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Abstract

Mediation analysis has mostly been conducted with mean regression models. With this approach 

modeling means, formulae for direct and indirect effects are based on changes in means, which 

may not capture effects that occur in units at the tails of mediator and outcome distributions. 

Individuals with extreme values of medical endpoints are often more susceptible to disease and 

can be missed if one investigates mean changes only. We derive the controlled direct and indirect 

effects of an exposure along percentiles of the mediator and outcome using quantile regression 

models and a causal framework. The quantile regression models can accommodate an exposure-

mediator interaction and random intercepts to allow for longitudinal mediator and outcome. 

Because DNA methylation acts as a complex “switch” to control gene expression and fibrinogen is 

a cardiovascular factor, individuals with extreme levels of these markers may be more susceptible 

to air pollution. We therefore apply this methodology to environmental data to estimate the effect 

of air pollution, as measured by particle number, on fibrinogen levels through a change in 

interferon-gamma (IFN-γ) methylation. We estimate the controlled direct effect of air pollution on 

the qth percentile of fibrinogen and its indirect effect through a change in the pth percentile of IFN-
γ methylation. We found evidence of a direct effect of particle number on the upper tail of the 

fibrinogen distribution. We observed a suggestive indirect effect of particle number on the upper 

tail of the fibrinogen distribution through a change in the lower percentiles of the IFN-γ 
methylation distribution.
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1. Introduction

Mediation analysis aims to identify a direct effect of an exposure on an outcome and an 

indirect effect between the same exposure and outcome via a change in a mediator [1]. 

Scientists have recently developed and used mediation analysis tools in many disciplines, 

such as causal inference [2–6], social sciences [7,8], and epidemiological research [9–12]. 

The total effect decomposition (i.e., into a indirect effect via a mediator and a direct effect 

not through this mediator) allows one to investigate biological pathways and thus, disease 

mechanisms [13–15].

Mediation analysis has largely focused on mean regression models to define controlled 

direct, natural direct, and natural indirect effects. These estimands may not reflect effects 

that occur primarily in the tails of the distributions of the mediator and the outcome. We 

have illustrated that standard regression models for the outcome mean could miss effects in 

susceptible subgroups, that is, individuals with already extreme levels of mediator and/or 

outcome that are risk factors for disease [12, 16, 17]. Quantile regression is an estimation 

method that addresses this issue. If one chooses regression coefficients that minimize the 

sum of the absolute values of the residuals instead of the sum of squared residuals, the result 

is an estimate of covariate effects on the median, instead of the mean, of the outcome 

distribution. Quantile regression generalizes this approach by weighting the positive and 

negative residuals differently, which forces the regression line to other percentiles of the 

distribution, which is useful to examine the exposure-outcome relationship at different 

locations of the outcome distribution, especially when this relationship is not homogenous 

across quantiles of the outcome. This distribution-free approach, modeling quantiles of a 

distribution instead of the mean, has already been used successfully to describe: 1) how air 

pollution effects on cardiovascular markers are different across the distribution of these same 

cardiovascular markers [17], and 2) how air pollution and temperature exposures change the 

shape of DNA methylation distributions, an epigenetic outcome [12, 16]. In these recent 

papers, the authors identified susceptible subgroups and therefore allows one to provide 

more precise results for risk assessment in biomedicine.

Recent research has also identified epigenetics as an important molecular response to 

environmental pollutants [18–20]. Epigenetics refers to chromosome changes that influence 

gene expression without modifying the genetic code. The most frequently studied epigenetic 

mechanism is DNA methylation which involves methylation of cytosine in CpG pairs. 

Because DNA methylation often acts as a complex “switch” to control gene expression, 

individuals with extreme methylation level may be more susceptible to environmental 

exposures. This result has been suggested recently with air pollution [12] and temperature 

[16]. DNA methylation has been related to cardiovascular and pulmonary outcomes [21,22], 

that have, in turn, been associated with exposure to air pollution [23]. These findings raised 

interest for examining DNA methylation as an intermediate player in air pollution adverse 

responses [24,25].

