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ABSTRACT
Obesity is associated with increased risk of several diseases and has become epidemic. Obesity is highly
heritable but the genetic variants identified by genome-wide association studies explain only limited variability.
Epigenetics could contribute to explain the missing variability. The study aim was to discover differential
methylation patterns related to obesity. We designed an epigenome-wide association study with a discovery
phase in a subsample of 641 REGICOR study participants, validated by analysis of 2,515 participants in the
Framingham Offspring Study. Blood DNA methylation was assessed using Illumina HumanMethylation450
BeadChip. Next, we meta-analyzed the data using the fixed effects method and performed a functional and
pathway analysis using the Ingenuity Pathway Analysis software. We were able to validate 94 CpGs associated
with body mass index (BMI) and 49 CpGs associated with waist circumference, located in 95 loci. In addition, we
newly discovered 70 CpGs associated with BMI and 33 CpGs related to waist circumference. These CpGs
explained 25.94% and 29.22% of the variability of BMI and waist circumference, respectively, in the REGICOR
sample. We also evaluated 65 of the 95 validated loci in the GIANT genome-wide association data; 10 of them
had Tag SNPs associated with BMI. The top-ranked diseases and functions identified in the functional and
pathway analysis were neurologic, psychological, endocrine, and metabolic.
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Introduction

Obesity is associated with increased risk of several diseases,
including diabetes, cardiovascular disease, stroke, and cancer.1

With estimates that 58% of the world’s adult population will be
overweight or obese in 2030,2 obesity has become epidemic and
is the fourth leading risk factor attributable to disability-
adjusted life years.3

Obesity is highly heritable4 and genome-wide association
studies have identified several genetic variants linked with obe-
sity-related traits, but these variants explain only limited vari-
ability.5 Epigenetics could contribute to explanation of this
missing heritability and provide some insights into the mecha-
nisms related to obesity. DNA methylation is the most-studied
epigenetic marker that regulates gene expression without alter-
ing the primary DNA sequence. It is heritable, but it is also
modified by lifestyle and environmental factors. Thus, DNA
methylation could encompass the interaction between genetics
and environment. Numerous studies have associated DNA
methylation patterns with obesity, based on body mass index
(BMI) or waist circumference (WC).6-16 A recent meta-analy-
sis identified 187 methylation markers associated with BMI.17

Our aim in this project was to identify genetic loci showing
differential methylation in relation to BMI and WC. We used
an epigenome-wide association approach with a discovery and
a validation sample.

Results

Discovery phase

After excluding participants with BMI �18.5 (4 individuals)
and applying Illumina HumanMethylation450 BeadChip
(450K) array quality controls (after which 3 additional partici-
pants were excluded), 641 individuals and 427,948 probes
(88.7% of the total probes) were included in the analysis. Socio-
demographic, clinical, and anthropometric characteristics of
participants are shown in Table 1. Participant characteristics
across BMI groups are shown in Supplementary Table 1 and 2.

In the discovery phase, 40 CpGs showed differential methyla-
tion associated with BMI and 7 with WC using model 1. Using
model 2, we identified differential methylation in 214 CpGs asso-
ciated with BMI and 36 with WC. In total, 237 CpGs related to
BMI or WC were identified, located in 182 genes or coding
regions (13 of them in non-protein coding regions: 7 CpGs in
long noncoding RNA, 4 in microRNA, and 2 in small nucleolar
RNA genes) and in 58 intergenic regions. All the Manhattan
and q-q plots are available in Supplementary Figure 1. The
lambda values of the q-q plots ranged between 1.075 and 1.474.

Validation phase

We included 2,515 individuals (53 individuals were excluded: 2
with a BMI �18.5 and 51 after applying the 450K array quality
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control) and all the CpGs selected in the discovery phase, after
applying again the quality controls used in the discovery phase.
The main characteristics of this population are shown in
Table 1.

Meta-analysis

After meta-analysis of the results observed in the Framingham
Offspring and REGICOR studies, we validated 51 CpGs with
differential methylation associated with BMI in model 1; 26 of
them were also associated with WC (Supplementary Table 3
and 4). In model 2, 94 CpGs located in 95 loci were significantly
associated with BMI; 49 of them were also associated with WC
(Supplementary Tables 3 and 4). These CpGs were located in
72 genes or known coding regions (2 non-coding RNA) and 23
intergenic regions. Among these CpGs, 70 related to BMI and
33 related to waist were new discoveries (Table 2 and 3).

