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ABSTRACT
Maintenance of stem cell plasticity is determined by the ability to balance opposing forces that control
gene expression. Regulation of transcriptional networks, signaling cues and chromatin-modifying
mechanisms constitute crucial determinants of tissue equilibrium. Histone modifications can affect
chromatin compaction, therefore co-transcriptional events that influence their deposition determine the
propensities toward quiescence, self-renewal, or cell specification. The Paf1 complex (Paf1C) is a critical
regulator of RNA PolII elongation that controls gene expression and deposition of histone modifications,
however few studies have focused on its role affecting stem cell fate decisions. Here we delineate the
functions of Paf1C in pluripotency and characterize its impact in deposition of H2B ubiquitylation
(H2BK120-ub) and H3K79 methylation (H3K79me), 2 fundamental histone marks that shape transcriptional
regulation. We identify that H2BK120-ub is increased in the absence of Paf1C on its embryonic stem cell
targets, in sharp contrast to H3K79me, suggesting opposite functions in the maintenance of self-renewal.
Furthermore, we found that core pluripotency genes are characterized by a dual gain of H2BK120-ub and
loss of H3K79me on their gene bodies. Our findings elucidate molecular mechanisms of cellular
adaptation and reveal novel functions of Paf1C in the regulation of the self-renewal network.
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Introduction

Cellular identity is characterized by distinct gene expression
patterns and the mechanisms that regulate transcriptional
activity are crucial to an organism’s development.1 Alterations
in cellular homeostasis often lead to disease due to aberrant
regulation of chromatin.2 Therefore, elucidating the functions
of cellular adaptation is paramount to address a range of issues
including the role of transcription in normal development and
its deregulation in disease.

The state of chromatin, which is defined as the wrapping
of DNA with histones together with non-histone proteins,
exerts pivotal effects on the establishment and maintenance
of gene expression.3 Post-translational modifications of his-
tones can directly affect chromatin assembly or compaction.4

Furthermore, they function as binding sites for effector pro-
teins5,6 including additional chromatin-remodeling com-
plexes,7 ultimately affecting transcriptional initiation and/or
elongation.8,9 Several histone modifications may also act col-
laboratively in developmental transitions denoting their
importance in chromatin regulation. Consistent with their
fundamental role in cellular differentiation, many chromatin
remodelers have been also implicated in human disease
including cancer.10,11

Embryonic stem cells (ESCs) are derived from the inner cell
mass of the pre-implantation blastocyst and are pluripotent
defined by their ability to contribute to all tissues of the adult
organism.12,13 ESCs can self-renew in vitro and are character-
ized by an open chromatin configuration.14,15 However, in dif-
ferentiation conditions they commence cell specification
programs and differentiated cells are marked by dynamic
changes in chromatin state and global remodeling.16 These
events ultimately result in a progressive transition to a more
compact and repressive chromatin state. Pluripotent and differ-
entiated cells are therefore an excellent tool to study cell plastic-
ity changes and over the past years extensive work has resulted
in comprehensive epigenome maps. However, a global under-
standing of the alterations in the state of chromatin and how
these result in gene expression changes are far from complete.

The Paf1 transcriptional complex (Paf1C) is known to exert
context-specific roles in modulation of gene expression.17,18

Paf1C is important for cell differentiation as it regulates RNA
Polymerase II (RNA PolII) function and is therefore necessary
in development.19–21 We have recently studied its roles in self-
renewal, cellular reprogramming and differentiation and identi-
fied the PHD-finger protein 5a (Phf5a) as a potent modulator
of Paf1C in pluripotency.22 Phf5a is highly expressed in
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pluripotent cells (ESCs and iPSCs), however, its expression lev-
els are downregulated in differentiation. We demonstrated that
Phf5a binds to the Paf1 complex (Paf1C) controlling its integ-
rity and facilitates expression of pluripotency genes through
Paf1C binding at their loci. The Paf1C therefore functions as a
positive regulator of transcription in ESCs dictating RNA PolII
elongation rates. Phf5a-depleted ESCs exhibit aberrant pro-
moter-proximal pausing of self-renewal genes and decreased
Ser2-RNA PolII phosphorylation, a hallmark of effective
elongation.

