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Abstract

Foraging for resources is a fundamental behavior balancing systematic search and strategic 

disengagement. The foraging behavior of primates is especially complex and requires long-term 

memory, value comparison, strategic planning, and decision making. Here we provide evidence 

from two different foraging tasks that neurons in primate posterior cingulate cortex (PCC) signal 

decision salience during foraging to motivate disengagement from the current strategy. In our 

foraging tasks, salience refers to the difference between decision thresholds and the net harvested 

reward. Salience signals were stronger in poor foraging contexts than rich ones, suggesting low 

harvest rates recruit mechanisms in PCC that regulate strategic disengagement and exploration 

during foraging.
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Introduction

Animals forage for a wide range of resources (Stephens and Krebs 1986), making a series of 

sequential, non-exclusive, accept-or-reject decisions (Stephens 2008; Calhoun and Hayden 

2015). Hypothesized as a major selective pressure driving the expansion of neocortex in 

primates (Milton 1988; Genovesio et al. 2014; DeCasien et al. 2017), foraging is a 

fundamental cognitive skill (Newell 1994; Hills et al. 2010) applicable in a variety of 
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domains including search (Cain et al. 2012; Wolfe 2013), memory (Hills et al. 2015), and 

social (Hills and Pachur 2012; Turrin et al. 2017) and executive processing (Payne et al. 

2007; Wilke et al. 2009; Metcalfe and Jacobs 2010; Payne and Duggan 2011). Despite 

widespread relevance, the neural circuits mediating foraging have only recently begun to be 

described (Hayden et al. 2011; Kolling et al. 2012; Shenhav et al. 2014).

The anterior and posterior cingulate cortices, strongly and reciprocally connected 

(Heilbronner and Haber 2014), are both implicated in control (Botvinick et al. 2004; Pearson 

et al. 2011). During foraging, dorsal anterior cingulate cortex (dACC) carries signatures of 

reward-based computations (Hayden et al. 2011; Kolling et al. 2012; Shenhav et al. 2014) 

but the role of the posterior cingulate cortex (PCC) remains unknown. Neuroimaging studies 

link PCC activity with value (Kable and Glimcher 2007; Knutson and Bossaerts 2007), 

strategy (Wan et al. 2015), and change detection (Summerfield et al. 2011; McGuire et al. 

2014). PCC neurons signal rewards (McCoy et al. 2003), risk (McCoy and Platt 2005), task 

switches (Hayden and Platt 2010), and exploratory decisions (Pearson et al. 2009). In 

addition, microstimulation of PCC provokes preference reversals (Hayden et al. 2008) and 

inactivation impairs learning (Heilbronner and Platt 2013). This diverse array of 

observations may reflect computations that regulate foraging behavior.

Here we show PCC neurons signal salience in motivating decisions to disengage during 

foraging. Salience refers to attentional capture by environmental events (Treisman and 

Gelade 1980; Gottlieb et al. 1998) or decision outcomes (Pearce and Hall 1980; Esber and 

Haselgrove 2011; Kahnt et al. 2014), and regulates stimulus processing (Corbetta and 

Shulman 2002), learning (Yu and Dayan 2005) and motivation (Bromberg-Martin et al. 

2010; Kahnt and Tobler 2013). PCC neurons are known to signal outcome salience, 

including reward size (McCoy et al. 2003), omission (McCoy et al. 2003), and variance 

(McCoy and Platt 2005), as well as offer salience, the absolute difference of option values 

from a standard (Heilbronner et al. 2011).

Here we report that foraging salience, defined as the absolute difference between 

experienced and threshold cumulative reward, regulated strategy in two separate foraging 

tasks involving distinct decisions to disengage. In the patch foraging task, monkeys chose 

between harvesting reward from a diminishing source and disengaging to forage in a new 

one. In the traveling salesman task, a circular array of targets was baited unpredictably with 

large and small rewards. Monkeys developed routine circular patterns of target exploitation, 

known as a trapline in behavioral ecology (Berger-Tal and Bar-David 2015; cf. Freeman 

1968 after Darwin). In both tasks, PCC neurons forecast decisions to disengage and signaled 

foraging salience, with stronger signals in poor environments than rich ones. Our results 

suggest PCC neurons signal foraging salience to promote strategic disengagement and 

exploration.

Results

Travel times and decision salience drive patch leaving decisions

In the patch leaving task, monkeys (M. mulatta) decided to harvest reward from a depleting 

patch or to disengage and replenish it (Figure 1A). They made a series of decisions to 
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harvest a juice reward that decreased over time as it was repeatedly chosen (initially 0.3 mL, 

decreasing in ~0.02 mL steps) or to reset the value of the patch, incurring a “travel time” that 

varied from patch to patch. Patch residence time increased as travel times increased (Figure 

1B), corroborating prior observations (Hayden et al. 2011) (linear regression, p < 0.00001, β 
= 1.40; Monkey L (ML): p < 0.00001, β = 1.11; Monkey R (MR): p < 0.00001, β = 1.50).

We considered three models of patch-leaving decisions: an optimal foraging model based on 

the Marginal Value Theorem (MVT; Charnov 1976), a net foraging model based on survival 

analysis (Fox 2001), and a salience model inspired by attentional learning theory (Pearce 

and Hall 1980). The optimal foraging model set the decision variable to the difference 

between the current reward rate and the MVT-calculated optimal reward rate for departing a 

patch. The net foraging model captured the central tendencies of the decision to leave a 

patch by setting the leave threshold to the mean of the exponential reward intake function 

and setting the decision variable to the reward differential, the difference between the current 

net harvested reward computed over the whole patch and threshold net harvested reward 

computed from the mean of the intake function. The salience foraging model set the decision 

variable to the product of the reward differential and weighted salience, the absolute value of 

the reward differential.

