbiota influence on the immune sys-
tem via epigenetic control is the regulation of Treg dif-
ferentiation by butyrate (a SCFA). Naive CD4" T cells
cultured in Treg differentiation conditions together
with butyrate, presented enhanced acetylation of his-
tone H3 in lysine 27 (H3K27) at the Foxp3 promoter
and CNSI1 and CNS3 enhancer, thus, leading to epige-
netic modifications that increased Foxp3 induction
and an enhanced regulatory capacity of Tregs.”® Fur-
thermore, SCFAs also enhance defense mechanisms
by fortifying IECs barrier function. In vivo, it was
shown that GF mice colonized with SCFA-producing
Bacteroides thetaiotaomicron or F. prausnitzii induced
goblet cell differentiation and mucus production.”” In
vitro, intestinal epithelial goblet cells increased their
transcription of mucin genes in response to
SCFAs.*** Similarly, different SCFAs facilitate tight
junction assembly in IECs and colonization with a
strain of Bifidobacterium longum that produces high
levels of acetate conferred protection against lethal
enteropathogenic Escherichia coli O157:H7 infection.
This suggests that SCFAs can enhance IEC integrity
and inhibit the translocation of lethal toxins from the
gut lumen into the systemic circulation.*>?

It is not clear exactly how microbial composition
regulates immune homeostasis but some studies
show that the presence of specific bacteria species
can shift immune responses by favoring the develop-
ment of certain subtypes of lymphocytes, for exam-
ple, segmented filamentous bacteria (SFB) induce
IL-17 and IL-22 production and favor the generation
of Th17 cells in mice,>® while microbiota reconstitu-
tion of GF mice with Clostridium spp, altered Schae-
dler flora and the bacteria Bacteroides fragilis
promote the accumulation of IL-10" Tregs in the
colon of this animals.**>® Furthermore, it appears
that recognition of microbial stimuli is important for
immune regulatory mechanisms, as it was shown
that deletion of Myeloid differentiation primary
response gene 88 (Myd88), a protein that acts as an
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adaptor of multiple innate immune receptors, in the
nonobese (NOD) diabetic mouse, a model of sponta-
neous type 1 diabetes, resulted in less severe diabetes
and an altered microbial composition, while deple-
tion of microbiota led to development of robust
diabetes.”

Currently, there are schools of thought support-
ing the idea that the microbiome and the intestinal
immune system are key in sustaining not only local
but systemic immune regulation and that dysbiosis
could favor effector immune responses that trigger
autoimmune disorders.’® Considering that a stable
microbiota is important to maintain a well-bal-
anced immune system, it is worrisome that antibi-
otics are one of the most commonly prescribed
drugs for children. Antibiotics disrupt the delicate
ecosystem in the gut of the young infant and could
possibly augment the risk of autoinflammatory dis-
eases later in life.>>*' The indiscriminate depletion
of commensal bacteria following antibiotic intake
results in vacating niches, which can increase host
vulnerability to excessive colonization by opportu-
nistic pathogens and create dysbiosis. Supporting
this hypothesis, studies determined that the use of
antibiotics in young mice resulted in altered micro-
biota, induced a shift towards pro-inflammatory
immune responses and increased risk of inflamma-
tory disease.*” In new-born mice, treatment with
antibiotics depleted bacteria of the Clostridia class,
diminished production of IL-22 by RORyt" innate
lymphoid cells (ILCs) and T-cells that reduced the
access of the antigen to the bloodstream and pre-
vented the allergens to cross the intestinal epithelial
layer, resulting in an enhanced sensitization to food
allergens.” Low-dose penicillin in early life caused
transient perturbations in the microbiota with per-
sistent sustained metabolic alterations.** In addi-
tion, the presence of SFB has been linked to some
autoinflammatory diseases, such as exacerbating
encephalitis
models.*>*® Some case reports provide evidence
that SFB could be detected at certain inflammatory
sites both in ulcerative colitis (UC) and Chrons dis-
ease (CD) patients, while depletion of SFB by peni-
cillin decreased Th17 and susceptibility to Dextran
Sodium Sulfate (DSS)-induced colitis in mice.*” On
the other hand, SFB colonization could be impor-

autoimmune and murine arthritis

tant for the defense against bacterial pathogens, for
instance, antibiotic use reduced SFB and Th17 cell

numbers, decreasing resistance against intestinal
pathogen Citrobacter rodentium (C. rodentium)
infection. In contrast, colonization of mice with
SEB conferred higher resistance to C. rodentium
and was correlated with increased expression of
genes associated with inflammation and antimicro-
bial defenses.”