Furthermore, Paf1C regulates deposition of histone modifi-
cations associated with transcription, as Ser2-phosphorylation
and subunit integrity can influence their levels.17,18 At least 4
histone post-translational modifications are associated with
Paf1C functions manifesting its importance for histone cross-
talk. These include histone 3 lysine 4 methylation (H3K4me),
histone 3 lysine 79 methylation (H3K79me), histone 3 lysine 36
methylation (H3K36me) and histone 2B lysine 120 ubiquityla-
tion (H2BK120-ub). All of those modifications are primarily
associated with coding regions of transcribed genes, underlying
their involvement in RNA PolII elongation.23 Histone modifi-
cations are mainly considered a consequence of transcriptional
activity, rather than a cause, suggesting a complex relationship
with RNA PolII.24 In particular, the Paf1C-related histone
modifications have been assigned co-transcriptional roles, regu-
lating nucleosome dynamics during RNA PolII transcription
and recruiting additional regulators of elongation and RNA
processing.25–28 Paf1C has been recently implicated to function
both as an activator22,29 and as a repressor30 of transcriptional
activity, suggesting that its behavior may be altered by addi-
tional factors depending on the cellular context. However, how
deposition of histone modifications occurs during elongation
and how Paf1C regulates activation or repression of gene
expression is a topic of intense investigation.

There are several differences regarding the role of Paf1C in
these processes between lower and higher eukaryotes that can
shed light on its diverse functions. In yeast, several Paf1C subu-
nits are important for modification of histones and H2BK120
monoubiquitylation is important for histone crosstalk. Paf1C
recruits the E2 ubiquitin-conjugating enzyme Rad6 and the E3
ligase Bre1 that monoubiquitylate H2B at lysine 123 (lysine 120
in mammals)31–33 and the Rtf1 subunit is required for
H2BK120-ub.34 In addition, Paf1- and Rtf1-null yeast cells
have lower levels of H3K4me3 and Set1 histone methyltransfer-
ase is absent from gene promoters.35,36 Furthermore, Ctr9, Paf1
and Cdc73 subunits are required for full levels of H3K36me3
by Set2 methyltransferase.37 Therefore in yeast, histone H2B
monoubiquitination is considered a co-transcriptional event
regulating H3K4 and H3K79 methylation by Set1 and Dot1
methyltransferases, respectively manifesting the importance of
Paf1C in histone crosstalk.38–41

In mammals, however, the role of Paf1C in histone modifi-
cation crosstalk is unclear, and although Paf1C positively
affects deposition of elongation marks H3K36me and
H3K79me in actively expressed genes, its function regarding
H2BK120-ub might be different. Mammalian H2BK120-ub is
deposited by RNF20 and RNF40, which are both homologs of
yeast E3 ligase Bre1 and is preferentially enriched in the coding
regions of genes.42–44 It marks active genes and was shown to

play important roles in Hox gene activation.42 In stem cells,
H2BK120-ub associates with highly transcribed genes, and its
levels significantly increase upon differentiation.45,46 Inhibition
of H2BK120-ub by RNF20/40 depletion or by mutation of
lysine 120, impairs differentiation and inhibits lineage-specific
gene upregulation.45 Strikingly, however, Paf1C is downregu-
lated in ESC differentiation,22 whereas H2BK120-ub is
increased, suggesting a possible negative regulation of this
mark by Paf1C in pluripotency.