The validated CpGs explained 25.94% and 29.23% of the
variability of BMI and WC, respectively, in the REGICOR
Study. The same set of CpGs explained 14.18% and 16.73% of
the total variability of BMI and WC, respectively, in the
Framingham Offspring Study (Supplementary Table 5).

Association between genetic variants in the validated loci
and obesity traits

We were able to evaluate 65 of the 95 validated loci in the
GIANT genome-wide association data. Ten out of 65 loci pre-
sented SNPs associated with BMI, with a P value <7.7 £ 10¡4

(0.05/65) (Table 4, Supplementary Table 6 and Supplementary
Figure 2).

Functional and enriched pathway analysis

We used the IPA software to further explore our findings and
describe the relationship between the genes associated with
BMI or WC. The top 10 canonical pathways selected according
to Fisher exact test are shown in Supplementary Table 7. The
most remarkable pathways in the top 10 ranking for BMI were
“LXR/RXR Activation” (rank 3), “Gustation Pathway” (rank 4),
and “PPARa/RXRa Activation” (rank 6). The top 10 ranking
for WC included “LXR/RXR activation” (rank 1), “Nitric Oxide
Signaling” (rank 4), “Gustation Pathway” (rank 6), and
“Cardiac b-adrenergic Signaling” (rank 8). However, none of
them were significant after Benjamini-Hochberg correction.

We found 72 and 63 diseases and functions enriched for
BMI and WC genetic loci, respectively, when we applied the
Fisher exact test; after adjusting for Benjamini-Hochberg, 55
and 42, respectively, remained statistically significant. The 10
top-ranked diseases and functions according to Benjamini-
Hochberg test are shown in Supplementary Table 8. The top 4
diseases and functions (neurologic, psychological, endocrine,
and metabolic) were consistent for both traits; the gene overlap
is shown in Supplementary Figure 3. Six genes were found in
all the pathways enriched for BMI: ITGB5, SREBF1, SLC7A11,
GRIK1, CACNA1C, and NOTCH4. The results were the same
for WC, with the exception of NOTCH4.

We drew the top 4 networks (neurologic, psychological,
endocrine, and metabolic) for BMI and for WC using the IPA
information (Supplementary Figure 4). These networks showed
that the genes we identified are involved in diabetes mellitus,
metabolic syndrome, hypercholesterolemia, nonalcoholic liver
disease, polycystic ovary syndrome, depression, dementia,

Table 1. Characteristics of the participants in the discovery (REGICOR study) and replication (Framingham Offspring Study) cohorts.

REGICOR FOS
n D 641 n D 2515 P value

Age 63.2 (11.7) 66.2 (8.91) <0.001
Sex, female, n (%) 325.0 (50.7) 1354.0 (53.8) 0.169
BMI, Kg/m2*z 27.0 (4.0) 28.4 (5.3) <0.001
Waist, cm* 94.3 (11.4) 102.0 (14.3) <0.001
BMI categories, n (%)z <0.001
Normal (BMI: � 18.50 and <25) 210.0 (32.9) 686.0 (27.4)
Overweight (BMI: � 25 and<30) 301.0 (47.1) 1029.0 (41.0)
Obese (BMI: � 30) 128.0 (20.0) 792.0 (31.6)

Total cholesterol, mg/dL* 208.0 (36.5) 186.0 (37.3) <0.001
LDL cholesterol, mg/dL*z 135.0 (32.3) 105.0 (31.4) <0.001
HDL cholesterol, mg/dL*z 52.9 (12.3) 57.1 (18.0) <0.001
Triglycerides, mg/dLy 89.0 [67.0;121.0] 102.0 [74.0;142.0] <0.001
SBP, mmHg*z 131.0 (18.5) 126.0 (17.1) <0.001
DBP, mmHg*z 76.1 (9.91) 71.6 (10.1) <0.001
Hypertension, n (%)z 301.0 (47.1) 1432.0 (57.2) <0.001
Diabetes, n (%)z 63.0 (9.9) — —
Glucose, mg/dL* 97.8 (20.4) 107.0 (23.8) <0.001
Smoking status, n (%): <0.001
Current smokers 106.0 (16.5) 247.0 (9.9)
Former 1 to 5 years 31.0 (4.8) 55.0 (2.2)
Former>5 years 165.0 (25.7) 10.0 (0.4)
Never smokers 339.0 (52.9) 2191.0 (87.5)