Given the ever-growing data appointing our micro-
biome as a master regulator of various systems which
must collaborate to ensure human health, scientists
have joined forces and mounted consortiums such as
The Human Microbiome project launched in 2008
with the aim to characterize and identify the composi-
tion of human microbiota and its role in health and
disease.*® Despite these efforts, it has been very diffi-
cult to determine what defines a healthy microbiota.
This is in part because individual (epi)genetic variabil-
ity is very high, thus pinpointing how the loss or gain
of specific bacteria will affect individuals is very com-
plex. Also, the gut microbiome composition changes
throughout life and in order to design effective thera-
pies to prevent disease it is important to determine
specific time-frames to intervene in microbial gut
composition. Many studies showed that developmen-
tal abnormalities caused by absent microbiota can be
reversed by restoring intestinal microbial colonization
only at a very young age. For example, the microbiota
seems to have a role in maintaining the regulation of
the T-helper 2 (Th2) population which is important
for oral tolerance induction, reconstitution of GF mice
with Bifidobacterium infantis could re-establish Th2-
mediated responses and oral tolerance induction only
when performed in neonates and not in older ani-
mals.*® Thus, understanding how specific microbial
colonization regulates intestinal barrier immune
responses would possibly enable medical interventions
in microbiota to aid in the prevention or treatment of
certain illnesses.

Early-life microbiota affects immunity later in life

During infancy, the diversity and variation in gut micro-
biota is high and tends to become less diverse and stabi-
lize later in life> (Fig. 2). Several environmental factors
modulate the development of a childs microbiota, includ-
ing diet, use of antibiotics during perinatal period, mode
of delivery at birth, breast-feeding and infections™
(Fig. 2). Considering that microbiota influences the
development of the immune system, it is important to
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Figure 2. Changes in human microbiota throughout life. The uterus is not a sterile environment, studies have found bacteria in placen-
tae,”> fetal membranes,” umbilical cord blood®® and meconium.?®'® Colonization of the infant gut will depend on the mode of birth,
vaginally-delivered and Cesarean section (C-section) children acquire distinct bacterial communities.'®'% In young children, the com-
position of the gut microbiota often varies, is very diverse and less stable, with age gut microbiota becomes more stable. In old age, the
gut microbiota alters, it is less diverse compared to younger age and presents reduction in short chain fatty acid-producing bacteria

and increase in gram-negative LPS-secreting bacteria.’®'**

comprehend how early-life microbiota composition can
be a risk factor for numerous diseases, including allergy
and autoimmunity.”>>*

Pregnancy also affects the immunological system of
mothers and infants. Pregnant mothers develop a
Th2 immunological bias that is more intense at the
maternal-fetal interface and is controlled by the moth-
er’s hormones.”* Serum from pregnant women have
higher levels of IL-4 and IL-10 regulatory cytokines,
and reduced levels of pro-inflammatory interferon
(INF)-y and IL-2.”> Moreover, trophoblasts and endo-
metrial gland cells produce the chemokine C-C Motif
Chemokine Ligand (CCL)17 that promotes the infil-
tration of CCR4" Th2-type cells into the human
decidua during early pregnancy.”® Local production of
Th2 cytokines, such as IL-4, IL-10 and IL-13, inhibits
Thl cell development and Thl cytokine production
thereby protecting the fetus and preventing rejection
during early gestation.”” There is growing evidence
that the development of the fetal immune system is
actively and passively controlled by maternal immu-
nity, and that the consequences of this interaction
have a strong impact on immunity and immune disor-
ders later in life, such as development of allergies.5 8-60