The salience foraging model provided the best fit to patch leaving decisions (Figure 1C; 

mean AIC score ± s.e.m.: net foraging model: 509.87 ± 28.88; ML: 400.50 ± 31.45; MR: 

604.97 ± 36.73; optimal foraging model: 488.65 ± 28.50; ML: 373.23 ± 29.57; MR: 589.02 

± 35.46; salience foraging model: 398.75 ± 26.60; ML: 272.80 ± 21.27; MR: 508.27 

± 31.84; see methods). Corroborating these fits, response times were faster for more salient 

choices (linear regression by day of response times vs. salience; ML: mean β = −0.022 

± 0.025, Student’s t-test, p > 0.39, t(19) = −0.88; MR: mean β = −0.13 ± 0.0089, Student’s t-

test, p < 1×10−12, t(22) = −14.94).

PCC neurons forecast leave decisions and dynamically signal salience during patch 
foraging

We recorded activity of 159 PCC neurons (Figure 1D; 96 in ML, 63 in MR; individual 

monkey results in Supplement). Firing rates predicted patch leaving decisions many seconds 

in advance by ramping up or down in the last 15 s in patch (example cell, Figure 2A; patch 

exit epoch; linear regression during patch exit epoch, p < 1×10−20, β = 0.20 ± 0.020, Figure 

2A). Eighty-six (54%) of 159 cells showed a significant increase or decrease in activity 

approaching patch exit (linear regression during patch exit; p < 0.05). This pattern is 

reminiscent of ramping of neuronal activity to a threshold observed for perceptual and 

foraging decisions (Gold and Shadlen 2007; Hayden et al. 2011) but extended continuously 

across multiple actions. We focused the remaining analyses on this patch exit epoch.

Because PCC neurons signal and causally facilitate learning in low value contexts but not 

high ones (Heilbronner and Platt 2013), we next queried whether PCC neurons signal patch 

departures differently in distinct reward rate contexts. Reward rate was defined as the net 

reward harvested in a patch divided by time spent harvesting. Poor environments presented 

low (z-score ≤ 0) reward rate decision contexts and rich environments presented high (z-

score > 0) ones. An example neuron showed a significant increase in firing rate preceding 
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the decision to leave the patch in poor environments (Figure 2B; linear regression, p < 

1×10−23) but not rich ones (p > 0.4). The slopes of these regressions differed significantly 

(ANCOVA, p < 1×10−13, F(1,596) = 62.57). Environmental richness modulated this 

neuron’s ramping activity across patches (linear regression of patch-by-patch slopes vs. z-

scored reward rate, p < 0.001), a pattern seen in the slopes of 20 (13%) of 159 cells (linear 

regression, p < 0.05). This pattern was also evident in the average population activity (Figure 

2C; linear regression, poor: p < 1×10−9, rich: p > 0.35; ANCOVA, p < 0.00005, F(1,596) = 

17.21).

The observation that firing rates of PCC neurons predict impending patch departures 

prompts the question of whether PCC neurons also signal salience, and if so, whether 

salience signals vary with environmental richness. Rich environments may attenuate salience 

signaling because the current strategy remains profitable. Combined with differences in 

ramping across contexts, the dependency of salience signaling on environmental richness 

predicts a three-way interaction during the patch exit epoch between time, reward rate, and 

salience. Spike counts in 50 ms bins were regressed against all three covariates and all 

interactions using a generalized linear model (GLM) with a log-linear link function and 

Poisson distributed noise. Of 159 neurons, 25 (16%) showed significant interactions of all 

three covariates (ML: 17 (18%) of 96 neurons; MR: 8 (13%) of 63 neurons; see methods). 

To examine temporal dynamics, all spikes in a sliding boxcar (3 s width, 50 ms steps) were 

regressed against reward rate, salience, and their interaction (Figure S3A, cells sorted from 

negative (top) to positive (bottom) by the sum of the beta coefficients). This analysis 

revealed a pattern of positive and negative salience coefficients over time, with some cells 

positively signaling foraging salience and others negatively, indicating PCC neurons do not 

store salience information between patch leaving decisions.

Context dependent salience signaling also predicts stronger salience signals in poor 

environments. Coefficients for salience were negatively correlated with coefficients for the 

interaction of reward rate and time in patch (Figure 2D; linear regression, β = −0.17 ± 0.042, 

p < 0.0005), confirming this prediction.

Finally, this context dependency predicts the influence of salience on firing rates in poor 

patches should be larger than in rich ones. We regressed spike counts during the whole trial 

epoch (1 s before choice to 1 s after) against salience for poor and rich patches separately. In 

rich environments there was no population-level effect of salience (linear regression, mean β 
= 0.098 ± 0.090, Student’s t-test, p > 0.27, t(158) = 1.10). By contrast, in poor environments, 

greater salience was accompanied by increased average firing rates in the whole population 

(mean β = 0.48 ± 0.18, p < 0.01, t(158) = 2.67). The influence of salience was also larger in 

poor environments than in rich ones (Student’s t-test, mean Δβ = 0.38 ± 0.18, p < 0.05, 

t(158) = 2.16).

Monkeys trapline forage to solve a traveling salesman problem

In our traveling salesman task, monkeys visually navigated through a circular array of six 

targets (Figure 3A). Two targets were randomly baited on each trial, one with large and one 

with small reward. Monkeys spontaneously developed traplines, defined as a set sequence of 

choices. They typically chose targets in the same sequence across days, tracing a circle, the 
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most efficient route (the daily dominant pattern, DDP; ML: same DDP across 24 of 30 

sessions; MR: same DDP across all 14 sessions; Figure 3B; see methods).

