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Abstract

Rotator cuff (RC) muscles undergo several detrimental changes following mechanical unloading 

resulting from RC tendon tear. In this review, we highlight the pathological causes and 

consequences of mechanical alterations at the whole muscle, muscle fiber, and muscle resident cell 

level as they relate to RC disease progression. In brief, the altered mechanical loads associated 

with RC tear lead to architectural, structural, and compositional changes at the whole-muscle and 

muscle fiber level. At the cellular level, these changes equate to direct disruption of 

mechanobiological signaling, which is exacerbated by mechanically-regulated biophysical and 

biochemical changes to the cellular and extra-cellular environment (also known as the stem cell 

‘niche’). Together, these data have important implications for both pre-clinical models and clinical 

practice. In pre-clinical models, it is important to recapitulate both the atrophic and degenerative 

muscle loss found in humans using clinically relevant modes of injury. Clinically, understanding 

the mechanics and underlying biology of the muscle will impact both surgical decision-making 

and rehabilitation protocols, as interventions that may be good for atrophic muscle will have a 

detrimental effect on degenerating muscle, and vice versa.
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Introduction

Rotator cuff tears affect over 20% of the general population, with prevalence increasing with 

age1. Mechanical failure of the RC tendon, often preceded by pathological changes in the 

tendon microstucture2–6, is the primary cause of RC disease. Equally important from a 

clinical perspective are the resulting detrimental changes in RC muscle structure and 

composition, which play a prominent role in both the failure of RC tendon repairs as well as 

the persistent functional deficits observed in many patients7. Indeed, these muscular changes 

are a primary method by which RC disease is staged clinically8, based on the relative ease of 

noninvasive CT and MRI imaging of muscle compared to tendon and the negative 

relationship between intramuscular fat accumulation and clinical outcomes7; 9. Our 

understanding of the biological processes that govern the replacement of muscle by fat and 

fibrosis remains limited, but the role of altered mechanics in the progressive decline of RC 

muscle is central both to the existing data and prevailing hypotheses regarding RC muscle 

fate after tendon tear and/or repair. A summary of key factors involved in controlling and 

actuating skeletal muscle remodeling, which is arguably the most sensitive tissue to changes 

in mechanical loading in the RC, is outlined in Figure 1.

The phenotype of muscle disuse atrophy is primarily the result of mechanical unloading, 

which can occur via tendon failure, bed rest, casting, hindlimb suspension (in rodents), or 

otherwise decreased voluntary muscle activation10–14. Nerve injury or dysfunction may also 

cause atrophy, though the atrophy phenotype in denervation has a distinct molecular 

signature compared to disuse15. Regardless of the inciting event, atrophy is characterized by 

increased contractile protein turnover coupled with diminished protein synthesis15, leading 

to a reversible13; 16; 17 reduction in muscle force-producing capacity. In RC disease, disuse 

muscle atrophy, absent a nerve injury, appears to dominate the early phase of RC 

disease18–21 (Figure 2, Atrophic Stage).

Contrary to muscle atrophy, which is self-limiting and not thought to alter overall muscle 

fiber structure, organization, or number22, muscle fibers can also accumulate structural 

damage, leading to altered sarcomere structure, degeneration and ultimately muscle fiber 

death (Figure 1, Damage/Degeneration). Altered mechanics are also implicated in this mode 

of muscle loss, though the mechanism is more complex than the unloading-induced muscle 

atrophy described above. For example, in other muscle pathologies including Duchenne 

muscular dystrophy23–25, abnormal shear stress is implicated in sarcolemmal disruption. 

Muscle overloading, particularly during eccentric contraction, is known to induce muscle 

damage and regeneration16; 17; 26–29 (Figure 1, Shear Stress or Overload). However, in these 

and other examples there are several mediators of muscle degeneration-regeneration that 

influence the rate and degree of muscle injury and recovery. These include inflammation and 

resident stem cell function, which are themselves influenced by passive changes in the 

micromechanical environment26; 30–33 (Figure 1, ECM Stiffening). In advanced RC disease, 

muscle degeneration and reduced muscle fiber numbers driven by these mechanobiological 

changes appear to be the prominent mode of muscle loss34 (Figure 2, Degenerative Stage).