Cholesterol treatment, n (%) 153.0 (23.9) 1090.0 (43.4) <0.001
Diabetes treatment, n (%) 44.0 (6.9) — —
Blood pressure treatment, n (%) 199.0 (31.2) 1228.0 (49.0) <0.001

�Mean (Standard deviation)
yMedian [Interquartile range]
zBMI, Body mass index; LDL, Low density lipoprotein; HDL, High density lipoprotein; SBP, Systolic blood pressure; DBP, Diastolic blood pressure; Hypertension, defined as
previous treatment or SBP � 140 mmHg or DBP � 90 mmHg; Diabetes, defined as previous treatment or glycemia � 126 mg/dL.
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Alzheimer, and schizophrenia. Moreover, in the psychological
network for WC, GRIK1 was related to compulsive gambling
and bulimia nervosa.

Discussion

In the present study, we investigated the association between
DNA methylation and obesity traits (BMI and WC) using an
epigenome-wide approach. We replicated 24 CpGs associated
with BMI and 16 with WC, previously reported by others,6-16

and newly identified and validated 70 CpGs associated with
BMI and 33 with WC. Collectively, these CpGs explained
around 26% and 29% of the variability of the analyzed obesity

Table 2. Novel CpG sites with differential methylation significantly associated with
BMI in the meta-analysis phase.

Features Meta-analysis

CpG CHR* Gene Coef.* SE* P value

cg15459104 15 MAP1A 1.18 0.16 3.50E-13
cg00134210 10 FAM107B ¡0.81 0.11 8.60E-13
cg25404397 10 C10orf26 1.21 0.17 1.60E-12
cg02008402 11 FLJ32810 ¡0.89 0.13 4.80E-12
cg03717755 6 MYLIP 0.9 0.13 6.40E-12
cg07217499 12 CACNA1C ¡0.78 0.11 7.10E-12
cg06734985 11 NA ¡0.75 0.11 8.60E-12
cg09572125 6 SYNGAP1 1.11 0.16 9.70E-12
cg00171092 3 ITGB5 ¡0.94 0.14 2.60E-11
cg13840239 9 NA ¡0.85 0.13 6.00E-11
cg15857470 7 SRPK2 ¡0.92 0.14 7.00E-11
cg01172150 16 NA 0.98 0.15 7.80E-11
cg01581222 19 C19orf38 1.07 0.17 1.80E-10
cg00585790 2 LIMS1 1.01 0.16 2.60E-10
cg05628049 3 NA 1.01 0.16 3.20E-10
cg08215255 5 NA ¡0.82 0.13 3.60E-10
cg15674825 5 MYOZ3 1.04 0.17 3.70E-10
cg09047573 5 NME5 0.95 0.15 3.80E-10
cg03310939 7 CUX1 0.94 0.15 4.00E-10
cg12153755 5 ARAP3 0.85 0.14 4.80E-10
cg17526229 11 NA 0.83 0.13 4.90E-10
cg15835542 6 NA 0.89 0.15 8.10E-10
cg10094443 4 UGDH 0.94 0.15 1.00E-09
cg26766064 17 MIR657;AATK;MIR338 ¡0.99 0.16 1.00E-09
cg20118717 6 SYNGAP1 1.17 0.19 1.20E-09
cg16599983 6 NOTCH4 ¡0.9 0.15 1.40E-09
cg18500988 4 NA 0.9 0.15 1.50E-09
cg08877257 16 MAZ ¡0.89 0.15 1.60E-09
cg09956615 7 TTYH3 0.85 0.14 2.60E-09
cg24340572 15 NA 0.97 0.16 2.90E-09
cg15997548 1 NA ¡0.7 0.12 3.00E-09
cg01300684 4 SCOC ¡0.93 0.16 3.30E-09
cg05918312 2 PDE1A ¡0.8 0.13 3.60E-09
cg03508235 14 JUB ¡0.7 0.12 3.70E-09
cg04264638 4 CLOCK 1.05 0.18 4.20E-09
cg11986385 11 NAV2 ¡0.82 0.14 4.40E-09
cg07950000 21 GRIK1 0.84 0.14 5.70E-09
cg11714752 2 TMEM127 0.97 0.17 6.10E-09
cg02426464 17 SLC43A2 ¡0.82 0.14 6.30E-09
cg00234616 2 TLX2 0.79 0.14 7.00E-09
cg04797846 6 BTNL2 ¡0.76 0.13 7.50E-09
cg16003913 16 MPG 1.11 0.19 7.60E-09
cg21390682 13 MCF2L ¡0.66 0.11 8.10E-09
cg27577928 4 NA 0.79 0.14 8.20E-09
cg17822325 1 SERINC2 0.53 0.09 8.50E-09
cg13597054 6 DDAH2 1 0.17 8.80E-09
cg12976145 7 CTTNBP2 ¡0.76 0.13 1.20E-08
cg09689944 12 SUOX 0.8 0.14 1.20E-08
cg18862566 6 RUNX2 0.77 0.13 1.30E-08
cg20981127 19 NR2F6 0.82 0.14 1.30E-08
cg15442888 4 NA ¡0.66 0.12 1.40E-08
cg14286682 9 TPD52L3 ¡0.8 0.14 1.40E-08
cg23893346 6 NOTCH4 ¡0.81 0.14 1.70E-08
cg03370106 3 VGLL4 0.81 0.14 1.80E-08
cg17478979 6 ZC3H12D 0.82 0.15 1.80E-08
cg15548101 3 DGKG 0.65 0.12 2.10E-08
cg19936757 11 NA ¡0.8 0.14 2.30E-08
cg04726013 10 LHPP 0.79 0.14 2.50E-08
cg16611352 17 P2RX1 0.82 0.15 2.50E-08
cg13084458 4 INTU 0.79 0.14 3.30E-08
cg07800670 6 DST ¡0.86 0.16 3.50E-08
cg08540100 1 NA 0.74 0.13 3.90E-08
cg08120831 12 LRRC43 1 0.18 4.10E-08
cg23417875 2 MAP4K4 0.83 0.15 4.50E-08
cg19574327 11 NA ¡0.75 0.14 4.60E-08
cg23884217 4 APBB2 ¡0.85 0.16 5.70E-08
cg12917475 14 BCL2L2 0.81 0.15 6.50E-08
cg16721489 2 NA ¡0.63 0.12 6.70E-08
cg12978214 11 NCAM1 ¡0.67 0.12 6.80E-08
cg24824917 19 NA 0.67 0.12 9.00E-08