We have previously shown that loss of Phf5a can recapitulate
Paf1C depletion resulting in the inability of Paf1C to bind its target
genes.22 Phf5a depletion negatively affects elongation of pluripo-
tency genes and results in efficient loss of Paf1C-associated H3K79
and H3K36 methylation on gene bodies of Paf1C targets. In con-
trast, the promoter-associated mark H3K4me3 was not affected
upon Phf5a depletion, suggesting elongation-specific functions for
Phf5a resulting in promoter-proximal RNA PolII pausing.47–49

Here we study the roles of Phf5a and Paf1C in H2BK120-ub and
compare its deposition with other Paf1C-dependent histone modi-
fications. We found that H2BK120 is increased in gene bodies of
pluripotency-associated loci following shPhf5a depletion and
Paf1C loss. Furthermore, direct comparison with H3K79 methyla-
tion reveals that Paf1C targets are characterized by a dual gain of
H2BK120-ub and loss of H3K79me marks. Our results suggest an
inhibitory role for Paf1C on H2BK120-ub deposition in pluripo-
tency genes.

Results

To investigate the role of H2BK120 ubiquitylation in pluripo-
tent cells and its association with Paf1C function we directly
interrogated its occupancy using ChIP-sequencing in the pres-
ence or absence of Phf5a. We observed a global alteration in
H2BK120-ub densities upon Phf5a silencing, supporting a criti-
cal role of Paf1C function for this histone mark (Fig. 1a). We
identified approximately 4580 transcripts that gained
H2BK120-ub and another 1350 that lost density of this mark
after Phf5a depletion, consistent with its overall accumulation
in stem cell differentiation.45,46 We next dissected peak localiza-
tion and determined occupancy among transcription start sites
(TSSs), coding regions (gene bodies), as well as upstream regu-
latory or intergenic regions. Consistent with regulation of active
gene expression, we found that H2BK120-ub peaks fall almost
exclusively (90%) within gene bodies (Fig. 1b).

To assign functional characteristics on differentially
H2BK120-ub bound transcripts, we performed gene ontology
enrichment analysis and identified all statistically significant
terms using Metascape (http://metascape.org).50 Interestingly,
gene ontology (GO) analysis revealed signatures associated
with stem cell identity and includes categories of genes that reg-
ulate stem cell maintenance, cell fate commitment, and embryo
development, suggesting that H2BK120-ub plays pivotal roles
in these processes (Fig. 1c). We further organized genes that
gained and lost H2BK120-ub into interaction networks51

(Fig. 1d and e). Surprisingly, we observed that H2BK120-ub
densities in the network of genes that regulate maintenance of
self-renewal and embryonic morphogenesis increase after
shPhf5a depletion. These include several core pluripotency
genes such as Nanog, Pou5f1, Sox2, Esrrb, Sall4 and other
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Figure 1. (a) Scatterplot of differentially regulated H2BK120-ub peaks in mouse ESCs following shControl or shPhf5a knockdown, respectively. Red: Transcripts
that significantly gain H2BK120-ub densities. Green: Transcripts that significantly lose H2BK120-ub densities. (b) Binding profiles for genomic distribution of
H2BK120-ub peaks (Transcription start site (TSS), Gene body, Upstream (up to 100kb) and intergenic) in ESCs, showing preferential (90%) binding within gene
bodies. (c) Statistically enriched gene ontology terms and canonical pathways using Metascape (http://metascape.org) for all significantly altered H2BK120-ub
transcripts after shPhf5a depletion. (d) Protein-protein interaction network of representative terms after hierarchical clustering analysis using MCODE.51 Each MCODE net-
work node is assigned a unique color. Gene ontology enrichment analysis was applied to each MCODE network nodes to assign “meanings” to the network component.
(e) Protein-protein interaction network of MCODE node components. Representative proteins include several core pluripotency factors that consist previously identified
Paf1C targets.22
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previously identified Paf1C targets.22 This suggests that
H2BK120-ub is paradoxically increased in the absence of
Paf1C, in contrast to other histone modifications dependent on
Paf1C function.