Since RC disease progression can result in both unloading and overloading, the changing 

mechanobiological environment of the muscle can significantly impair the body’s attempt at 

Gibbons et al. Page 2

J Orthop Res. Author manuscript; available in PMC 2019 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



regeneration, and this in turn may explain the irreversible loss of muscle and poor surgical 

outcomes that define RC disease. In this review, we summarize our current understanding of 

biomechanical environment changes and specific aspects of that environment that contribute 

to the clinically intractable deficits that result from chronic RC tear at the whole muscle, 

muscle fiber, and single cell levels. In this context, we will highlight differences between the 

atrophic and degenerative aspects of disease, focusing on the roles of mechanical unloading 

and matrix stiffening and their detrimental effects on muscle physiology at each length scale.

Whole Muscle Remodeling After RC Injury

As RC tendon tears progress over time, the RC muscles become mechanically unloaded and 

begin to retract. Mechanical unloading is potentially compounded by pain-induced 

diminution of voluntary muscle contraction. Suprascapular nerve dysfunction may also 

impact muscle remodeling, though the prevalence of neuropathy in RC tears appears to be 

limited35. As the muscle retracts, muscle fibers shorten via serial sarcomere subtraction36 

and the muscle becomes fibrotic37 (discussed in further detail below). This causes the 

working range of the muscle to decrease, and it has been hypothesized to increase RC 

muscles’ susceptibility to injury during repair given the high muscle tension and strain 

required to repair the retracted tendon to its footprint38; 39.

A second consequence of chronic muscle retraction is increased muscle fiber-bundle 

stiffness37; 40. Because single fiber passive mechanics are not altered with RC tear, this 

stiffening is likely attributable to increased fibrosis, i.e. collagen content in the muscle40 

(Figure 1, ECM Stiffening). While fibrosis predicts stiffness to a degree37; 40, the existing 

data suggests that muscle stiffness is dictated by additional variables. One possible 

contributor is reduced sarcomere number following tear, which would lead to higher average 

sarcomere strains for a given change in muscle length36; 41. Another possibility is that ECM 

modification, and not just content, dictate total ECM stiffness (and cell-ECM interactions). 

Specifically, increased collagen cross-linking (associated with increased stiffness42) has 

been demonstrated in degenerated RC tendon43, though it has yet to be measured in RC 

muscle. Whether or not increased matrix stiffness is protective (via increased load 

distribution in passive stretch) or detrimental (via increased active shear stress) to muscle 

fibers remains unknown.

In contrast to tissue-level stiffening, changes in whole muscle biomechanics are more 

complicated. Similar to findings in fiber bundles, a human case series44 and two separate 

animal models21; 45 found increased whole muscle stiffness over time following tendon 

transection. However, a cadaver study that involved samples with higher fat infiltration 

found that high fat accumulation correlated with softer muscle overall46. A possible 

explanation for these findings is that whole muscle stiffness tracks with fiber bundle stiffness 

until muscle tissue loss hits a critical threshold, at which point whole muscle mechanics are 

dictated by a combination of muscle- and non-muscle tissue mechanics. Indeed, one 

prevailing hypothesis is that accumulation of adipose tissue serves as a necessary 

mechanical buffer to counter changes in muscle volume and pennation angle, in order to 

preserve a maximum possible amount of muscle force producing capacity47. As RC disease 

progresses and stiff muscle40; 48 is replaced by more extensible fat49, overall organ 
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extensibility increases, even though there is no evidence suggesting that remaining muscle 

tissue becomes more extensible itself. The resulting tissue is a complex and 

compartmentalized biomechanical system, which can in turn give rise to significant but 

localized changes in the micromechanical environment that impact both individual muscle 

fibers and resident stem cells.

Mechanical (Un)Loading Drives Muscle Fiber Pathology

The paradigm of mechanical unloading followed by muscle remodeling, progressive muscle 

atrophy, and fat accumulation has been central to RC muscle research for over two decades8. 

In the literature, this process is often interchangeably referred to as ‘fatty infiltration’, ‘fatty 

atrophy’, and ‘fatty degeneration’, with the latter two referencing specific modes of muscle 

loss. In this section, we discuss the effects of RC tear on individual muscle fibers, 

highlighting the biological importance of differentiating muscle atrophy from degeneration 

and focusing on the differential role that mechanical loads play in each of these distinct 

mechanisms of muscle loss.