In recent years, the idea of a sterile uterus has been
overturned by culture-based and independent studies
identifying the presence of bacteria in placentae,®"%?
fetal membranes,”> umbilical cord blood** and meco-
nium.®>*® DNA of Bifidobacterium and Lactobacillus

rhamnosus, two commensals found in the adult gut,

was found in placentae samples.®"®” It is proposed
that horizontal transfer of bacterial DNA from mother
to fetus occurs via the placentas bloodstream, as
Jiménez et al.®*®> showed by detecting Enterococcus
faecium in umbilical cord blood and the meconium in
mice previously orally inoculated with the bacteria.
Another study reported the presence of low quantities
of bacteria in human placenta by identifying a non-
pathogenic microbiota niche (Firmicutes, Tenericutes,
Proteobacteria, Bacteroides and Fusobacteria), which
is similar to microbiota present in the oral cavity.®"**
In addition, experimental murine models demon-
strated that maternal treatment with injected and/or
aerosolized lipopolysaccharides (LPS) or intranasal
bacteria (Acinetobacter Iwoffi) or given as probiotic
supplementation (L. rhamnosus) during gestation
attenuated allergic sensitization and airway inflamma-
tion in the offspring, induced mucosal tolerance and
suppressed the production of allergen-induced IgE,
eosinophilic airway inflammation and airway
reactivity.*®7°

In mammals, infants receive a different bacterial
inoculum depending on their mode of delivery which
determines differential infant gut microbial coloniza-
tion. Vaginally delivered children acquire bacterial
communities present in their own mother’s vaginal
microbiota (Lactobacillus, Prevotella, or Sneathia
spp.). In contrast, Cesarean section (C-section) infants
harbour bacterial communities like those found on
skin and surfaces

the mothers environmental



13732086 (&) T.TAKISHIETAL.

(Staphylococcus, Corynebacterium, and Propionibacte-
rium spp.).”"’? In an experimental setting, it was dem-
onstrated that the mode of delivery impacted
tolerance in the delivered pups. Epithelial tolerance
was only observed in vaginally-delivered and not C-
section pups. IECs from vaginally-delivered neonates
were resistant to LPS and presented spontaneous acti-
vation of nuclear factor (NF)-«B together with a
post-transcriptional down regulation of interleukin 1
receptor-associated kinase 1 (IRAK-1), essential for
epithelial Toll like receptor (TLR)4 signaling in vivo.”
Tolerance is critical for the development of a stable
homeostasis between host and microbiome. Thus, this
neonate colonization seems to regulate the immune
system early on.

While the infant is growing, diet has a great influ-
ence on the composition of the microbiota. Children
that receive formula or breast milk will receive distinct
nutrients, microbial and immune components. Breast
milk is important for the infants immune defenses as
it contains IgA, lactoferrin and defensins, protecting
against infections and contributing to the maturation
of the immune system in the first days of life.”*””
Researchers have also found that human breast milk
contains neurotrophic factors and cytokines that influ-
ence enteric neuron survival and neurite outgrowth.”
Importantly, contrary to common belief, human milk
is not sterile, containing commensal, mutualistic and/
or potentially probiotic bacteria to offspring. The
composition of bacteria found in breast milk can vary
with geography and maternal diet but several studies
have revealed predominant presence of Staphylococci,
Streptococci, Lactobacillus and Bifidobacterium.”” Data
collected so far suggest that lack of breast-feeding
could increase health risks in infants. For example,
premature infants that did not receive breast milk pre-
sented an increased risk of necrotizing enterocolitis
(NEC).”® Also, absence of breastfeeding in infants is
associated with an increased incidence of many dis-
eases such as infectious morbidity, gastroenteritis,
pneumonia, childhood obesity, type 1 and type 2 dia-
betes, leukemia, and sudden infant death syndrome
(SIDS).”