�CHR D Chromosome; Coef. D Linear regression coefficient; SE D Standard Error

Table 3. Novel CpG sites with differential methylation significantly associated with
waist circumference in the meta-analysis phase.

Features Meta-analysis

CpG CHR* Gene Coef.* SE* P valuey

cg03717755 6 MYLIP 2.55 0.36 2.93E-12
cg06734985 11 NA ¡1.97 0.3 2.80E-11
cg07217499 12 CACNA1C ¡2.12 0.33 8.16E-11
cg15459104 15 MAP1A 3.05 0.47 8.76E-11
cg25404397 10 C10orf26 3.09 0.49 2.22E-10
cg00134210 10 FAM107B ¡2.06 0.33 2.81E-10
cg00171092 3 ITGB5 ¡2.44 0.39 5.01E-10
cg13840239 9 NA ¡2.27 0.37 1.04E-09
cg09572125 6 SYNGAP1 2.74 0.46 2.28E-09
cg02008402 11 FLJ32810 ¡2.12 0.36 3.39E-09
cg17526229 11 NA 2.26 0.38 3.40E-09
cg01300684 4 SCOC ¡2.62 0.45 5.70E-09
cg00585790 2 LIMS1 2.64 0.45 6.14E-09
cg20118717 6 SYNGAP1 3.07 0.53 9.59E-09
cg19936757 11 NA ¡2.3 0.4 1.12E-08
cg16003913 16 MPG 2.94 0.52 1.29E-08
cg01581222 19 C19orf38 2.62 0.46 1.43E-08
cg05918312 2 PDE1A ¡2.11 0.38 2.32E-08
cg26766064 17 MIR657;AATK;MIR338 ¡2.44 0.44 2.42E-08
cg15857470 7 SRPK2 ¡2.27 0.41 2.57E-08
cg15674825 5 MYOZ3 2.62 0.47 3.12E-08
cg04797846 6 BTNL2 ¡2.02 0.37 3.30E-08
cg03508235 14 JUB ¡1.84 0.34 4.87E-08
cg15997548 1 NA ¡1.73 0.32 6.50E-08
cg07950000 21 GRIK1 2.22 0.41 7.64E-08
cg08215255 5 NA ¡1.98 0.37 8.08E-08
cg01172150 16 NA 2.3 0.43 1.04E-07
cg10094443 4 UGDH 2.33 0.44 1.05E-07
cg20981127 19 NR2F6 2.13 0.4 1.10E-07
cg24340572 15 NA 2.41 0.45 1.16E-07
cg09956615 7 TTYH3 2.14 0.41 1.32E-07
cg17822325 1 SERINC2 1.39 0.26 1.34E-07
cg15835542 6 NA 2.1 0.41 3.48E-07

�CHRD Chromosome; Coef. D Linear regression coefficient; SE D Standard Error

Table 4. Significant association between the top leading SNPs in those genes
validated in the meta-analysis and BMI in the GIANT study.