In parallel with alterations at the whole muscle level, individual muscle fibers undergo 

several detrimental changes as a result of chronic unloading, with distinct stages across the 

disease spectrum. In terms of muscle architecture, muscle fibers in full-thickness tears have 

decreased sarcomeric order and increased accumulation of small (<1μm) intracellular lipid 

droplets50, but normal sarcomere length41 is maintained via serial sarcomere 

subtraction36; 51. However in large or massive (>5cm retraction) RC tears, normal sarcomere 

remodeling is not observed, and sarcomeres are significantly shorter than in either intact or 

full thickness tears36. The implications of these findings are two-fold: first, this suggest that 

muscle with moderate tears are more likely than larger tears to remodel and remain 

functional after repair, and second, that repair of massive tears may fail due to a combination 

of over-strained sarcomeres immediately after repair and failure to adapt sarcomere length 

over time36.

Beyond architectural changes, RC muscle undergoes continuous muscle loss throughout the 

course of disease. In the ‘early’ phase of disease, radial atrophy of the RC muscle occurs as 

mechanical load is reduced following smaller and/or less chronic RC tendon tear18; 19 

(Figure 1, Mechanical Unloading, Atrophy; Figure 2, Atrophic Stage), possibly heightened 

by passive stress shielding resulting from the stiffer matrix discussed above, or inflammatory 

signals known to activate catabolic pathways within muscle discussed below10; 11; 15; 52. 

This atrophic muscle loss encompasses a cell-intrinsic, self-limiting process where protein 

turnover is tightly controlled by the interplay of anabolic52 and catabolic15 pathways; it is 

not generally considered a putative mechanism of muscle fiber deletion22. With decreased 

load, strain-dependent signaling proteins at the Z-disk53 and costamere54 become less active, 

leading to decreased anabolic signaling52; 55 and increased signaling and activity of the two 

principal mechanisms of protein degradation in the cell: the ubiquitin-proteasome55–57 and 

the autophagosome/lysosome15 (Figure 1, Protein Synthesis, Proteasome/ Autophagosome). 

In muscle atrophy, proteins are freed from the Z-disk via the combined action of 

calpains58; 59 and muscle-specific E3 ubiquitin ligases56. These freed contractile proteins are 

subsequently degraded, thus reducing the force-producing capacity of the muscle. 
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Importantly, protein loss in muscle atrophy is highly specific; only ubiquitinated proteins are 

degraded, while proteins still anchored to the Z-disk are protected from the catabolic 

machinery and overall muscle architecture is preserved.

As RC disease progresses, the muscle is more likely to experience higher axial loads (due to 

diminished total cross-sectional area)60 and higher shear forces when activated (due to 

increased stiffness of the matrix)61; 62. Both axial and shear stress are known to cause direct 

mechanical injury to the sarcolemma23; 27 (Figure 1, Shear Stress or Overload). This, along 

with potential increases in permeability caused by local inflammatory cells (discussed 

below)61; 63, leads to increased calcium in the muscle fiber because of direct diffusion and 

sarcoplasmic reticulum disruption64; 65. Increased calcium may then increase calcium-

sensitive calpain activity, which along with their role in contractile protein turnover in 

atrophy65; 66 are also implicated in cellular apoptosis67; 68 and necrosis69. Together with the 

direct overload/shear injury, these indirect mediators of protein turnover and cell death (as 

well as the hypothesized increase in oxidative stress and a protease-rich inflammatory 

environment discussed below) likely explain the recently described muscle damage and 

degeneration of muscle fibers found in advanced rotator cuff disease34 (Figure 1, Damage 
and Degeneration).

Can Satellite Cells Maintain Muscle Homeostasis Post-Injury?

Satellite cells (SCs), the primary myogenic stem cell of adult muscle, play an integral role in 

adult myogenesis and homeostasis, particularly in the context of muscle’s response to 

exercise/reloading26; 70 and recovery from damage or injury31; 71 (Figure 1, Quiescent 
Satellite Cells, Satellite Cell Proliferation/Differentiation). Notably, while SCs are required 

for muscle regeneration, they are dispensable in the context of fiber hypertrophy72; 73. Given 

the muscle degeneration present in advanced RC disease34, understanding the fate of SCs in 

RC disease is paramount to understanding why muscle loss is generally irreversible after RC 

tear.