Though monkeys usually chose targets in the same order, they occasionally diverged from 

this routine, providing an opportunity to investigate changes in foraging strategy in a second 

task. Across all recording days, mean proportion of diverge trials was high, 0.21 ± 0.017 of 

all trials (ML: 0.22 ± 0.025; MR: 0.18 ± 0.0078). To capture these divergences, the three 

foraging models used in the patch foraging task were fit to monkeys’ choices on the 

traveling salesman task (see methods). Choices were coded as decisions to stay on the 

trapline or diverge from it, excluding trials where monkeys started with an off-trapline 

choice. Again, the salience foraging model provided the best fit to decisions to diverge 

(Figure 3C; mean AIC score ± s.e.m.: net foraging model (×103): 1.80 ± 0.21; ML: 1.86 

± 0.29; MR: 1.66 ± 0.26; optimal foraging model (×104): 3.12 ± 0.22; ML: 3.01 ± 0.26; MR: 

3.34 ± 0.44; salience foraging model (×103): 1.73 ± 0.21; ML: 1.80 ± 0.29; MR: 1.58 

± 0.26; see methods). Corroborating these fits, response times were faster for more salient 

choices (linear regression by day of response times vs. salience; ML, mean β = −0.058 

± 0.013, Student’s t-test, p < 0.0005, t(29) = −4.49; MR, mean β = −0.039 ± 0.0090 

(Student’s t-test, p < 0.001, t(13) = −4.28).

PCC neurons predict path divergences and dynamically signal salience during traplining

We predicted that the patterns of neural activity observed in PCC during patch foraging also 

would be evident during traplining. To test this hypothesis, we recorded spiking activity of 

124 new neurons in the same two monkeys (Figure 1D; 84 in ML; 40 in MR). Firing rates 

predicted when monkeys would diverge from traplines. In our population, 59 (48%) of 124 

neurons signaled choices on which monkeys diverged from traplines (linear regression on 

spike counts during anticipation epoch from 250 ms before choice saccade to 250 ms hold 

fixation after, p < 0.05; see methods), and 54 (44%) of 124 neurons predicted decisions to 

diverge from traplines one choice in advance (linear regression on average firing rates during 

anticipation epoch, p < 0.05). Forty-four (35%) of 124 neurons signaled diverge decisions in 

both conditions.

PCC neurons forecast divergences from traplines with phasic responses, as illustrated by the 

example cell (Figure 4A) and population response (Figure 4B). To quantify this difference, 

mean firing rate in a 1 s epoch before divergence was compared to the mean firing rate 

before the last non-diverge choice. Of 124 neurons, 59 (48%) fired more preceding diverge 

choices than preceding non-diverge choices (Student’s t-test, p < 0.05). An example neuron 

(Figure 4A) showed higher firing rates on choices immediately prior to diverging (Student’s 

t-test, p < 1×10−9, t(288) = 6.58). This same pattern characterized the population response 

(Figure 4B), with higher firing rates prior to decisions to diverge compared to non-diverge 

(Student’s t-test, p < 1×10−8, t(38) = 8.01).

Akin to the differences in patch leave signaling in PCC neurons, this predictive signaling for 

path divergences differed in rich environments compared to poor. After sorting rich (reward 

rate z-score > 0) and poor (reward rate z-score ≤ 0) environments, the same sample neuron 

showed differences in predictive signaling across contexts (Figure 4C), with higher firing 

rates in poor environments (linear regression of mean firing rates by trial vs. z-scored reward 
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rate, p < 0.005). The activity of 19 of 124 cells (15%) was correlated with reward rate (linear 

regression, p < 0.05). Elevated activity in poor compared to rich environments was also 

observed in the population preceding decisions to diverge (Figure 4D; linear regression, p < 

0.05).

We next explored whether PCC neurons signal foraging salience during trapline foraging 

and if such signals depend on environmental richness. The dependency of salience signaling 

on environmental richness predicts a three-way interaction preceding a diverge decision 

between time, reward rate, and salience. PCC neurons signaled the interaction between all 

three covariates, albeit more weakly than during patch foraging: of 124 PCC neurons, 13 

(10%) signaled the interaction of all three covariates (GLM, spikes sorted in 50 ms bins 

from first choice in trial to diverge choice and regressed against time before diverge, reward 

rate, salience and all interactions, Bonferroni corrected; ML: 9 (11%) of 84 neurons; MR: 4 

(10%) of 40 neurons; see methods). A sliding boxcar plot (Figure S3B) revealed a much 

noisier but similar pattern of positive and negative salience coefficients as observed in the 

patch-leaving task (Figure S3A).

Such context dependent signaling also predicts a negative correlation between beta weights 

for salience and for the interaction of reward rate and time. Regression of the salience 

coefficients against coefficients for the interaction of reward rate with time revealed a 

significant negative correlation (Figure 4E; linear regression, β = −0.078 ± 0.021, p < 

0.0005; ML: β = −0.12 ± 0.030, p < 0.0005; MR: β = −0.012 ± 0.023, p > 0.5 but with one 

outlier removed, β = −0.087 ± 0.045, p = 0.0612).

Finally, this context dependency predicts the strength of salience coding in poor 

environments should be larger than in rich ones. After sorting decisions by rich and poor 

contexts, we regressed spike counts during the whole choice epoch (250 ms before choice to 

500 ms after choice) against salience. Just as in the patch foraging task, in rich environments 

there was no population-level effect of salience (linear regression, mean β = 0.12 ± 0.075, 

Student’s t-t-test, p > 0.1, t(121) = 1.57) while one was observed in poor environments 

(mean β = 0.23 ± 0.084, p < 0.01, t(122) = 2.77). While the influence of salience was greater 

in poor than rich contexts, this difference was not statistically significant (Student’s t-test, 

mean Δβ = 0.12 ± 0.098, p > 0.2, t(121) = 1.18).