CHR Gene rsID P value

17 KRT16 rs11079001 0.000044
12 CACNA1C rs215992 0.00011
4 SFRP2 rs10007443 0.00018
16 MPG rs6600233 0.00036
6 RUNX2 rs16873740 0.0005
4 INTU rs1033175 0.00063
7 CTTNBP2 rs11975899 0.00063
14 BCL2L2 rs7157207 0.00067
13 MCF2L rs4907596 0.00068
11 CPT1A rs4930248 0.00075
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traits (BMI and WC) in the discovery cohort and 14% and 17%
in the validation cohorts, respectively. Ten of the 93 identified
loci (INTU, SFRP2, RUNX2, CTTNBP2, CPT1A, CACNA1C,
MCF2L, BCL2L2, MPG, and KRT16) have tag SNPs associated
with obesity, strengthening the association between those genes
and obesity. The top 4 networks suggest a common link
between obesity and both endocrine and metabolic diseases
(diabetes mellitus, metabolic syndrome, hypercholesterolemia,
non-alcoholic liver disease) and psychological and neurologic
processes (depression, dementia, Alzheimer, schizophrenia,
compulsive gambling, bulimia nervosa).

Recently, the CHARGE consortium published the first meta-
analysis assessing the relation between DNA methylation and
BMI, validating 187 methylation markers.17 We replicated
6 CpGs described in this meta-analysis (cg12593793,
cg06690548, cg00574958, cg11024682, cg24679890, cg06500161)
and 7 loci (SLC7A11, CUX1, CPT1A, SREBF1, MYO9B, SLC1AS,
ABCG1). Several reasons could explain the limited overlap
between our results and those recently presented by the
CHARGE Consortium. First, the statistical power of our study is
lower than that of the CHARGE Consortium; therefore, we can-
not expect to replicate all the loci reported by this larger study.
Second, we replicated 20 CpGs previously reported in other stud-
ies. The proportion of replicated CpGs from other studies vs.
CHARGE is 2.3 times higher (14 vs. 6 CpGs). This could be
related to the heterogeneity introduced in this type of meta-anal-
ysis when the included studies used different methods to mea-
sure body mass index or waist circumference. This is a well-
known limitation of the GWAS meta-analysis that could also
affect the EWAS meta-analysis.18 Finally, our results show a high
inflation rate, with a lambda value higher than 1.2 in most of
the discovery analyses. This suggests a higher proportion of false
positive results than would be expected by chance. However, the
results were replicated in an independent cohort and some of
the known and newly identified loci point to pathways with a
potentially relevant pathological role in obesity.

The first locus reported to have differential methylation
associated with BMI was HIF3A.8 This locus has been repli-
cated in a cohort of women19 but not in other studies9,14 or the
recent meta-analysis.17 We also did not replicate this result in
our study. In addition, the association between methylation lev-
els in HIF3A and BMI has been questioned and a transgenera-
tional effect of maternal BMI affecting the association between
HIF3A methylation and the descendent BMI has been
proposed.19

In total, we found 55 CpGs associated with BMI and 30 with
WC that have been previously associated with age in individu-
als at high risk for metabolic syndrome.20 It is known that age
affects DNA methylation, as well as WC. Therefore, obesity
traits could act as confounders of the association between age
and DNA methylation. In our work, we included age as a
covariate in the multivariate models to remove its potential
confounding effect on the association between DNA methyla-
tion and obesity traits.