Like many other adult stem cells, the SC is highly dependent on it’s physical environment, 

i.e. niche74. This niche consists of the region between the sarcolemma and the basal lamina 

of the muscle fiber75, with SC fate determined by dynamic interactions with each structure76 

(Figure 1, Basal Lamina, ECM). The physical and biochemical composition of the niche is 

important in the maintenance of SC quiescence77, potency78, and possibly even myogenic 

fate79, with ECM proteins and particularly collagens IV and VI playing a notable role in the 

regulation of SCs by the basal lamina80; 81. The dependency of SC function on niche 

composition suggests a central role of force transmission in the maintenance of SC 

stemness. Changes in matrix composition directly alter the way SCs experience load based 

on local niche stiffness78, and may also affect SC focal adhesions based on altered integrin-

binding substrate availability82. Alterations in the matrix may also alter SC function 

indirectly because the matrix serves as a local reservoir and co-modulator of growth factors 

critical to SC modulation78; 83; 84 (Figure 1, IGF1/MGF/+, Myostatin/GDF’s/+). As 

mechanical loads change, the matrix undergoes damage and remodeling which determine the 

rate of release and/or sequestration of these factors85; 86.
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Indeed, SC function is highly dependent on niche stiffness (Figure 1, ECM Stiffening). 

During in vitro culture, SCs proliferate, self-renew, and differentiate best on substrates with 

normal muscle stiffness (~11kPa)48; 87. On stiff substrates (~106 kPa) differentiation into 

myotubes is favored87, while the maintenance of quiescence is favored on softer substrates 

(~2kPa)77. In RC disease, increased matrix stiffness may skew SCs toward differentiation 

and away from self-renewal, which may deplete the SC pool and diminish the muscle’s 

regenerative capacity in the long run88. However, evaluation of this hypothesis is difficult, 

because although RC muscles have reduced SC populations compared to other muscles89, 

once SCs are removed from the pathological environment of the torn RC, their proliferation, 

differentiation, and fusion characteristics are not different between no-tear and full-thickness 

tears89.

Beyond the static stiffness of the niche, mechanical loading is also important in the 

maintenance and activation of the SC pool (Figure 1, Exercise, Mechanical Unloading, 
Satellite Cell Proliferation/Differentiation). SCs can be activated by mechanical loading in 
vitro32 and exercise in vivo, though the effects of exercise are multifactorial and the relative 

contribution of mechanical load to overall exercise-induced activation is difficult to 

determine in vivo16; 26; 90 (Figure 1, Exercise). The complementary finding is also true; in 

most models, unloading reduces total SC number and potency of remaining SCs11. 

Therefore, reduced muscle activity levels following RC tear in the atrophic stage of disease 

may ultimately contribute to diminished regenerative capacity in the degenerative phase of 

disease.

Further complicating the evaluation of SCs in the context of RC disease are other potential 

environmental contributors to SC dysfunction known to occur in the torn RC. The torn RC 

environment demonstrates altered expression of soluble factors91–94 as well as increased 

inflammation34; 95; 96 and oxidative stress97–99, which are all potent mediators of SC 

function30; 100; 101 that may be exacerbated by muscle injury. Pro-inflammatory signaling 

and oxidative stress stimulate SC proliferation, but blocks differentiation100; 101 and self-

renewal102 via the TNF/TWEAK/NF-κB and Notch signaling axes, while anti-inflammatory 

signals aid in differentiation103 (Figure 1, Monocytes, M1/M2 Macrophages, Eosinophils, 
Neutrophils, Pro-Inflammatory Cytokines/Proteases, Oxidative Stress, Anti-Inflammatory 
Cytokines). These effects may also be modulated by interplay of other myogenic regulatory 

factors that are likely altered in the torn RC, including members of the TGF-β superfamily 

(GDF and BMP subfamilies in particular)52; 104 and IGF/GH axis105–107, all of which 

influence SC dynamics (Figure 1, IGF1/MGF/+, Myostatin/GDF’s/+). While classically 

‘pro-‘ and ‘anti-‘ inflammatory or myogenic signaling suggests a binary effect (i.e. either 