Discussion

In both tasks, the salience foraging model best described behavior. Conceptually, salience 

reflects the occurrence of statistically improbable environmental events that are relevant to 

an animal. Foraging requires tracking the environment in order to detect and adapt to 

changes in the quality, spatial location, and abundance of resources. Foraging salience 

provides an efficient way to track the need to change behavior. We hypothesize that the 

salience model best described behavior because, unlike the optimal or net foraging models, 

it captures factors that influence orienting (Simion and Shimojo 2007) and attention (Orquin 

and Loose 2013). Salience generally plays an important role in allocating attention (Gottlieb 

et al. 1998) to motivate behavior (Bromberg-Martin et al. 2010) or to learn (Pearce and Hall 

1980), and can be thought of as an increase in signal gain (Reynolds and Heeger 2009) to 
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enable faster and more accurate stimulus processing. In the best-fit model, foraging salience 

similarly serves as a multiplicative gain on cumulative harvest.

Possible cognitive roles for foraging salience signals in PCC include motivating 

disengagement, computing the value of alternative options, and tracking choice difficulty. 

First, salience signals may reflect integration of environmental information with the goal of 

optimizing rewards by motivating disengagement. Several neuroimaging studies of 

environmental change detection have reported activity in PCC reflecting integration of 

environmental signals (Summerfield et al. 2011; McGuire et al. 2014), and PCC neurons 

signal behavioral goals (Dean et al. 2004), option values (McCoy et al. 2003), reward 

uncertainty (McCoy and Platt 2005), decision strategies (Pearson et al. 2009), and decision 

salience (Heilbronner et al. 2011). In our study, PCC neurons signaled foraging salience and 

the interaction of salience with elapsed time and reward rate, a synthesis of multiple sources 

of evidence that can be used to adapt behavior to the environment. Salience signals in PCC 

were also stronger in poor foraging contexts, suggesting control signals are amplified when 

strategic changes in behavior are favored. Second, the observed signals may reflect the value 

of searching for alternatives, similar to activity in dACC (Kolling et al. 2012). In support of 

this, as the cumulative reward approaches the threshold for leaving, salience decreases and 

the value of disengaging increases in both tasks. Third, signals observed in PCC may reflect 

choice difficulty. Recent debate regarding dACC activity during foraging has explicitly 

contrasted the value of search with choice difficulty (Shenhav et al. 2014). As the agent 

approaches the threshold net reward for disengaging, salience decreases, making the 

decision more difficult. Given our experimental design, we are unable to distinguish between 

these possibilities.

Foraging salience signals may be computed locally within PCC, though imaging studies 

have failed to identify other types of salience signals (Litt et al. 2010; Kahnt and Tobler 

2013; Kahnt et al. 2014). Failure to find salience signals in PCC in fMRI studies may reflect 

variation in the sign of salience signals across the population and across time within the 

same neuron (Figure S1). Salience signals may also be sent to PCC from other areas. PCC is 

preferentially innervated by projections from locus coeruleus (LC) and expresses a greater 

proportion of noradrenergic receptors than other cingulate regions (Bozkurt et al. 2005). LC 

contributes to change detection (Nassar et al. 2012), exploration (Jepma and Nieuwenhuis 

2011), and outcome salience (Aston-Jones and Cohen 2005) for orienting attention (Corbetta 

et al. 2008) and learning (Sara and Bouret 2012), potentially a source of salience signals in 

PCC. Alternatively, salience signals have been observed in cortical areas connected with 

PCC, including lateral prefrontal cortex (Kobayashi et al. 2006), posterior parietal cortex 

(Kahnt et al. 2014), anterior cingulate cortex (Litt et al. 2010; Kahnt et al. 2014), 

orbitofrontal cortex (Ogawa et al. 2013) and temporoparietal junction (Kahnt et al. 2014). 

PCC may integrate information from some or all of these areas to compute foraging salience 

to adapt behavior to the current environment (Pearson et al. 2011).

The framework of disengagement decisions covers many cognitive behaviors that evolve 

over multiple actions and involve many types of resources, both external and internal (Hills 

et al. 2008). Foraging presents a powerful approach for studying how decisions unfold over 

multiple actions, and may be the foundation upon which more complex strategic decisions 
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are built (Pearson et al. 2014), a view supported by finding a common set of neural 

computations regulating disengagement decisions in patch leaving and traplining.

STAR Methods

Contact for Reagent and Resource Sharing

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, David L. Barack (dbarack@gmail.com).

Experimental Model and Subject Details

Two mature (aged ~6–9 years) male rhesus macaques (M. mulatta) participated. Monkeys 

were single housed in cages in a colony room with other monkeys, allowing auditory and 

visual contact. Monkeys received daily enrichment and biannual health check-ups. As of the 

beginning of the first task, one of the monkeys had been used on two previous experiments 

for both recording and inactivation in PCC (ML) and one was naïve (MR).

After initial behavioral training, a head-restraint prosthesis (titanium; Crist Instruments) and 

recording chamber (acrylic; Crist Instruments) permitting access to PCC were implanted 

using standard aseptic surgical techniques. All surgeries were performed in accordance with 

protocols approved by the Duke University institutional animal care and use committee and 

were in accord with the Public Health Service Guide to the Care and Use of Laboratory 
Animals. Monkeys were anesthetized using isoflourane, received analgesics and antibiotics 

after surgery, and permitted a month to heal before any recordings were performed.

Method Details

Two monkeys were trained on both tasks, first the patch leaving task, followed by neural 

recordings, and then the traveling salesman task, followed by neural recordings. Neural 

recordings began once a stable pattern of behavior emerged, within two weeks of onset of 

training for both tasks. For the patch leaving task, we regarded behavior as stabilized when a 

significant influence of travel time on total time in patch emerged (cf. (Houston and 

McNamara 1999). For the traveling salesman task, we regarded behavior as stable when 

monkeys exhibited the same pattern of choices (a trapline) over the course of five behavioral 

sessions.