These results prompted us to further interrogate H2BK120-
ub occupancy following shPhf5a depletion. Loss of Phf5a can
recapitulate Paf1C depletion since it results in the inability of
Paf1C to bind its target genes in chromatin (Fig. 2a). We
directly compared deposition of H2BK120-ub among 3 gene
categories that include actively expressed transcripts, house-
keeping genes and Paf1C targets, respectively. We found that
destabilization of Paf1C after loss of Phf5a results in a pro-
nounced gain of H2BK120-ub on Paf1C targets compared with
housekeeping or all other expressed genes (Fig. 2b). This sug-
gests opposing functions of Paf1C in the deposition of
H2BK120-ub compared with H3K79me or H3K36me, which
also depend on Paf1C function in ESCs.22 For this reason, we
reanalyzed profiles of additional histone marks associated with
Paf1C function in the presence or absence of Phf5a. We per-
formed the same analysis for H3K79 methylation and we found
that Phf5a depletion results in a pronounced loss of H3K79me
on Paf1 targets compared with housekeeping genes or all
expressed transcripts (Fig. 2b). We further analyzed the occu-
pancy profiles for these 2 histone marks on gene bodies, since

both of those are associated with active elongation. We found
that Phf5a depletion results in the differential regulation of
H2BK120-ub and H3K79me on gene bodies of Paf1C targets
and self-renewal genes (Fig. 2c). Since our findings directly
implicate Paf1C to affect both H2BK120-ub gain and
H3K79me loss on gene bodies, we directly investigated the
overlap between the 2 histone marks. We found that most of
Paf1C targets are characterized by the opposing regulation of
these 2 histone marks (Fig. 2d).

Last, we directly interrogated histone mark occupancy on
several representative Paf1C targets and pluripotency genes
before and after Phf5a loss. We found that many of those genes,
including the ones directly associated with ESC self-renewal or
with other gene ontology terms we found affected, exhibit both
increased levels of H2BK120-ub and diminished levels of
H3K79me in their gene bodies. Representative genes include
key regulators of the self-renewal network, such as Nanog,
Pou5f1, Sox2, Sall4, Myc, Esrrb, and others (Fig. 3). In contrast,
we found that housekeeping genes, such as Cul1, Psmb2 and
others, were not significantly affected (Fig. 3). These data are in
agreement with our previous observations on elongation and
strengthen our findings that Phf5a affects Paf1C functions.22

These include regulation of RNA PolII elongation and deposi-
tion of histone modifications on gene bodies. We conclude that

Figure 2. (a) Normalized read density profiles following Paf1 ChIP-sequencing centered on reference regions in the presence (blue) or absence (red) of Phf5a. (b) Box
plots representing log2 fold change of normalized read density for H2BK120-ub, and H3K79me2 ChIP-sequencing in ESCs following shControl or shPhf5a silencing. Plots
represent comparisons of all expressed transcripts in ESCs with housekeeping genes and also direct Paf1 targets around their gene bodies. ��p<0.0001, non-parametric
Wilcoxon signed rank test. (c) Normalized read density profiles around gene bodies, following ChIP-sequencing of H2BK120-ub and H3K79me2, on Paf1C targets and plu-
ripotency genes in ESCs in the presence (blue) or absence (red) of Phf5a. (d) Venn diagram representing the numbers of genes in which H2BK120-ub densities are gained
and H3K79me2 densities are lost, respectively, following shPhf5a depletion.
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Phf5a stabilizes Paf1C on its target genes in ESCs and that
Paf1C directly represses H2BK120-ub deposition on Paf1C tar-
gets, in contrast to H3K79 methylation. Upon shPhf5a knock-
down, deposition of H2BK120-ub is de-repressed and key
genes that regulate self-renewal accumulate this mark.

Our findings support a new model of regulation of pluripo-
tency-associated genes by Paf1C. Collectively our findings sup-
port that Paf1C targets are characterized by the following
constellation of histone marks after shPhf5a loss: Gain of
H2BK120-ub on gene bodies, coupled with loss of H3K79me
and H3K36me, whereas the promoter-associated mark
H3K4me remains stable.22 We conclude that the majority of
Paf1C targets, which lose H3K79me, are also accompanied by a
significant gain of H2BK120-ub.