The motivation of this paper is to study the mediated effects of air pollution on an 

cardiovascular marker via DNA methylation, but across the distributions of: 1) the mediator 

and 2) the outcome. To estimate these effects, we need to expand standard mediation 
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methods and consider quantiles of mediators and outcomes as dependent variables. 

Mediation formulae based on quantiles of the outcome distribution have been derived [14, 

26]. However, these formulae focuses mostly on mean changes in the mediator [14] or do 

not explicitly define the causal estimands as functions of potential outcomes [26]. In this 

manuscript, we define and derive the controlled direct and the indirect effects along the 

distribution of the outcome with two quantile regression models, one for the mediator and 

one for the outcome. We formalize our estimands using the potential outcome framework 

and allow for an exposure-mediator interaction in the model for the outcome. Because many 

observational studies collect longitudinal data, we also allow the mediator and outcome 

variables to be repeated measurements. This work generalizes previous work on mediation 

models now allowing for quantile estimation and longitudinal data [14,26–28].

Using a causal framework, we apply the quantile mediation model to an environmental 

health example in which we examine the effects of air pollution and methylation on the 

entire distribution of fibrinogen, a known coagulation marker. We hypothesize that 

individuals with higher fibrinogen levels may be more susceptible to air pollution and 

changes in methylation. In this manuscript, we estimate the indirect effect of particle number 

exposure on the fibrinogen distribution via a distributional change in interferon-gamma 

(IFN-γ) methylation and its direct effect not through IFN-γ methylation. While particle 

number is a marker for traffic-related air pollution, fibrinogen and IFN-γ are known to be 

cardiovascular markers.

2. Methods

2.1. Notations

This paper aims to define and derive the direct exposure effect on the distribution of an 

outcome and its indirect effect via a change in a given percentile of a mediator. We allow 

exposure-mediator interaction and repeated mediator and outcome measurements from a 

longitudinal cohort. Let Aij, Mij, and Yij represent the observed exposure, mediator, and 

outcome of interest for an individual i at a visit j, respectively. Let ψp (Mij) be the pth 

percentile of the observed Mij distribution and let ζq (Yij) be the qth percentile of the 

observed Yij distribution. Let  denote the potential mediator that would have been 

observed if A were set to a and let  represent the potential outcome that would have 

been observed if A were set to a and M were set to the value m. Let  be the pth 

percentile of the distribution of the potential outcome Mij distribution when Aij is set to a 

and let  denote the qth percentile of the distribution of the potential outcome Yij 

distribution when Aij is set to a and Mij is set to m. Thus,  corresponds to 

the qth percentile of the potential outcome distribution that would have been observed if Aij 

were set to a and if Mij were set to the value of the pth percentile of the distribution of the 

potential outcome Mij if Aij were set to a*. Contrasts of these percentiles will be used to 

define direct and indirect effects of exposure along the outcome distribution. Because the 

exposure and mediator are generally not randomized in observational studies, we define the 
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distributions in terms of quantiles conditional on covariates, and conditional on random 

intercepts to allow longitudinal mediator and outcome.

2.2. Quantile regression models with random intercepts

We consider two quantile regression models that include covariates, random intercepts b0i 

and g0i (not necessarily independent of each other), and an exposure-mediator interaction for 

the outcome model. Cij corresponds to the sets of covariates included in the mediator and 

outcome models:

We note that the parameters depend on the chosen quantiles p and q. For simplicity in the 

proof (i.e., derivation of the estimands), the coefficients β’s and γ’s introduced above will 

not carry the quantile-specific indices p and q, respectively. Later on, when presenting the 

motivating example, the coefficients of interest β1, γ1, γ2, will be denoted with their 

associated quantile-specific indices, that is, β1,p, γ1,q, γ2,q.

2.3. Identification assumptions

Four assumptions will suffice to identify the direct and indirect effects on the outcome 

distribution that we will present later:

1.

2.

3.

4.

where the symbol ∐ conveys the independence between two random variables.