‘good’ or ‘bad’), the effects of these factors on muscle homeostasis are dependent on the 

environment as a whole. For example, in acute inflammatory situations, these factors are 

coordinated to promote muscle homeostasis, as proliferation of SCs occurs prior to fusion, 

regeneration, and return to quiescence30; 76; 108; 109. However, with chronic inflammation, 

prolonged pro-inflammatory and anti-myogenic signaling may simultaneously inhibit 

muscle regeneration and SC pool maintenance, leading to both short- and long-term deficits 

in muscle regenerative capacity.
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Multipotent Progenitors – Potential Sources of Fat and Fibrosis

Progressive fat accumulation and fibrosis in RC tears at the whole-muscle level is 

indisputable, but the cell population(s) responsible remain unresolved. Further complicating 

our understanding of fat accumulation mechanisms is the finding that lipid-filled cells 

accumulate in distinct locations (epimuscular, interfascicular, and intrafascicular) within the 

muscle structure34; 110, where lipid in different anatomical locations may be the result of 

disparate cellular processes or cell populations. SCs are theoretically capable of adopting an 

adipogenic fate111; 112, and the lipid content of mature muscle fibers is known to increase 

with tear50. However, there is no current consensus on whether SCs can trans-differentiate 

into adipocytes in vivo113; 114, and at a minimum the niche must be significantly 

manipulated in vitro to alter SC fate115; 116.

Multipotent adipose stem cells (ASCs) have also been implicated in fat accumulation, 

particularly at the epimuscular border110. In this region, adjacent to existing fat depots, there 

is evidence that RC tear leads to a whitening of the normally beige epimuscular fat depot, 

with implications for paracrine signaling that may affect muscle regeneration110. Yet fat 

accumulation does not strictly proceed from the muscle border, particularly in more 

advanced disease117. As such, two additional native muscle stem cell populations, fibro/

adipogenic progenitors (FAPs) and perivascular stem cells/pericytes have been the focus of 

research into the source of fat in torn RC muscle. A comprehensive discussion of the role of 

these cell types in skeletal muscle is beyond the scope of this review and can be found 

elsewhere118; 119.

The bipotent FAP population, first described independently by Uezumi120 and Joe121 in 

2010, is the most attractive candidate of the muscle resident cells implicated in RC disease 

progression (Figure 1, Quiescent FAPs). With an indispensible role in normal muscle 

regeneration (where they synthesize new, regenerative matrix)122; 123 and ability to 

differentiate into either adipocytes or fibroblasts120; 121 (Figure 1, Pro-Myogenic FAPs, 
Adipogenic FAPs), dysfunction of FAP’s could be implicated in all three detrimental 

changes in torn RC (muscle loss, fibrosis/stiffening, and fat accumulation). Indeed, the 

conditions under which FAPs take on an adipogenic fate exist in the inflammatory 

environment of the torn human RC123, and a small animal model has shown potential for 

adipogenic differentiation of FAPs in the context of RC tear124.

Unlike FAPs, pericytes are a heterogeneous population125, are not muscle specific, and are 

capable of differentiating into a wider array of mesenchymal cells, including skeletal 

muscle126, adipocytes127, fibroblasts128; 129, and others127; 130. In non-muscle tissues, 

matrix stiffening causes pericytes to adopt a myofibroblast/fibrotic phenotype128; 129, which 

leads to a positive fibrotic feedback loop131. In the same small animal RC tear model used to 

evaluate FAP fate, pericytes were found to contribute to both adipogenic and fibrogenic cell 

populations124, though more stringent cell classification and more clinically relevant models 

(discussed below) are needed to definitively characterize and study the source(s) of 

adipocytes in RC disease.
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A caveat to the findings presented in this section is that, due to a lack of a definitive marker 

for either FAPs or pericytes, studies of these cell populations are inherently studies of mixed 

populations that share a small number of specific markers. Of particular note is the overlap 

between markers for pericytes, FAPs, and many other subpopulations that are generally 

considered mesenchymal stem cells132. One such marker, PW1, is a good example of this 

conundrum; PW1+ stem cells have been found in many tissue types133 and share many other 

markers and characteristics with pericytes, including myogenic potential134, yet PW1+ cells 

and classical pericytes are distinct populations135. As such, differentiating between these cell 

populations remains a challenge, and complicates efforts to identify or describe a unique cell 

population primarily responsible for fat accumulation in RC disease, if such a population 

exists.