Discussion

Transcription factor networks and chromatin conformation
determine cell fate decisions in stem cells.52,53 Heritable pat-
terns in development are set by different degrees of chromatin
compaction ultimately establishing patterns of specialized gene
expression. Post-translational modifications of histones impact
gene expression by influencing chromatin structure, compac-
tion and recruitment of additional modifiers or remodelers.54

In embryonic stem cells mechanisms that tip the balance
between self-renewal and differentiation determine the degree
of cell specification.55,56

In this study we demonstrate the association between H2B
ubiquitylation and Paf1C in pluripotency and we contrast its
functions with other histone modifications linked to transcrip-
tional elongation. Although H2BK120-ub is a mark associated
with actively expressing genes, we present evidence suggesting
that the self-renewal network of embryonic stem cells is para-
doxically characterized by absence of this mark. In contrast,
aberrant loss of Paf1C from pluripotency genes, after perturb-
ing Phf5a, leads to increased deposition of H2BK120-ub. We
further find that additional Paf1C-associated histone marks,
such as H3K79me, are decreased. Collectively we find that

Paf1C targets are surprisingly characterized by a dual gain of
H2BK120-ub and loss of H3K79me after Phf5a depletion.

Although H2B ubiquitylation has been shown to differen-
tially regulate transcription of different sets of genes, our
knowledge of their functions in pluripotent stem cells is limited.
In contrast to lower eukaryotes, such as in yeast, where deposi-
tion of H2B ubiquitylation has been shown to directly require
Paf1C,31,33,34 its regulation in mouse and human embryonic
stem cells appears to be different. Several studies so far have
provided evidence in support of a repressive role of Paf1C on
H2BK120-ub in pluripotency: First, H2BK120Ub levels are low
in self-renewal but they increase during initiation of differentia-
tion.45,46 Second, Paf1C follows the opposite expression pattern,
its levels are high in self-renewal but rapidly downregulated as
cells differentiate.22 This suggests that Paf1C may hinder depo-
sition of H2BK120Ub in self-renewal, however its functions
might be de-repressed in differentiation in the absence of
Paf1C. Functional variation between yeast and mammalian
Paf1C might also be due to differences in subunit composition,
since the subunit Wdr61 – a protein binding to Phf5a directly22

– is present in mammals but absent in yeast.42

Recent studies in human cells revealed how mammalian
H2B ubiquitin ligases are involved in both transcriptional stim-
ulation and repression of 2 distinct sets of genes.44,57 However,
it remains obscure how they promote transcription in a set of
genes, but not others. The enzymatic activity of RNF20/RNF40
has been suggested to limit the binding of Paf1C with
TFIIS,44,57 shedding light into the underlying mechanisms,
however the exact transcriptional stimulatory or repressive
functions of H2BK120-ub and Paf1C remain to be investigated
in additional cell types. Furthermore, opposing functions of
RNF20 and USP44 in embryonic stem cells is suggested to fine-
tune addition or removal of this mark.46

Our studies offer a direct overview of the control of core plu-
ripotency factor circuitry by Paf1C and H2B-ub. We report
genome-wide analysis for H2BK120-ub using ChIP-sequencing
in pluripotent cells and we contrast its profiles after perturbing
Paf1C binding on chromatin using Phf5a depletion. Besides

Figure 3. Genome browser snapshots of representative H2BK120-ub and H3K79me2 density ChIP-sequencing tracks on pluripotency genes or control loci. Dark blue:
H2BK120-ub under conditions of shControl silencing. Dark red: H2BK120-ub under conditions of shPhf5a silencing. Light blue: H3K79me2 under conditions of shControl
silencing. Light red: H3K79me2 under conditions of shPhf5a silencing.
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providing further support that Phf5a knockdown can function
as a surrogate for Paf1C depletion, we also show the feasibility
of using pluripotent cells as a model system for studying Paf1C
functions in chromatin modulation. Our results suggest that
loss of Paf1C from its target genes triggers aberrant accumula-
tion of H2BK120-ub, in contrast to H3K79me. In agreement
with these findings core pluripotency genes are characterized
by elevated RNA PolII pausing following shPhf5a knockdown,
which leads to differentiation.22