Conditional on the measured covariates Cij and the random intercepts, the first assumption is 

met if there is no unmeasured exposure-outcome confounding. The second is met if there is 

no unmeasured mediator-outcome confounding. The third holds if there is no unmeasured 

exposure-mediator confounding, and the fourth holds if there is no mediator-outcome 

confounder affected by the exposure. Similar assumptions have been presented in a recent 

paper presenting identification assumptions that hold conditionally on random effects, but 

not unconditionally [28].

Although assumption 2 requires that we control for all mediator-outcome confounders, 

assumption 4 requires that the exposure does not affect any of these confounders that we 

adjusted for in assumption 2. In principle, we could have a set of mediator-outcome 

confounders that included variables affected by the exposure in which case assumption 4 
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would not hold and thus, it is essential to check whether the exposure affects the 

confounders of the mediator-outcome relationship.

Because unmeasured confounding is difficult to rule out, complementary analyses can be 

performed. Researchers can: 1) consider subsets of potential confounding variables and 

assess whether the resulting conclusions change when controlling for them, 2) perform some 

sensitivity analyses that estimate “how much” confounding is required to reverse the results, 

or 3) add a design stage involving matching strategies in order to create balance in covariates 

in the exposed vs. unexposed groups.

2.4. Assumptions of no time-varying confounding and no interference

We assume exogeneity with respect to the exposure and the mediator. Time-varying 

confounding in this setting has already been described [28]. Briefly, time-varying 

confounding would occur if there were an effect of Mij or Yij on a subsequent measurement 

of Aij′ or an effect of Aij or Yij on a subsequent measurement of Mij′ (j’ > j). This would 

likely be plausible in environmental health context with exogenous exposure (e.g., air 

pollution), as shown in a recent mediation analysis investigating the effects of air pollution 

on inflammation via changes in DNA methylation [28]. In addition, we assume no 

interference between units i.

2.5. Estimands

In the Appendix, we show that, under the mixed-effects models we have considered, 

, the qth percentile of the potential outcome Yij 

distribution setting Aij to a and Mij to  conditioning on the covariates and random 

intercepts, is equal to 

2.5.1. Controlled direct effect—Recall that the controlled direct effect (CDE) of 

exposure A on outcome Y comparing A = a with A = a* and setting M to m can be obtained 

by comparing Y a,m to . We define and derive the controlled direct effect of the 

exposure on the qth percentile of the outcome Yij distribution by contrasting two percentiles 

of the potential outcome distributions , one setting Aij to a and the other one setting 

Aij to a*; while holding Mij to the same value : 

.

This direct effect captures the effect on the qth quantile of the distribution of Y when 

changing the exposure from a* to a, but in both cases fixing the mediator to the pth quantile 

of the distribution of the mediator when exposure is set to a*. Under the quantile regression 

models we have considered and in the absence of exposure-mediator interaction, this is: γ1 

(a − a*). In the absence of exposure-mediator interaction, the direct effect does not depend 

on the quantile p, that is, this is the same for all mediator quantiles. In the presence of 

exposure-mediator interaction, the contrast between 
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depends on the individual random effects: . To 

obtain an estimate of the population controlled direct effects, the random effects “b0i” can be 

integrated out. If researchers are interested in individual-level controlled direct effects, 

quantile mixed-effects models can be considered to estimate the random effects b0i (code not 

shown). The natural direct effect (NDE) of exposure A on outcome Y comparing A = a with 

A = a* intervening to set M to what it would have been if exposure had been A = a* is 

generally obtained by comparing . Because of the focus on specific 

mediator and outcome quantiles, the natural direct effect (in its usual definition) cannot be 

defined.

2.5.2. Indirect effect—We now define the indirect effect on the qth percentile of the 

potential outcome Yij distribution through the pth percentile of the Mij distribution as the 

contrast between the percentiles of the potential outcome distribution , one setting 

Mij to  and the other setting Mij to ; while holding Aij to a: 

.