Mechanobiology of Inflammatory Cells – Regulating the Regulators

Infiltration and persistence of inflammatory cells is a key feature of the RC disease process 

in both tendon5; 136 and muscle34; 95. Understanding inflammatory cell population dynamics 

is particularly important given the complex role of timing and specific inflammatory milieu 

in modulating the changes in muscle fibers and resident stem cells described in the 

preceding sections. Here, we will highlight findings in the broad field of inflammatory cell 

mechanobiology137; 138 as they relate to the pathology of RC tears.

Inflammatory cells are known to accumulate in the tendon in the earliest stages of disease, 

where they are thought to modulate the degeneration of the tendon that eventually leads to 

muscle unloading3; 96; 98; 139. Therefore, it is possible that the original inflammatory 

response observed in RC muscles is the result of local degeneration-related signaling from 

the tendon. While it is unclear if RC tendon and muscle share common degenerative 

mechanisms at the cellular or molecular level, based on the high degree of physical and 

biochemical cross-talk between the two tissues140; 141 it is possible that inflammatory or 

degenerative findings in muscle may inform research in tendon, and vice versa.

Of the inflammatory cell populations, the myeloid class generally and monocyte/

macrophage subpopulation in particular is commonly implicated in modulating skeletal 

muscle responses to injury and disease142 (Figure 1, Monocytes, Eosinophils, Neutrophils, 
M1/M2 Macrophages). While the complexity of the inflammatory milieu is beyond the 

scope of this review and has been reviewed elsewhere143; 144, in general, when muscle fibers 

and surrounding matrix are damaged in healthy muscle, myeloid cells are recruited to the 

injury region by a combination of released cytokines/chemokines and subsequent increased 

matrix permeability145. This acute inflammation is marked by M1 macrophage 

polarization146 and release of pro-inflammatory cytokines142 and proteases147. Resolution, 

characterized by M2 macrophage polarization146 and expression of anti-inflammatory and 

often pro-fibrotic and pro-survival cytokine and growth factor release, quickly follows in 

non-pathological situations103. This normal regenerative cascade appears to be altered in RC 

disease.

Increased matrix stiffening and matrix remodeling in RC disease likely influence both 

inflammatory cell migration148 and cytokine release profile, skewing toward reduced 
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migration speed149 and prolonged, enhanced release of pro-inflammatory cytokines150 on 

stiffer matrix (though these findings have not been evaluated specifically in RC muscle). 

While in some diseases abnormal inflammation alone is enough to drive muscle damage and 

degeneration151, it remains to be seen whether pro-inflammatory cells and signals are active 

participants in RC muscle degeneration, or if persistent inflammation is the result of 

continual muscle injury.

Clinical Considerations and Concerns of Pre-Clinical Models

These findings have important clinical significance, but many questions still remain. Muscle 

atrophy and degeneration are fundamentally different mechanisms of muscle loss, and must 

thus be treated with fundamentally different interventions. From a rehabilitation perspective, 

selecting the correct intervention is complicated by the existence of both modes of muscle 

loss along the spectrum of disease. Mechanical reloading (i.e. exercise and/or tendon repair) 

is generally sufficient to recover from atrophy13; 16; 17; 152, including limited evidence for 

this finding in RC153. But in a stiff, degenerating muscle, exercise and the damage that may 

result from mechanical overload may accelerate the pace of muscle loss23; 25; 34. In torn RC 

this is particularly concerning, as the normal inflammatory and regenerative processes that 

are associated with positive muscle changes following exercise are likely 

impaired30; 102; 150.

In terms of surgical intervention and repair, the altered muscle architecture and increased 

stiffness must be considered, particularly in chronic, massive tears154–156. These 

pathological changes suggest that repair of large tears may be futile from a functional 

standpoint, as repair may cause more damage38 and the muscle may not adapt sarcomere 

number and length normally36. Tendon repair alone is also unlikely to ameliorate the pro-

degenerative/anti-regenerative environment of the chronically torn cuff, further diminishing 

the likelihood of successful functional restoration in large and massive tears. Given these 

findings, two issues still remain: our ability to reliably measure these important biological 

phenomena clinically, and a framework in which this type of biomechanical and biological 

information can be used for clinical and surgical decision-making.