Regarding our novel results, 19 (27%) of the 70 CpGs were
located in intergenic regions. In the same way, methylation
changes in adipocyte differentiation mostly occur in intergenic
regions, suggesting that those regions could have an important
function in obesity.21

Among the new CpGs associated with BMI or WC and
located in gene regions, we will focus our discussion on those
with greater potential for clinical or functional impact. We
report that CUX1 methylation is associated with obesity-related
traits. This gene was proposed as a regulator of FTO and
RPGRIP1L expression,22 and experimental studies downregu-
lating CUX1 expression also reduced FTO/RPGRIP1L expres-
sion.23 Both FTO and RPGRIP1L are located in one of the most
important loci related to obesity.5 Although FTO and
RPGRIP1L functions in specific tissues are controversial,24

some studies suggest that the expression of these genes regu-
lates appetite by modulating leptin sensitivity at the hypothala-
mus: a decrease in their expression reduces the sensitivity to
leptin, increasing appetite and food intake and contributing to
an increase in body weight.25 Our study found that hyperme-
thylation in a CpG on CUX1 is associated with higher BMI,
while the recent meta-analysis reported another CpG on CUX1
with an inverse effect on BMI.17 Both CpGs are located in the
gene body of CUX1. Although we do not have a clear explana-
tion for these contradictory results, it could be related to differ-
ential transcripts or isoforms. Two isoforms of CUX1 (P110
and P200) with opposite effects have been described: P110 acti-
vates and P200 represses FTO/RPGRIP1L expression.26 In sum-
mary, all these data suggest that CUX1 hypermethylation
reduces CUX1 expression, which in turn decreases FTO and
RGRIP1L expression, reducing satiation in response to leptin
and causing an increase in food consumption that leads to
obesity. Therefore, methylation in CUX1 could be a key
element to understand the relationship between FTO and
RGRIP1L and obesity.

DDAH2 encodes an enzyme that regulates concentrations of
methyl arginine, which in turn inhibits nitric oxide synthase,
altering processes such as vasodilation, respiration, cell migra-
tion, immune response and apoptosis.27,28 High expression of
DDAH2 has been associated with reduced WC and higher val-
ues of HDL-cholesterol.29 Our study found a direct association
between DDAH2 methylation and obesity traits. All these
results suggest that low levels of DNA methylation could be
associated with higher gene expression, and as a result lower
BMI and higher values of HDL-cholesterol. In the REGICOR
data, this CpG site was associated in the opposite direction
with HDL-cholesterol levels (coefficient D ¡1.970; P value D
0.007). In addition, some DDAH2 genetic variants have been
associated with a lower risk of obesity and myocardial infarc-
tion, suggesting a possible causal effect between DDAH2 and
obesity—and highlighting this gene as a possible target against
obesity and cardiovascular risk.30

Obesity is a risk factor for cardiovascular diseases, an associ-
ation that could be mediated by several mechanisms, including
lipid metabolism and regulation of ionic balance, among others.
Our study identified some genes showing differential methyla-
tion associated with BMI and WC that also have been associ-
ated with lipid traits31-34: ABCG1, SREBF1 and SYNGAP1
methylation have been associated with HDL cholesterol, and
methylation in ABCG1, SREBF1, SLC7A11, MYLIP, and
CPT1A with triglycerides.31-34 In addition, CPT1A methylation
has been associated with BMI and WC in previous studies.7,9,15

We identified 2 genes (CACNA1C and PDE1A) related to
intracellular calcium balance that are associated with obesity.
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CACNA1C encodes an a subunit of a voltage-dependent cal-
cium channel. In animal models, obese and diabetic rats show
an increase in expression of CACNA1C in myocardial
tissue.35-38 PDE1A is a Ca(2C)/calmodulin-dependent phos-
phodiesterase that is activated by calmodulin in the presence
of Ca(2C),39 and its regulation has an important role in neo-
intima formation in atherosclerosis and restenosis.40 More-
over, lifestyles have an impact on the circadian rhythm which
could in turn modify behavior, metabolism, and weight con-
trol.41 In our analyses, we identified a direct association
between obesity and differential methylation in the gene
CLOCK that regulates circadian rhythms. This result is consis-
tent with a candidate gene study showing lower methylation
levels in lean individuals compared with obese individuals.42,43

Finally, in the IPA network analyses we identified GRIK1 as
one of the genes having a role in the top 4 networks. GRIK1 has
been associated with compulsive gambling, bulimia nervosa
and hyperactive-impulsive symptoms.44 This result highlights
the relevance of impulse control as a mechanism related to
obesity.