This indirect effect captures the effect on the qth quantile of the potential outcome Yij 

distribution, when the exposure is fixed to a, but the mediator is changed from the pth 

quantile of mediator when the exposure is a* to the pth quantile of the mediator distribution 

when the exposure is a. Under the mixed-effects effects model we have considered, this is: 

(γ2 + γ3 a) β1 (a − a*). If there is no exposure-mediator interaction, this is equal to the 

standard “mediation formula”, γ2 β1 (a − a*). Note that these indirect effects depend on both 

quantiles p and q. Similarly as before, the natural indirect effect (NIE) comparing A = a with 

A = a* and intervening to set exposure A to a is generally defined by comparing  to 

. Note that, because of our focus on specific quantiles, the natural indirect effect (in 

its usual definition) cannot be defined here.

2.5.3. Additional remarks—We note that the controlled direct and indirect effects we 

have defined above do not add up to the (usual) total effect (of the exposure on the qth 

percentile of the outcome distribution) resulting from the difference between  and 

. Instead, the sum of the two effects is equal to the contrast: 

. 

This contrast can be decomposed into sum of the controlled direct and indirect effects we 

have defined, which is not a quantity that has been of interest in causal inference, but could 

be defined as a new type of “total effect”.

The framework described in this manuscript is not restricted to models with random 

intercepts only. It can be extended to models including random intercepts and slopes. For 

example, one can add two random slopes b1i and g1i that allow for heterogeneous exposure 

and mediator effects across subjects, respectively. In this case, the direct and indirect effects 
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(conditional on covariates and random effects) can be obtained by replacing β1 and γ1 by β1 

+ b1i and γ1 + g1i, respectively.

The method developed here applies to cross-sectional data as well by setting the variance of 

the random intercept b0i and g0i to zero. In such a setting, the controlled direct effect and and 

the indirect effect still equals γ1 (a − a*) and γ2 β1 (a − a*), respectively. In situations with 

missing covariates, we recommend to multiply-impute them before conducting the quantile 

mediation analysis. If variables are measured with differential error, we recommend a recent 

developed method relying on sensitivity parameters [29].

2.6. Variance of the control direct and indirect effects

If there is no exposure-mediator interaction in the outcome model, the variance of the direct 

effect (γ1) can be easily obtained from the software output. The indirect effect formula in 

the absence of exposure-mediator interaction consists of a product term γ2β1. The bivariate 

delta method can be used to derive Var(γ2β1) which is approximately equal to 

. The Bootstrap procedure can also be used to estimate the 

variances of the indirect effects in complex settings. The Bootstrap technique is useful to 

estimate variances non-parametrically, especially with quantile regression models allowing 

for longitudinal data [30], with mediation models with exposure-mediator interactions [28], 

or in more complex situations in which asymptotic theory does not apply. In longitudinal 

settings, the observations should be sampled with replacement by subject in order to 

preserve the correlation structure of the dataset [31].

2.7. Estimation

We used the R package rqpd to estimate the coefficients of the quantile regressions for 

longitudinal data [30]. We used the Bootstrap procedure to estimate the variance of the direct 

and indirect effects on the outcome distribution. We provide software in the form of R code 

in the Appendix.

Similarly as in mean mediation analysis for longitudinal data [28], the random effects could 

be dependent with each other. For example, in a situation in which random slopes for the 

mediator and outcome models are correlated, these two models (i.e., mediator and outcome 

models) should be estimated jointly. Sophisticated software should be considered.

3. Motivating example: Air pollution, DNA methylation, and fibrinogen

3.1. Scientific question

The role of DNA methylation, although very complex, has been summarized as a “switch” 

that can control gene expression. Recent results have suggested that air pollution distorts the 

distribution of epigenetic outcomes (e.g., IFN-γ methylation), and that larger impacts are 

observed among individuals whose epigenetic outcomes’ levels are low [12]. These results 

suggest that participants who already have higher risk of coagulation may also be the ones 

primarily affected by air pollution. With our developed method, we conduct a quantile 

mediation analysis to examine this hypothesis, but in a mediation analysis context with a 

cardiovascular marker as the outcome. Our approach modeling percentiles of mediator and 
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outcomes can detect whether larger effects are observed at the adverse end(s) of health 

outcomes’ distributions.

Using the quantile causal mediation model described in the previous sections, we investigate 

whether there is a direct air pollution (i.e., particle number) effect on different quantiles of 

the outcome distribution of a coagulation marker (i.e., fibrinogen) and whether there is an 

indirect air pollution effect on this outcome distribution through different quantiles of the 

epigenetic mediator (i.e., IFN-γ methylation).