Pluripotent stem cells are influenced by changes in gene
expression, rendering them as an invaluable system to study
transcriptional alterations during differentiation. The Paf1C
acts as a positive modulator in transcriptional elongation and
Phf5a can balance its functions in pluripotent cells. Distortion
of the transcriptional equilibrium through shPhf5a knockdown
triggers aberrant elongation stalling on Paf1C targets and
changes in histone modifications. Our results provide further
insight and suggest a repressive role for Paf1C on H2BK120-ub
deposition in pluripotency genes. The importance for proper
cell specification becomes apparent after perturbing gene
expression circuitries that result in changes on chromatin, often
leading to disease. The elucidation of mechanisms that offer
novel insights into the origins of human development and dis-
ease can potentially lead to new therapeutic interventions.

Methods

Mouse ESC culture and inducible shRNA knockdown

Mouse ESCs were cultured under standard conditions as
described previously.22,58 on gelatin-coated plates using recom-
binant LIF. For inducible knockdown, miR-30 hairpins against
Control or Phf5a were cloned into a modified pColTGM vec-
tor59 containing a TRE-regulated RFP-miR-30, targeting the
Col1a1 locus. Co-electroporation of modified pColTGM and
pCAGS-FlpE recombinase in KH2 ESCs promotes integration
and confers hygromycin resistance. ESCs were selected with
hygromycin (140mg/mL daily for 10 days) and individual colo-
nies were tested for efficient knockdown upon the addition of
2mg/mL doxycycline.

ChIP-sequencing library preparation

ChIP experiments were performed as described previously60,61

For H2BK120-ub, ESC nuclei were processed using micrococ-
cal nuclease digestion and ChIP was performed with the anti-
UbiquityL-Histone H2B Antibody, clone 56 (Millipore, 05–
1312). Libraries were prepared using Illumina standard proto-
cols, including end repair, A-tailing, adaptor ligation (Illumina
TruSeq system) and PCR amplification. AMPure XP beads
(Beckman Coulter, A63880) were used for DNA cleaning in
each step of the process.

Data sources and computational pipelines

Samples were run using Illumina HiSeq2000. Raw images were
processed by CASAVA to remove the first and last bases and
then they were used to generate sequence reads in fastq format.
Raw reads were aligned against the mouse genome assembly

mm10/GRCm38. Alignments were performed using Bowtie
v.1.0.054 using the parameter –m 1 to report only unique align-
ments. MACS 2.0 was used for peak calling with the following
parameter values: (a) –nomodel, (b) –broad, (c) –shiftsize D
200, (d) –q 0.05. The suite GenomicTools62 version 2.8.152 was
used for genome binning, genomic annotations and the con-
struction of occupancy profiles. For plotting, R version 3.2.0
was used (R Core Team (2016). R: A language and environment
for statistical computing. R Foundation for Statistical Comput-
ing, Vienna, Austria. URL: https://www.R-project.org), along
with the VennDiagram package63 for the generation of Venn
diagrams and ggplot264 for the generation of boxplots.

All ChIP-sequencing experiments were performed in triplicates
and only the peaks present at least in 2 out of the 3 replicates were
used for downstream analysis. The files with the aligned reads were
converted towig format usingGenomic Tools 62 and then to bigwig
format using the corresponding UCSC tool. The data are available
on Gene Expression Omnibus (GEO): GSE92727 for H2BK120-ub
ChIP-sequencing and GSE63974 for all other histone modification
ChIP-sequencing experiments.

Peak characterization

Peaks were assigned to the following categories based on their
genome-wide distribution: (a) Transcription start site (TSS): all
peaks that fall within 1kb from TSS, (b) Gene body: it includes all
peaks that fall within the 5’ UTR, the coding region of genes and
the 3’UTR, Upstream: all the peaks that fall up to 100kb from TSS,
(d) All the peaks that fall within the remaining genomic loci. The
peak characterization was performed using in-house scripts.

Gene ontology

Gene ontology, pathway and network analysis was performed
based on ChIP-sequencing data by using the online tool Meta-
scape (http://metascape.org).
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