Microbiota and the intestinal barrier

Since birth, the microbiota begin the colonization of
the GI tract and participate in many host physiological
processes including intestinal barrier immunity.** In

mice, depletion of microbiota affected IECs, resulted
in altered patterns of microvilli formation and
decreased cell renewal.®' Also, the enteric nervous sys-
tem (ENS) development is greatly influenced by
microbiota. GF mice and antibiotic-treated animals
present a reduced number of enteric neurons, altera-
tions in neurotransmitter expression, delayed gastric
emptying and intestinal transit.*>® In addition, spe-
cific strains of bacteria were described to affect small
intestine myoelectrical activity and intestinal transit.**
The communication of the ENS and the microbiota is
not “one-way” because ENS inputs also influence
microbiota composition. Wiles and collaborators
showed that gut motility is important for the establish-
ment of bacterial communities during development.
Their study demonstrated that mutation of the ret
locus, which is associated with the intestinal motility
disorder Hirschsprug disease in humans, allowed co-
habitation of usually competitive bacterial species in
the gut, in contrast to wild types in which these com-
petitive species differed in abundance.® It seems that
this dynamic environment is a prerequisite for a bal-
anced microbial community and immune system.
This is supported by the observation that ENS zebra-
fish mutants develop microbiota-dependent inflam-
mation due to a surfeit of pro-inflammatory bacterial
strains in detriment of anti-inflammatory strains.
Transfer of microbiota from the ENS mutant trans-
mitted this inflammation to individuals with a nor-
mally functioning ENS and interestingly, transferring
an anti-inflammatory strain to mutants restored ENS
functionality and reduced the inflammation.*

Mucus production is also pivotal for the organisms
defense as it forms a physical barrier separating bacte-
ria from the host and avoids breach of the intestinal
barrier. Failure of this protective barrier to separate
bacteria from the epithelium can lead to disease and
can be observed in murine colitis models and human
IBDs.Y Compared to rodents, the human colon has
an even thicker inner mucus layer separating bacteria
from the tissue. In UC patients, this mucosal barrier is
compromised and the bacteria can be seen in direct
contact with the epithelium in patients with the active
disease.”” Until recently it was not known if micro-
biota had any direct role in host mucus production.
Now studies show that the presence of bacteria influ-
ences mucus quality. A Swedish study compared
mucus of GF-mice versus
(conv)-mice. Their study showed that although the

conventionally-raised



colon mucus organization of GF mice was similar to
conv mice, the GF inner mucus layer was more pene-
trable to bacteria-sized beads.*® Other researchers ana-
lyzed the colon mucus barrier in different wild-type
C57BL/6 mouse colonies housed and bred separately
in the same specific pathogen-free (SPF) mouse facil-
ity. They observed that genetically identical animals
housed in the same facility but kept in different rooms
can have rather distinct microbiotas and mucus bar-
rier structures. Also, they identified that mice with
more impenetrable mucus layer had increased
amounts of Erysipelotrichi, whereas mice with a pene-
trable mucus layer had higher concentrations of Pro-
teobacteria and candidate division TM?7 bacteria in the
distal colon mucus.®” It is still unclear how microbial
composition can regulate mucus properties but it is
possible that microbe stimulation of intestinal cells
can increase production of proteins involved in host
responses and of core mucus proteins.

In summary, early microbiota colonization is an
important event to establish the successful maturation
and homeostasis of the intestinal barrier immune
defense. Current data demonstrates a complex inter-
communication between microbiota, immunity and
the intestinal barrier, which must work together to
confer protection against pathogens while maintaining
tolerance and balance.

Ageing changes microbiota and intestinal
barrier immunity

Improvement in sanitary conditions and health care
have contributed to extend the life-expectancy and
increase the ageing population worldwide. It is there-
fore important to know how ageing affects intestinal
barrier immunity. In general, elderly individuals are
considered at more risk of acquiring infections and
other diseases, including many GI tract disorders.
Nevertheless, little is known on how ageing affects epi-
thelial cell immune function which is critical for host
defense.