3.2. Data description

We analyze data from a longitudinal cohort study including participants from the Normative 

Aging Study. This investigation, described in a previous paper [32], was established in 

Boston in 1963 by the U.S. Veterans Administration. Between 1999 and 2009, a total of 777 

participants had their levels of DNA methylation and fibrinogen measured one to five times 

with intervals of three to five years. Participants blood was collected at every medical visit 

after an overnight fast and smoking abstinence.

The exposure of interest is particle number, which is commonly used as a surrogate of 

ultrafine particles from traffic. Hourly particle number concentrations were measured with a 

Condensation Particle Counter (TSI Inc, Model 3022A, Shoreview, MN) 1 km away from 

the medical center. The intermediary mechanism of interest is DNA methylation on the IFN-
γ gene. IFN-γ is an important cytokine that plays a role in innate and adaptive immunity 

against foreign compounds. IFN-γ methylation was assessed with highly quantitative 

methods based on bisulfite polymerase chain reaction (PCR) pyrosequencing. The outcome 

of interest is fibrinogen, which is a precursor of fibrin involved in blood clotting. Plasma 

fibrinogen concentration was measured using MDA Fibriquick (Trinity Biotech, Bray, 

Ireland), a bovine thrombin reagent.

The relevant exposure windows for the air pollution effects on DNA methylation and 

fibrinogen are not clearly determined. We consider the intermediate-term exposure window 

of 28-day moving average preceding each individual medical examination. This time 

window could serve as a median choice between short- and long-term exposures to air 

pollution. The medians of the mean distances of the participant homes from the monitor 

were about 20 km.

3.3. Methods

We standardize the exposure (i.e., particle number), the mediator (i.e., IFN-γ methylation), 

and the outcome (i.e., fibrinogen) of interest and present the controlled direct and the 

indirect effects as the result of a one-unit increase of the standardized exposure. We fit two 

separate quantile regressions, one to model the exposure-mediator relationship and another 

one to model the effects of the exposure and the mediator on the outcome:
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Using the same method described in a previous paper [12], we construct an alternative way 

of presenting the estimated coefficients from the quantile regressions by illustrating the 

distributional shift associated with a two-unit increase in standardized exposure or mediator. 

The predicted curve, constructed using the quantile regression coefficients, assumes a 

constant trend within decile intervals.

We compare our quantile mediation analysis results to what we would have found using a 

standard mediation analysis modeling the means of the mediator and outcome:

Note that in the regressions modeling the outcome mean, the exposure-mediator interaction 

was not significant (p-valueinteraction=0.88) and its addition did not change the effect 

estimates. We therefore fit all mediation models with no exposure-mediator interaction.

Our four assumptions about confounding in Section 2.3 need to hold for the controlled direct 

and indirect effects to be identified from the data. Therefore, we included “a priori” the 

following covariates Cij in the regression models: temperature, relative humidity, seasonal 

sine and cosine (to allow the regression analysis to estimate both the amplitude and the 

phase of the seasonal cycle), batch of DNA methylation measurement, age, body mass index 

(BMI), smoking, diabetes, statin use, percentage of neutrophils in blood count, percentage of 

lymphocytes in blood count, percentage of monocytes in blood count, and percentage of 

basophils in blood count.

As in a recent mean mediation analysis [28], we assume no endogeneity. For instance, we 

assume that the mediator (i.e., IFN-γ methylation) and outcome (i.e., fibrinogen) measured 

at previous visits do not affect the concentrations of particle number at any subsequent visit; 

and that particle number and fibrinogen measured at previous visits do not affect IFN-γ 
methylation at any subsequent visit. This is plausible because air pollution is an exogenous 

variable and medical visits occur far apart, i.e., three to five years.