During training and recording, monkeys’ access to fluid was controlled outside of 

experimental sessions. Custom software written in MATLAB (Mathworks, Natick, MA, 

USA) using Psychtoolbox (Brainard 1997) controlled stimulus presentation, reward delivery, 

and recorded all task and behavioral events. Horizontal and vertical eye traces were sampled 

at 1000 Hz by an infrared eye-monitoring camera system (SR Research, Osgoode, ON) and 

recorded using the Eyelink toolbox (Cornelissen et al. 2002). Solenoid valves controlled 

juice delivery. All data were analyzed using custom software written in MATLAB.

Patch Leaving Task Behavioral Modeling—This task simulates a patch-leaving 

problem by presenting the animal with a two-alternative forced choice decision between 

continuing to forage at a depleting resource and waiting to replenish the resource (Hayden et 
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al. 2011); Figure 1A). To begin the trial, the animal fixated (± 0.5°) on a centrally presented 

cross for a random fixation time drawn from a uniform distribution (400 – 800 ms). If the 

animal prematurely shifted his gaze from the fixation cross before exhausting this time, the 

fixation clock resets to zero. If the animal exhausted the fixation time, the fixation cross was 

extinguished and the targets, a small blue rectangle and a large gray rectangle, one each on 

the left and right side of the screen, were presented. The animal could make a choice by 

aligning gaze with a target and holding it there for 250 ms. The animal was free to peruse 

the options, glancing back and forth without penalty or registration of choice, so long as the 

choice fixation period was not exhausted.

If the monkey selected the blue rectangle, he was permitted to freely look about while the 

rectangle shrank at 65 pixels/s until it disappeared. This shrink time simulated the ‘handling 

time’ for the food item, and was constant across all trials and reward sizes. At the end of this 

handling time period, the animal received a squirt of juice, followed by a 1 second intertrial 

interval (ITI) and the reappearance of the fixation cross. The reward size for the first trial in 

patch was always ~0.30 mL of juice. As the animal continued to select the blue rectangle 

(‘stay in patch’ decision), the amount of juice associated with that choice dropped each trial 

by ~0.02 ± ε mL of juice (where ε is a random term with mean = 0.002 mL and sd = 0.0001 

mL). After a series of stay in patch decisions, the animal typically decided to select the gray 

rectangle (‘leave patch’ decision). After selecting that option, the monkey was free to look 

about while the gray rectangle shrank also at 65 pixels/s. The height of the gray rectangle 

signaled the time-out penalty for leaving the patch (the ‘travel time’), and did not vary so 

long as the animal continued to stay in the patch. Once the monkey chose to leave, the gray 

bar shrank, which was followed by a 1 second ITI and the reappearance of the fixation cross; 

no juice was delivered for this choice. On the first trial in the ‘new patch’, three changes 

occurred. First, the juice reward associated with the blue rectangle was reset to its full 

amount, 0.30 mL. Second, the height of the gray bar was selected randomly from the 

distribution of 0.5 – 10.5 s. Third, the locations of the targets were switched. To avoid 

changes in behavior due to satiety, each session was limited to one hour.

Behavioral data were analyzed with three foraging models using custom software in 

MATLAB. The three foraging models were constructed on the basis of the best-fit 

distribution for cumulative reward intake. The foraging threshold was computed from the 

mean of the exponential gain function for foraging in a patch, which reflected the reward 

encounter rate. This exponential gain function was computed from the experiment-defined 

sequence of rewards and the experiment-defined trial event times (inter-trial interval = 1 s; 

handling time = 0.4 s; target acquisition fixation time = 0.25 ms; mean fixation time = 0.6 s; 

and time for reward delivery for each trial in patch) and empirically measured response time 

means, which varied daily. We then modeled the reward gain function g(t) over all reward 

harvesting choices in a patch as an exponential survival curve
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for fit reward encounter rate λ′ and cumulative time in patch T using maximum likelihood 

estimation. In order to fit this exponential, all rewards were normalized by the maximum 

possible net reward.

Like other value-based decisions (Busemeyer and Townsend 1993; Krajbich and Rangel 

2011), foraging decisions can be modeled as the integration of a decision variable to a 

threshold (Kacelnik et al. 2011; Calhoun and Hayden 2015). In our task, we considered two 

different approaches to model the decision threshold, one based on foraging theory 

(Stephens and Krebs 1986) and the other based on survival analysis (Fox 2001) using the 

mean of the maximum entropy distribution for encountered rewards, the exponential gain 

function.

First we developed a foraging theory model inspired by the marginal value theorem (MVT; 

(Charnov 1976). We computed the average reward rate from the Gamma-distributed patch 

residence times and exponential gain function (Stephens and Krebs 1986):

for average reward rate R(t̂), patch encounter rate λ, estimated patch residence time t̂, and 

reward gain function g(t̂). Rate-maximizing patch residence times t̂ were found using 

maximum likelihood estimation and the fmincon function in MATLAB. The MVT predicts 

that advanced knowledge of a longer travel time to the next patch will increase the time 

spent foraging in the current patch, whereas knowledge of a shorter travel time will decrease 

foraging time (Stephens and Krebs 1986; Houston and McNamara 1999), as we confirm in 

Figure 1. We incorporated this influence of travel time by computing the threshold for each 

ith patch separately as though drawn from a set of patches with mean travel time ti = (1/λ) 

(Stephens and Krebs 1986). The decision variable for this model was the difference between 

net received reward and the MVT-computed optimal foraging threshold. For the optimal 

foraging model, the decision variable ΔV was equal to the reward rate computed from the 

rate maximizing foraging time t̂ minus the current within patch reward rate

for optimal reward rate R(t̂) and actual current reward rate R(t).