Two final confounding issues in studying the biomechanical and cellular regulators of RC 

disease are discrepancies between animal models and human patients or patient-derived 

cells, and inconsistencies in findings between different laboratories. Briefly, while large 

animal models recapitulate the muscle stiffening and atrophy found in the early phase of RC 

disease18; 19; 21; 40; 45, small animal models require a nerve injury (denervation) to achieve a 

similar phenotype157–159. However, nerve injury (denervation in particular) is a relatively 

rare feature of clinical RC disease, and may confound results from such models as the 

mechanisms of denervation atrophy and disuse atrophy are not equivalent15. To date, no 

animal model has demonstrated the accumulation of muscle damage and cellular 

degeneration found in humans, and only the sheep model seems to accumulate fat to a 

degree that is similar to patients with advanced disease21. This is problematic when trying to 

translate animal research to the clinic, as preclinical models do not share the disease 

processes that govern the most intractable clinical cases. Complicating this issue are 

differences in cell markers and behavior between humans and animals, differences in patient 
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demographics between human studies, and inconsistencies in isolation methods that are used 

to identify SCs, FAPs, and pericytes. This leads to potentially significant and confounding 

discrepancies between the cell populations evaluated from model to model and study to 

study, and likely contributes to the conflicting effects of various factors on resident cell 

dynamics reported in different publications.

Conclusions

Skeletal muscle is in a constant state of dynamic equilibrium between contractile protein 

gain and loss. In RC disease, the role of the macro- and micro-mechanical environment is 

paramount. The initial insult to the muscle is fundamentally an unloading event, where 

tendon tear and pain lead to direct mechanical unloading and indirect disuse, both of which 

lead to muscle atrophy. The secondary and tertiary effects of the initial unloading insult are 

also mechanically sensitive. With prolonged retraction of the muscle, the matrix becomes 

stiff, leading to potentially increased incidence of muscle damage while simultaneously 

creating an environment in which regeneration is likely inhibited, which may help explain 

the progressive, irreversible muscle loss due to degeneration observed in RC disease.
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Figure 1. 
Conceptual control system diagram representing 33 key controllers and actuators of muscle 

gain (green) and loss (red) that may be affected in rotator cuff muscle pathology. Black lines 

represent processes that may contribute to muscle gain or loss, depending on context. Lines 

ending in arrowheads indicate a proliferative, intensifying or otherwise increasing effect on 

the indicated element, while lines ending in perpendicular lines indicate an inhibitory or 

otherwise diminishing effect. Dashed lines denote downstream processes that feed backward 

through the system to modulate upstream cell populations or processes. Additionally, system 

elements are color-coded by predominant functional category and shaded to indicate 

biological category, though again some elements may contribute to gain or loss in a context 

dependent manner. It is important to note that this is not a comprehensive map and does not 

show all known or possible interactions.
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Figure 2. 
Schematic of progression of muscle pathology through different stages of RC disease. In 

healthy muscle with intact tendon (represented as a single fascicle connected to a tendon for 

simplicity), densely-packed muscle fibers are organized into fascicles by perimycium 

(translucent blue sheath), sarcomere length is maintained (black pattern on center-front fiber, 

not to scale), and muscle resident cells remain quiescent (note that cells are not to scale). 

With tendon disruption, RC muscle progresses to the atrophic disease stage, where muscle 

fibers become shorter, fiber cross-sectional area is reduced, and fat, fibrosis, and 

inflammation appear, while muscle architecture and overall muscle fiber and satellite cell 

numbers remain relatively constant. In the advanced, degenerative stage of RC disease, 

muscle fiber architecture is altered as sarcomeres remain chronically short, and damage and 

degeneration-regeneration becomes apparent (represented by the heterogeneous, 

hypercellular/myophagocytic light-pink fibers and centrally-nucleated, otherwise healthy 

fibers, respectively). The accumulation of inflammatory cells, collagen, and fat in both the 

inter-fascicular space (yellow spheres outside blue perimycium) and intra-fascicular space 

(yellow spheres between fibers) is more pronounced in the degenerative phase. Resident 

stem cell function is also disrupted in this stage of disease (represented in green in this 

schematic).
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