3.4. Results

3.4.1. Direct effect—We found evidence of heterogeneity in the direct effect of particle 

number on fibrinogen across the outcome distribution (Figures 1.1 and 1.2). Figure 1.1 

represents the effect of (standardized) particle number on each decile of the fibrinogen 

distribution. Figure 1.2 reports the predicted distributional change on fibrinogen per two-unit 

increase in the standardized exposure. Only participants with higher fibrinogen levels were 

significantly affected by particle number exposure, which tends to increase their fibrinogen 
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levels even further. For instance, for a one-unit increase in standardized particle number 

concentrations, there is a 0.29 [95%CIBootstrap: 0.08; 0.44] increase in fibrinogen levels 

among participants belonging to the 90th percentile, although we observed null associations 

among participants belonging to the lower half of the distribution (see coefficients γ1,q in 

Table 1).

3.4.2. Indirect effect—We followed our investigation by decomposing the mediated effect 

in two parts: we first examined the effect of the exposure on the mediator distribution (see 

coefficients β1,p in Table 1) and then investigated the effect of the mediator on the outcome 

distribution (see coefficients γ2,q in Table 1).

Exposure-mediator relationship: We observed heterogenous effects of particle number 

exposure on the IFN-γ methylation mediator distribution across deciles (Figures 2.1 and 

2.2). Only participants with low methylation levels seem to be affected by ultrafine particles. 

For instance, a one-unit increase in standardized particle number was associated with a 0.19 

decrease in the 10th decile of the standardized IFN-γ methylation and was not significantly 

associated with the upper deciles (i.e., 70th to 90th) of standardized IFN-γ methylation.

Mediator-outcome relationship: The effect of the IFN-γ methylation mediator on the 

fibrinogen outcome was less clear (Figures 3.1 and 3.2), but Figure 3.1 suggests a negative 

impact of IFN-γ hypomethylation among participants belonging to the 90th percentile of the 

fibrinogen distribution. A decrease in IFN-γ methylation among these participants was 

marginally associated with an increase in fibrinogen. Therefore, for those with lower levels 

of IFN-γ methylation and higher levels of fibrinogen, an increase in particle number will 

generally further decrease their IFN-γ methylation levels, resulting in an increase in 

fibrinogen.

This sequence of effects among participants with lower IFN-γ methylation and higher 

fibrinogen is consistent with the positive association between exposure to particle number 

and fibrinogen at the higher quantiles of the fibrinogen distribution (as seen in Figure 1.1).

Quantile mediated effects: We then calculated the indirect effects of particle number on the 

fibrinogen distribution through three percentiles (20th, 50th, and 80th) of the IFN-γ DNA 

methylation distribution (Figures 4.1 to 4.3). We calculated 95% confidence intervals via the 

Bootstrap procedure we described in section 2.6. Although the quantile-specific indirect 

effects were not strictly significant, Figures 4.1 and 4.2 suggest some indirect effect among 

participants in the 90th percentile of fibrinogen having also low IFN-γ methylation. We 

observed no indirect effect of particle number on fibrinogen via IFN-γ methylation among 

participants in the upper percentile of IFN-γ methylation (Figure 4.3).

We also present the indirect effects of particle number on the qth percentile of the fibrinogen 

distribution through the pth percentile of the IFN-γ DNA methylation distribution on a heat 

map (Figure 5.1) and a 3D-plot (Figure 5.2). We observe that participants with low levels of 

IFN-γ methylation and high levels of fibrinogen have the largest indirect effects of particle 

number on fibrinogen via a decrease in IFN-γ methylation.

Bind et al. Page 10

Stat Med. Author manuscript; available in PMC 2018 November 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Mean mediated effects vs. quantile mediated effects: We contrasted our findings using 

quantile regression to what one would obtain if a standard mean regression analysis was 

conducted (see coefficient estimates from the mean models in Table 1). We used a mean 

mediation model for longitudinal data [28]. We fit two mixed-effects, one modeling the 

mediator mean, the second modeling the outcome mean. We control for the same covariates 

we adjusted for in the quantile mediation analysis. The direct effect of particle number 

(standardized) on the mean of fibrinogen (standardized) was equal to 0.16 [95%CI: 0.05 to 

0.26]. The indirect effect of a one unit increase in standardized particle number on the mean 

of standardized fibrinogen via a change in the mean standardized IFN-γ DNA methylation 

was equal to 0.00 [95%CI: −0.01 to 0.02], while the estimated indirect effect is equal to 0.03 

[95%CI: −0.01 to 0.06] at the 20th quantile of IFN-γ methylation and the 90th quantile of 

fibrinogen.