Second, we developed a net foraging model based on the cyclical nature of patch-based 

foraging and the mean net reward harvested from a patch. Patch foraging is characterized by 

a renewal cycle (Houston and McNamara 1999): the animal makes an iterated series of 

decisions (begin foraging in patch – stay in patch – stay in patch – stay in patch – leave 

patch – begin foraging in patch etc.). Each such cycle can be modeled as lasting a certain 

amount of time. These patch residence times are modeled as a survival process (Fox 2001) 

using the net reward harvested so far in a patch, computed with the exponential gain function 

above (Houston and McNamara 1999). A leave threshold was calculated from the mean of 

the exponential gain function g(t) for rewards harvested from a patch. To capture the 
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influence of travel time on time in patch, this threshold was modulated by an additive gain 

term computed from the z-scored travel time for each patch. For the net foraging model, the 

decision variable ΔV on trial t was the reward differential, defined as the difference between 

net received reward and threshold net reward for leaving

for trials in patch 1 through t − 1, rewards R, and threshold T for patch with travel time j.

Third, we developed a salience foraging model also based on the mean net reward harvested 

in a patch but that included a salience term. Salience plays a key role in attentional learning 

models (Esber and Haselgrove 2011). In these models, the associability of a conditioned 

stimulus (CS) is the degree to which the CS can be associated with an unconditioned 

stimulus (US) (Mackintosh 1975; Pearce and Hall 1980; Esber and Haselgrove 2011). This 

associability can be defined in terms of its salience, the absolute value of the difference on 

the previous trial of the intensity of the US and the CS predicted strength (Mackintosh 1975; 

Pearce and Hall 1980). A similar sort of rule can be adopted for decision-making. The value 

of the current offer can be compared to a standard, and the absolute value of the difference 

of the offer value from the standard represents the salience of the offer (Heilbronner et al. 

2011).

The salience model computes the same decision variable as the net foraging model, but then 

multiplicatively scales this decision variable based on salience. Salience was defined as the 

absolute value of the difference between net received reward and the mean net reward 

computed from the exponential distribution. Salience was multiplied by the value of the net 

offered reward minus the decision threshold and weighted by a coefficient fit to the choice 

data (MLE). The decision variable ΔV for this model was the reward differential times the 

weighted salience

for salience coefficient βs and other variables as above. Despite containing more parameters, 

the salience foraging model was the best fit model even after correcting for the number of 

parameters (as reported in the results).

In Figures 1C and 5C, we computed the probability of choosing to leave a patch for these 

foraging models using a sigmoidal choice function with a single decision variable. The 

observed choice behavior was fit with the net foraging model, optimal foraging model, and 

the salience foraging model using the respective decision variables. For all three models, a 

standard sigmoidal choice function was used to calculate the probability of choosing the 

leave option:
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for the probability of choosing the leave option pL, value difference ΔV as defined for each 

model above, and constant σ fit using MLE. Both σ and βs were simultaneously fit using 

MLE for the salience foraging model.

Traveling Salesman Task Behavioral Modeling—In our traveling salesman task, 

monkeys foraged through a visual array of six targets by sequentially aligning gaze with 

them (Figure 5A). On every trial, one of six targets delivered a large reward (~0.2 mL), one 

delivered a small reward half the size of the large one (~0.1 mL), and the remaining four 

delivered no rewards. After aligning gaze (± 0.5°) with a fixation cross for 500 – 1000 ms, 

the target array was presented. Monkeys selected a target by directing their gaze on to it and 

holding fixation for 250 ms (± 0.5° from edge of target; targets were 60 pixels in width). 

While the locations of the targets were always the same, the identities of the rewarded 

targets varied pseudo-randomly from trial to trial. Monkeys were free to choose the targets 

in any order, but they had to select every target before being allowed to advance to the next 

trial, mimicking traplining problems in natural foraging. After completing the array, a 1000 

ms inter-trial interval was imposed, and then a new fixation cross appeared on the screen.

Our model-based analysis of behavior in the traveling salesman task computed cumulative 

rewards and reward rates. Cumulative rewards were equal to the total reward harvested 

during a trial, and cumulative reward rates divided that net reward by the cumulative elapsed 

time between choices. The total reward harvested at choice n within a trial was the sum of 

the rewards received from the previous choices 1:n-1 in that trial. The elapsed time at choice 

n was the sum of the choice fixation times (250 ms) for previous choices 1:n-1 and the 

variable response times of the monkey for all choices 1:n. Response times were calculated 

from the end of saccade for the last decision to end of saccade for the current decision.

For each day’s run, we determined the daily dominant pattern by assessing the similarity 

between every possible pair of trials on a given day by computing the pair’s Hamming score 

(Hamming 1950). To compute the similarity between two trials, each trial’s pattern of 

choices by target number was first coded as a digit string (e.g., 1, 2, 4, 5, 6, 3). The 

Hamming distance Di,i′ between two strings i, i′ of equal length is equal to the sum of the 

number of differences d between each entry in the string,

for strings x, y of length n. We computed Di,i’ for every pair of trials, and then, for each 

unique pattern of choices, computed the average Hamming distance D̄
i,i′. Larger Di,i’ 

correspond to strings with more differences. The daily dominant pattern corresponded to the 

pattern with the minimum D̄
i,i′.
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We analyzed the choices made in the traveling salesman task as decisions to continue on the 

trapline, as defined by the daily dominant pattern, or to diverge from it. We made two 

adjustments to accommodate this analysis. First, we excluded trials where the monkeys 

diverged at the very beginning of foraging, that is, trials where the first choice diverged from 

the DDP, because this behavior was not influenced by the reward harvested over the course 

of the trial. Second, we fit 30 different exponential gain functions, one for each possible 

sequence of experienced rewards during a trial (not counting zeros as unique). To compute 

the different foraging thresholds for each choice in a trial, we used the mean lambda from 

the set of gain functions that were consistent with the sequence of rewards the monkey had 

experienced leading up to that choice number in the trial. We fit the same set of models from 

the patch-leaving task analysis to the behavioral data from the traveling salesman task, and 

models were compared using the same method as well.