The major strengths of the study were the use of standard-
ized methodology implemented to remove the non-biologic
source of variation and the use of a large external population,
which allowed us to replicate and meta-analyze the data,
thereby strengthening the evidence of our study. In addition,
we used robust multivariate regression to reduce outlier effects
and adjusted for residual confounding factors to improve accu-
racy. However, some limitations must be considered. We used
REGICOR and Framingham Offspring data to perform the dis-
covery, the replication, and the meta-analysis; the results of
these studies present some heterogeneity. We controlled this
limitation using meta-analyses with random effects in CpGs
with coefficients that were statistically different between stud-
ies, and the results did not change. Another limitation is inher-
ent to the cross-sectional design of the study, which hampers
our capacity to infer causality of the reported associations.

In summary, the present study identified 95 CpGs associated
with obesity traits, of which 70 are new. This study contributes
to increased knowledge about the epigenetic basis of obesity
and identified several genes and pathways related to obesity
and its associated traits. The new findings should be replicated
in independent studies, and further studies to assess the
direction of the association (causal, reversal, or both) and the
functional mechanisms are warranted.

Methods

Study design and participants

A cross-sectional epigenome-wide association study was
designed. We randomly selected 648 individuals from the
REgistre GIroni del COR (REGICOR) population-based cohort
study for the discovery stage and 2,568 participants from the
Framingham Offspring Study’s population-based cohort for
the validation stage.

The REGICOR participants were selected from those indi-
viduals enrolled in an initial survey performed during 2003–
2005 (n D 6,352; response rate >70%) who attended a second
visit in 2008–2013 (n D 4,980; response rate >75%). The first

REGICOR survey included participants aged 35–79 years, not
institutionalized, and residing in Girona Province in Catalonia
(Spain). Participants with a BMI <18.5 kg/m2 were excluded.

The Framingham Offspring Study sample was obtained
through the Database of Genotypes and Phenotypes (dbGAP,
available at http://dbgap.ncbi.nlm.nih.gov; project number
#9,047). The sample included offspring of the original Framing-
ham Heart Study who attended examination 8 and had avail-
able DNA methylation data (n D 2,568). Participants with a
BMI <18.5 kg/m2 were excluded.

The study was developed according to the Declaration of
Helsinki and was approved by the local ethics committee. All
the participants gave written informed consent before their
inclusion.

Obesity-related traits

The methods have been described previously in detail.45 In
summary, the REGICOR-trained team of nurses collected clini-
cal and sociodemographic information following standardized
protocols and questionnaires. Weight and height were mea-
sured using a precision scale of easy calibration, with partici-
pants in underwear and barefoot, and WC at umbilicus with a
standard measuring tape.

In the Framingham Offspring Study, the relevant informa-
tion from examination 8 was obtained through dbGAP. Weight
and height were measured barefoot and rounded to the nearest
pound and the next lower 1=4 inch, respectively; WC at umbili-
cus was also recorded to the next lower 1=4 inch. All measure-
ments were converted to international system units (Kg and
cm) for analysis.

In both studies, BMI was estimated as weight divided
by squared height (Kg/m2). Underweight participants (BMI
<18.50 Kg/m2) were removed for this analysis.

DNA methylation array

Both the REGICOR Study and Framingham Offspring Study
extracted DNA from whole peripheral blood and buffy coat,
respectively, using standardized methods (Puregen TM; Gentra
Systems). DNA methylation was assessed using the Infinium
HumanMethylation450 BeadChip Kit (Illumina) according to
Illumina Infinium HD Methylation protocol in both studies.
This array allowed assessment of DNA methylation in
485,577 CpGs.46,47

REGICOR samples were processed in 2 different laboratories
of the Spanish National Genotyping Center, 188 in the Center
for Genomic Regulation in Barcelona and 460 in the Centro
Nacional de Investigaciones Oncol�ogicas in Madrid. As an inter-
nal quality control, each batch contained 2 duplicate samples.
The Framingham Offspring Study analyzed 2,568 samples,
also in 2 different laboratories (nD 509 and nD 2,059) and also
including duplicated samples in each batch.48

We used the M-value as an estimation of DNA methylation
(Equation 1). An M-value close to 0 means that the CpG is
half-methylated. A positive M-value means that the CpG has
more methylated than unmethylated cytosines and a negative
M-value indicates the opposite ratio.49,50 To avoid batch effect
and other potential technical sources of variation, and as the
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participants were randomly assigned to batches, we standard-
ized M-values for batches (Equation 2).