Amongst the most common GI tract disorders that
afflict the ageing population is chronic constipation,
which affects more than 50% of elderly people in
home care so that up to 74% of this group has to use
laxatives daily.”” Evidence suggests that motility is
impaired in some GI tract regions during ageing but it
remains to be determined to which extent failing
smooth muscle cells or impaired ENS activity is to
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blame.”’ Older mice present higher smooth muscle
contractility when electrically stimulated but they also
present increased thickness of muscle layers, which
could impair bowel movement.”* Several different
studies indicate there are changes in cellular proteins
and mechanisms that regulate the contractile proper-
ties of the ageing intestinal smooth muscle such as,
dysregulation of calcium signaling, changes in the sig-
naling pathways that regulate the phosphorylation of
myosin light chain, mitochondrial structure abnor-
malities and apoptosis of smooth muscle cells.”"***
On the hand, enteric neural loss during ageing seems
to be variable and study results vary, some do not find
significant loss while others report up to 50% neural
loss.”"** Other evidence of age-related neurodegenera-
tion has also been described: swollen and dystrophic
nerves in the gut, degenerating nerve fibers in rat small
intestine and accumulation of lipofuscin in enteric
neurons.”®”® There is growing evidence which suggest
that despite the continuous self-renewal of intestinal
epithelium, there is an accumulation of age-related
molecular changes in long-lived stem/progenitor cells
which could contribute to GI tract malfunction.”
Moreover, ageing myenteric neurons also display a
senescence-associated phenotype.'”

Age-related changes in the immune system also
seem to affect cytokine production and ageing is
related to the excessive production of “geriatric” pro-
inflammatory cytokines, such as IL-6, tumor necrosis
factor (TNF)-a and IL-18."°" A possible reason for
this alteration could be that ageing affects IEC-func-
tion once IECs are an important source of cytokines
that regulate effector function of various cell types in
the intestinal mucosa such as DCs and Treg
cells.'”>'%  Furthermore, reactive oxygen species
(ROS) have been detected in the ageing ENS, for
example, higher production of ROS is found in myen-
teric neurons in the ileum of old rats compared to
young animals.'* These increased levels of inflamma-
tory mediators may have a direct impact on the aged
gut, such as cytokine-induced dysregulation of tight
junction barrier resulting in increased gut permeabil-
ity (“leaky gut”).

Recently, it was demonstrated that changes in the
microbiota occur during ageing and they correlate
with health status and diet”" (Fig. 2). One of these age-
related changes in composition of gut microbiota is an
increase in the abundance of LPS-secreting Gram-neg-
ative bacteria, like Bacteroides, Proteobacteria and
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other pathogens.””'> The rise in bacteria secreting
LPS, which may act as endotoxin, could cause inflam-
mation in gut. In addition, another factor that could
contribute to increased gut-related diseases in the
elderly is a decrease in intestinal SCFA concentrations,
especially acetate, butyrate, and propionate and a
reduction in Firmicutes phylum, whose primary meta-
bolic end product is butyrate, compared to young
subjects.”>'%

Better understanding on how specific populations
of bacteria regulate cytokine production is necessary
to design future therapies in the elderly. In order for
ageing population to maintain a healthy microbiome
composition, it could be interesting to administer ben-
eficial bacteria and target harmful bacteria.

Conclusion: Microbial diversity and implications
for health

The gut and its epithelial barrier have become hot
topics in the scientific community. Findings in the
recent years, have demonstrated that the IECs are not
merely static barriers that separate the external envi-
ronment from our organisms. On the contrary, IECs
engage in a complex-dynamic crosstalk with the intes-
tinal immune system and microbiota. Moreover, early
colonization of gut by microbes affects the develop-
ment of the immune system and the microbial diver-
sity throughout life varies and seems to affect
susceptibility to some diseases. The dynamic interface
of microbiota and the hosts environment, age, diet
and health status complicate the identification of the
role of specific bacteria in immune regulation. How-
ever, integrating all these observations is necessary to
develop precise diagnostics and may indicate the
necessity of more individualized designed therapies
that are based on age and the microbiome.
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