4. Simulation study

We present a simulation study contrasting: 1) two scenarios for which the effects are only 

present at the extreme quantiles of the simulated study population, vs. 2) a scenario for 

which the effects are present for a larger portion of the population (See supplementary 

materials).

5. Discussion

This approach extends previous work that defined direct and indirect effects using quantile 

regressions [4, 26]. Using a causal framework, we considered two quantile regression 

models and formally derived the controlled direct exposure effect along the outcome 

distribution and its indirect effect via a given percentile of the mediator using potential 

outcomes. Our approach allows for exposure-mediator interaction in the outcome model and 

allows for longitudinal setting with repeated measurements of mediator and outcome. With 

this methodology, we present an alternative method (vs. the standard mean mediation 

analysis) that investigates shifts in the distributions of the mediator and outcome, rather than 

just shifts in the means of these distributions. We are able to detect interesting patterns of 

particle number health effects that would be missed using ordinary mean mediation analysis. 

This research tool is valuable for many disciplines, especially in epidemiological studies that 

aim to investigate pathways and determine susceptibility.

The direct and indirect effects we derived based on specific quantiles of the mediator and 

outcome distributions may be more difficult to interpret as compared to those estimated in a 

mean mediation analysis are conducted. The controlled direct effect on the qth percentile of 

the outcome Yij distribution, defined by contrasting , one setting Aij to a and the 

other one setting Aij to a*; while holding Mij to the same value  may not generally 

be of interest if the p represents a quantile at the tail of the distribution, unless the direct 

effect occurs for participants belonging to the tail of the mediator. Other quantities of 

interest could be considered. For example, one could consider a mean regression model for 

the mediator and a quantile regression model for the outcome. If the median and mean of the 

mediator are close to each other, this analysis should provide similar estimates to what one 
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would obtain by fitting a median regression for the mediator and the same quantile 

regression model for the outcome.

Many disciplines have shown interest in quantile regression [12, 16, 17] and mediation 

analysis to investigate existant or new biological mechanisms, as well as their relative 

importance [4–6, 8–11]. These biological findings are relevant to the understanding of air 

pollution adverse effects. They provide evidence of an impact of ultrafine particles on IFN-γ 
methylation followed by a potential increase in coagulation. Such findings are relevant to 

several fields, such as molecular biology, environmental epidemiology, and risk assessment. 

These results also add evidence towards the intermediate role that DNA methylation may 

play in air pollution effects on cardiovascular disease and provide evidence towards 

susceptibility to air pollution (i.e., ultrafine particles) based on levels of mediator (i.e., DNA 

methylation) and outcome (i.e., fibrinogen).

We applied the method to an interesting environmental health example and identified 

cardiovascular-related responses with different individual susceptibility. This method can be 

applied in many environmental studies with exogenous exposure to examine whether the 

exposure-outcome, exposure-mediator, and mediator-outcome effects are heterogeneous 

within the study population, and whether certain tails of the distributions of the mediator and 

outcome are more affected by the exposure and/or the mediator. We highlight a way to 

examine heterogeneity in responses without making assumptions about the mediator and 

outcome distributions or their residuals. It was interesting that, under high particle number 

exposure, the right-tail of the fibrinogen distribution and the left-tail of the IFN-γ DNA 

methylation distribution become longer than would be expected under low exposure 

conditions. Participants with elevated fibrinogen, often due to clotting dysfunction, were 

more likely to be affected by particle number exposure and a change in IFN-γ methylation. 

Participants with low IFN-γ methylation were also more susceptible to particle number 

exposure. The key result is that stronger effects were found among participants in the lower 

tail of the IFN-γ methylation distribution and in the higher tail of the fibrinogen distribution. 