Equation 1 :

Mvalue D log2
Mi Ca

Ui Ca

� �MiD intensity of methylated probes:

UiD intensity of unmethylated probes:

aD 1:

Equation 2 :

ZD .X¡X/ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
.X¡X/2
.n¡ 1/

r
XD M¡ value for a specific individual:

XDmean of M¡ value for a specific batch:

nD sample size:

Finally, we assessed the quality control of the methylation
data using a well-defined pipeline (see Supplementary material).

Other covariates

Relevant sociodemographic, lifestyle, and cardiovascular risk
factor data were collected using standardized and validated
questionnaires. Smoking exposure was categorized into 4
groups: current smokers (smoked �1 cigarette/day at the time
of the visit, on average, or gave up smoking within the year of
the visit); former smokers, between 1 and 5 years (gave up
smoking up to 5 years before the visit); former smokers, more
than 5 years; and never smokers.

Statistical analysis

To assess the association of methylation with BMI and WC, we
used robust linear regression. To identify and remove potential
sources of variation (technical and biologic confounders), we
estimated surrogate variables using the R::sva package.51-53 The
surrogate variable analysis (SVA) method estimates variables,
directly constructed from high-throughput data, which provide
information related to potential unmeasured confounder varia-
bles. These surrogate variables can be included in multivariate
models as covariates to control for unmeasured confounding.

We considered methylation as an independent variable and
BMI or WC as a dependent variable, according to each analysis.
We created 2 models for BMI and 4 models for WC. Model 1
was adjusted for sex, age, smoking exposure, and estimated cell
count and model 2 was further adjusted for surrogate variables.
These models were fitted for BMI and for WC. Two additional
models were defined for WC: model 3 was adjusted as in model
1 (sex, age, smoking exposure, estimated cell count) with the
addition of BMI, and model 4 was further adjusted for surro-
gate variables. We estimated cell count proportion using R::
minfi package.

From the discovery phase in the REGICOR study, we
selected those CpG sites associated with BMI or WC exceeding
a P value threshold of 1 £ 10¡05. We established an arbitrary
threshold on the discovery to be less restrictive in this phase.
The association between this group of CpG sites and BMI /
WC was also assessed in the Framingham Offspring Study.

Finally, we performed fixed-effects meta-analyses using
data from the REGICOR and Framingham Offspring studies.
In the meta-analyses, we were very strict about declaring statis-
tical significance and only those CpG sites that fulfilled the
Bonferroni criteria applied for all the CpG sites assessed in the
discovery phase (0.05/427,948; P value <1.17 £ 10¡07) were
considered significant. In addition, we estimated the variability
of the obesity-related traits explained by each validated CpG,
and the variability of BMI and WC explained jointly by the
validated CpGs. The regression coefficient value (effect size)
that could be detected as statistically significant in the meta-
analyses accepting an a risk of 1.17 £ 10¡07, in a 2-sided test
and with an 80% power, for each of the CpGs selected in the
discovery phase is shown in Supplementary Table 10.

Association between genetic variants and obesity traits

We accessed the GIANT public database to identify single
nucleotide polymorphisms (SNPs) in the validated loci associ-
ated with BMI, using the LocusZoom tool available in http://
locuszoom.sph.umich.edu/locuszoom/. We considered as sta-
tistically significant those SNPs associated with BMI with a
P value inferior to the threshold defined by the Bonferroni
criteria (P value <0.05/number of validated loci).

Functional and pathway analysis

We performed a functional analysis of the genes showing
differential methylation related to obesity traits. We
uploaded the gene symbol identifiers of the validated genes
to the Ingenuity Pathway Analysis (IPA) software (http://
www.ingenuity.com/; QIAGEN, Redwood City, CA, USA).
The aim was to identify the canonical pathways, and diseases
and functions terms showing overrepresentation of the genes
of interest.

In the “Canonical pathway” analysis, we selected all metabolic
and those signaling pathways related to cellular growth, prolifera-
tion and development; cellular immune response; cellular stress
and injury; cell cycle regulation; atherosclerosis, cardiovascular,
cardiac hypertrophy, nuclear receptor, intracellular and second
messenger signaling; and transcription regulation. In the “Dis-
eases and functions” analysis, we selected CHD- and atheroscle-
rosis-relevant terms to create functional networks linking the
input genes to functions or diseases. We also created networks
for the top 4 enriched “diseases and functions” terms for both
traits. All terms with a P value <0.05 in the Fisher exact test or
after Benjamini-Hochberg multiple testing correction were
considered as a significant overrepresentation of input genes in a
given process.
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