Quantification and Statistical Analysis

The outcomes of statistical tests are detailed in the Results, and included the use of Student’s 

t-test, linear regression, ANCOVA to compare ramp-ups during the patch leaving task, and a 

generalized linear model (GLM). Significance was set at α = 0.05, and multiple comparisons 

were always Bonferroni corrected. Results reported are mean ± standard error of the mean. 

For individual cell results, n was set to the number of patches (patch leaving tasks) or 

number of diverge and non-diverge trials (traveling salesman task). For population results, n 

was the number of recorded cells.

Behavioral models were compared using log-likelihoods. All zero probabilities were 

rectified to very small probabilities (1×10−15). We then took the sum of the logs of these 

probabilities for model comparison. Models were compared using the Akaike Information 

Criterion (AIC) (Akaike 1974), a measure of goodness-of-fit that penalizes models 

possessing more parameters. AIC is defined as

for the log-likelihood of the data given the model, LL, and the number of free parameters in 

the model, k.

Neuronal firing rates often show non-linearities (Dayan and Abbott 2001), which can be 

captured using a GLM (Aljadeff et al. 2016). All regressions on neuronal firing rates were 

performed using a GLM with a log-linear link function, Poisson distributed noise, and 

dispersion estimated from the data, and all reported results utilized Bonferroni corrected p-

values. The use of this GLM effectively models neuronal responses as an exponential 

function of a linear combination of the input variables. GLMs were run using the glmfit 
function in MATLAB.

Patch Leaving Task Neural Analysis—Analysis of neural recordings focused on the 

whole trial epoch, a two-second-wide window ranging from one second before choice to one 

second after, and a patch exit epoch, from 15 seconds before the acquisition of the leave 

target to that acquisition time. Peri-stimulus time histograms (PSTHs) were computed to 
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depict neuronal activity at the patch-level, corresponding to analyses time-locked to patch 

exits. For these patch-level PSTHs, data were aggregated into 50 ms bins and convolved 

with a Gaussian of mean 0 and standard deviation 125 ms.

Neuronal firing rates were also modeled during the patch exit window, the last 15 seconds in 

a patch. The activity of each cell for each patch was retained, and the firing rates were 

treated as a time series of binned spike counts in 50 ms bins. We first regressed the mean 

firing rate in each bin against time before patch exit. Next, we ran the same regression for 

each patch separately, regressing the binned firing rates against time. We then correlated 

those regression slopes with the z-scored reward rates from the leave trials. A similar 

regression was performed for the population after normalizing the activity of each cell by 

subtracting the mean activity and then dividing by that mean. To investigate the dynamics of 

neuronal activity around the time of patch exit, these spike counts were regressed against 

reward rate, time before exiting the patch, salience, and all 2-way and the 3-way interactions. 

Due to variability in the timing of task events and response times (both fixation acquisition 

and choice), all three covariates were decorrelated (time X reward rate: mean R2 = 0.14 

± 0.0079; time X salience: mean R2 = 0.14 ± 0.011; reward rate X salience: mean R2 = 0.30 

± 0.013).

To compare neural coding of salience in rich and poor foraging environments, whole trial 

epoch spike counts for those trials in the patch exit window were regressed against salience. 

Patches were first sorted into poor (reward rate z-score < 0) and rich (z-score ≥ 0) ones, and 

spike counts regressed separately for each. Patch reward rates were computed by summing 

the reward received in a patch and divided by the elapsed time in patch, though choosing an 

instantaneous reward rate, equal to the most recent reward before the current choice divided 

by the elapsed time since that reward, yielded similar findings.

Traveling Salesman Task Neural Analysis—We analyzed neuronal firing rates during 

the traveling salesman task for two different epochs: first, a 1000 ms epoch in 50 ms bins 

preceding either diverge or non-diverge decisions, to compare the two types of decision; 

second, a time series of spike counts in 50 ms bins from the start of a trial up to the choice to 

diverge. For PSTHs, data were binned in 50 ms bins and convolved with a Gaussian of mean 

0 and standard deviation of 75 ms.

Divergent and non-divergent choices were analyzed as follows. Only choices corresponding 

to the first divergent choice in a trial were counted as divergent. Furthermore, because we 

were interested in exploring the processes that resulted in diverging from a trapline while the 

trapline was being executed, divergent choices that occurred on the first choice in a trial 

were excluded. Such trials begin with a divergence before reward rates or other returns were 

possible during a trial and hence cannot reflect the influence of those variables. Non-

divergent choice neural activity was drawn from the fifth choice on trials that matched the 

daily dominant pattern. The fifth choice corresponds to the point in the trial where there are 

two targets left, as well as to the last point in the trial at which the monkey could still 

diverge.
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To compare diverge decisions to non-diverge decisions, the mean firing rate in a 1 s epoch 

on every non-excluded trial preceding the decision was analyzed. The two groups were 

compared using a Student’s t-test. We then split the diverge group into poor (reward rate z-

score < 0) and rich (reward rate z-score ≥ 0) environments, and compared the firing rates 

during choices of each type to the firing rate on non-diverge choices. To assess neural coding 

of diverge decisions across reward rates, we linearly regressed the mean firing rate on 

diverge trials during this 1 s epoch against z-scored reward rate. A similar regression was 

performed for the population after normalizing the activity of each cell by subtracting the 

mean activity and then dividing by that mean.