These larger effects were therefore seen in people at the adverse end of the mediator and 

outcome distributions, which have important public health implications and need to be 

considered by air pollution health impact assessments.
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FIGURE 1.1. 
Quantile regression coefficients of the associations between particle number exposure and 

the deciles of the fibrinogen distribution.
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FIGURE 1.2. 
Distributional change of the standardized IFN-γ methylation distribution due an increase in 

particle number exposure
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FIGURE 2.1. 
Quantile regression coefficients of the associations between particle number exposure and 

the deciles of the IFN-γ methylation distribution.
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FIGURE 2.2. 
Distributional change of the standardized IFN-γ methylation distribution due to standardized 

particle number exposure.
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FIGURE 3.1. 
Quantile regression coefficients of the associations between IFN-γ methylation and the 

deciles of the fibrinogen distribution.
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FIGURE 3.2. 
Distributional change of the standardized fibrinogen distribution due to a change in 

standardized IFN-γ methylation.
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FIGURE 4.1. 
Indirect effects of standardized particle number on standardized fibrinogen through a change 

in the 20th percentile of the standardized IFN-γ methylation distribution.
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FIGURE 4.2. 
Indirect effects of standardized particle number on standardized fibrinogen through a change 

in the 50th percentile of the standardized IFN-γ methylation distribution
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FIGURE 4.3. 
Indirect effects of standardized particle number on standardized fibrinogen through a change 

in the 80th percentile of the standardized IFN-γ methylation distribution
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FIGURE 5.1. 
Heatmap representing the indirect effects of standardized particle number on the qth 

percentiles of the standardized fibrinogen distribution through a change in the pth percentiles 

of the standardized IFN-γ methylation distribution
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FIGURE 5.2. 
3-D plot representing the indirect effects of standardized particle number on the qth 
percentiles of the standardized fibrinogen distribution through a change in the pth percentiles 

of the standardized IFN-y methylation distribution
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Table 1

Quantile and mean regressions results

Coefficient γ1,q Quantile estimate 95% CIBootstrap

γ1,10 0.0903 [−0.0583 to 0.1986]

γ1,20 0.0625 [−0.0242 to 0.1830]

γ1,30 0.0966 [−0.0230 to 0.2106]

γ1,40 0.1055 [−0.0514 to 0.2277]

γ1,50 0.0623 [−0.0268 to 0.2329]

γ1,60 0.1342 [0.0256 to 0.2705]

γ1,70 0.2047 [0.0597 to 0.3378]

γ1,80 0.2083 [0.0693 to 0.3698]

γ1,90 0.2920 [0.0844 to 0.4413]

Coefficient β1,p Quantile estimate 95% CIBootstrap

β1,10 −0.1942 [−0.3346 to 0.0347]

β1,20 −0.1833 [−0.2865 to −0.0621]

β1,30 −0.1591 [−0.2714 to −0.0641]

β1,40 −0.1507 [−0.2716 to 0.0495]

β1,50 −0.1546 [−0.2348 to −0.0500]

β1,60 −0.0967 [−0.1628 to −0.0066]

β1,70 −0.0442 [−0.1121 to 0.0206]

β1,80 −0.0220 [−0.0730 to 0.0824]

β1,90 −0.0633 [−0.0460 to 0.1548]

Coefficient γ2,q Quantile estimate 95% CIBootstrap

γ2,10 −0.0100 [−0.1191 to 0.0794]

γ2,20 −0.0287 [−0.1124 to 0.0485]

γ2,30 −0.0366 [−0.1347 to 0.0378]

γ2,40 −0.0571 [−0.1385 to 0.0357]

γ2,50 −0.0540 [−0.1246 to 0.0404]

γ2,60 −0.0601 [−0.1029 to 0.0360]

γ2,70 −0.0350 [−0.1131 to 0.0602]

γ2,80 −0.0243 [−0.1481 to 0.0537]

γ2,90 −0.1774 [−0.2595 to 0.0323]

Mean coefficient Quantile estimate 95% CIAsymptotic

β1,mean −0.2453 [−0.3572 to −0.1334]

γ1,mean 0.1586 [0.0508 to 0.2665]

γ2,mean −0.0027 [−0.0629 to 0.0574]
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