A GLM was used to determine the influence of salience on decisions to diverge. All the 

spikes from the onset of the trial up to the decision to diverge were sorted into 50 ms bins 

and then regressed against reward rate, time before divergence, salience, and all 2-way and 

the 3-way interactions. As with the patch leaving task, time, reward rate, and salience were 

decorrelated (time X reward rate: R2 = 0.063 ± 0.0048; time X salience: R2 = 0.020 

± 0.0057; reward rate X salience: R2 = 0.15 ± 0.0050). Computed coefficients from this 

regression for salience and for the interaction of reward rate and time were subsequently 

regressed against each other. 9 neurons for which fewer than 5% of trials were diverge trials 

(all from monkey L) were excluded from this analysis.

To examine differences in the strength of salience signaling for diverge trials in high and low 

reward rate contexts, spike counts from the whole choice epoch, from 250 ms before the end 

of a choice saccade to 500 ms after (covering a 250 ms hold fixation period to register a 

choice and a 250 ms post-choice period), were regressed against salience. Diverge trials 

were sorted into poor (reward rate z-score < 0) and rich (reward rate z-score ≥ 0) 

environments, and spike counts regressed separately for each. The reward rate was 

calculated by summing the rewards over the whole trial and dividing by the elapsed trial 

time, though choosing an instantaneous reward rate, equal to the most recent reward divided 

by the elapsed time from receipt of that reward to the current choice, yielded similar 

findings. Two cells were excluded from this analysis because there were too few spikes on 

diverge choices yielding coefficients in excess of 100, both from monkey L.
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Refer to Web version on PubMed Central for supplementary material.
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Highlights

· Offer salience drives monkeys’ choices to switch strategies in two foraging 

tasks

· PCC neurons signaled salience in both tasks more strongly in poor than rich 

contexts

· More PCC neurons predicted strategy switches in both tasks in poor than rich 

contexts
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Figure 1. 
Patch foraging task reveals sensitivity of monkeys to salience during foraging. A. The patch 

leaving task. Monkeys fixate on the central cross for 400 – 800 ms. Fixation then 

extinguishes and targets appear. If monkeys choose the small blue rectangle (stay in patch 

option), then a small reward is delivered after a brief delay (handling time; 400 ms) followed 

by one second intertrial interval (ITI) and beginning of a new trial. Reward associated with 

the stay in patch option also decreases by a small amount. If monkeys choose the large gray 

rectangle (leave patch option), they must wait through a time-out period corresponding to 

the height of the gray bar, and do not receive reward. This is followed by one second ITI and 

beginning of a new trial in a new patch. At onset of a new patch, reward associated with the 

blue rectangle resets to a constant initial amount, locations of the blue and gray rectangles 

are swapped, and a new height for the gray bar, signaling the travel timeout to replenish the 

patch, is selected from a uniform distribution, which correlates with a delay ranging from 

0.5 to 10.5 seconds. B. Time in patch plotted as a function of travel time. As travel times 

grew, monkeys stayed longer in a patch. 3511 patches in 43 electrophysiology sessions 

across both monkeys. C. Probability of leaving a patch vs. the decision variable for three 

different behavioral models. Black circles: mean observed probability of leaving a patch for 

the corresponding value of the decision variable. Red lines: predicted leave probability. All 

three plots display a logistic regression of leave or stay decisions against the decision 
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variable. Left panel: net reward foraging model; middle panel: optimal foraging model; right 

panel: salience foraging model. D. Recording locations for both monkeys.
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Figure 2. 
PCC neurons predict patch departures several seconds in advance. A. Sample cell PSTH 

starting 15 seconds before patch departure. This cell shows a marked increase in firing (thick 

black line) during the 15 second patch exit window. Red line: linear fit to firing rate within 

the patch exit window. Gray shading: ± 1 s.e.m. Light gray tickmarks: Sample raster plots 

from 20 patches. B. Same cell as in (A), showing differences in firing dynamics depending 

on environmental richness preceding decisions to leave a patch. Rich contexts (red trace): 

reward rate z-score ≥ 0; poor contexts (blue trace): reward rate z-score < 0. C. Population 

plot for rich and poor environments, matching the pattern observed in the sample cell in (B). 

n = 159 cells (96 from ML, 63 from MR). D. Salience coefficients plotted against the 

interaction of time and reward rate coefficients. Later and lower reward rates resulted in 

stronger salience signaling. See also Figure S3. See Figure S1 for individual monkey results.
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Figure 3. 
Monkeys spontaneously diverged from traplines in a traveling salesman task. A. Traveling 

salesman task. Monkeys fixate on the central cross for 400–800 ms. Fixation extinguishes 

and targets appear. Monkeys are free to select targets in any pattern, but must select all six 

targets to advance to the next trial. Two targets were baited, one with a small reward and one 

with a large reward (small and large juice drops respectively). B. Sample eye traces from 50 

trials each for monkey L (top) and monkey R (bottom). Left panel shows eye traces; right 

panel lists the typical order in which targets were selected (daily dominant pattern; DDP) for 

each monkey. C. Probability of diverging from trapline vs. the decision variable for three 

different behavioral models, the same models as fit to the patch leaving task choices. Same 

conventions as Figure 1C.
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Figure 4. 
PCC neurons predict trapline divergences in advance. A. Sample cell PSTH showing 

elevated activity during the inter-choice interval of diverge trials (purple trace) compared to 

non-diverge trials (orange trace). B. Population plot for diverge (purple trace) and non-

diverge (orange trace) trials. C. Same cell as in (A), showing differences in firing dynamics 

depending on environmental richness preceding divergences. Rich contexts (red trace): 

reward rate z-score > 0; poor contexts (blue trace): reward rate z-score ≤ 0. Activity was 

elevated prior to diverge decisions in poor environments only. D. Population plot for rich and 

poor environments. E. Salience coefficients plotted against time X reward rate coefficients. 
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Later and lower reward rates resulted in stronger salience signaling, matching observations 

prior to leaving a patch (Figure 2D). See also Figure S3. B, D: n = 124 cells (84 from ML, 

40 from MR). See Figure S2 for individual monkey results.
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