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SUMMARY

Cellular senescence is a state of irreversibly arrested proliferation, often induced by genotoxic 

stress [1]. Senescent cells participate in a variety of physiological and pathological conditions, 

including tumor suppression [2], embryonic development [3, 4], tissue repair [5–8], and 

organismal aging [9]. The senescence program is variably characterized by several non-exclusive 

markers, including constitutive DNA damage response (DDR) signaling, senescence-associated β-

galactosidase (SA-βgal) activity, increased expression of the cyclin-dependent kinase (CDK) 

inhibitors p16INK4A (CDKN2A) and p21CIP1 (CDKN1A), increased secretion of many bio-

active factors (the senescence-associated secretory phenotype, or SASP), and reduced expression 

of the nuclear lamina protein LaminB1 (LMNB1) [1]. Many senescence-associated markers result 

from altered transcription, but the senescent phenotype is variable, and methods for clearly 

identifying senescent cells are lacking [10]. Here, we characterize the heterogeneity of the 

senescence program using numerous whole-transcriptome datasets generated by us or publicly 

available. We identify transcriptome signatures associated with specific senescence-inducing 

stresses or senescent cell types and identify and validate genes that are commonly differentially 

regulated. We also show that the senescent phenotype is dynamic, changing at varying intervals 

after senescence induction. Identifying novel transcriptome signatures to detect any type of 

senescent cell or to discriminate among diverse senescence programs is an attractive strategy for 

determining the diverse biological roles of senescent cells and developing specific drug targets.

In Brief

The phenotype of senescent cells is highly heterogeneous, but reasons for this variability are 

poorly understood. Hernandez-Segura et al. identify senescence transcriptome signatures that are 

strongly associated with specific stresses and cell types and show that the gene expression profiles 

of various senescence programs are highly dynamic.
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RESULTS AND DISCUSSION

Specific senescence-associated transcriptome programs have been mainly characterized in 

fibroblasts. We, therefore, constructed a signature based on whole-transcriptome profiles of 

various strains of human fibroblasts subjected to different senescence-inducing stimuli. To 

increase statistical power, and limit biases associated with individual studies [11], we used 

several datasets generated at different times and in different laboratories, including ours. 

Only datasets generated using primary fibroblasts without genetic manipulation (with the 

exception of oncogenic Ras expression in the case of oncogene-induced senescence), with at 

least two biological replicates, and at least 50% of the cells positive for senescence-

associated β-galactosidase (SA-βgal) activity, were included in the analysis (Data S1A). The 

selected datasets covered 6 different fibroblast strains (BJ, IMR90, HFF, MRC5, WI38, and 

HCA-2) and 3 different senescence-inducing stimuli (replicative senescence [RS], 

oncogene-induced senescence [OIS], and ionizing radiation-induced senescence [IRIS]) and 

were generated by 5 independent laboratories (Figure 1A) [12–16].

Principal-component analysis (PCA) revealed that the tissue of origin (lung or foreskin) 

accounted for most of the variation (data not shown). However, the second and third 

principal components separated the cells according to senescence status, with some 

influence from the study/dataset of origin (Figure S1A). Nonetheless, one sample within one 

of the datasets (RS IMR90 [14]) clustered differently from its replicates. The aberrant 

clustering of this sample was reported in the original study, and this sample was then 

removed from further analysis (Figure S1A).

Each sample showed transcriptional induction of at least some of the known senescence-

associated genes, namely, p16INK4A (CDKN2A), p21CIP1 (CDKN1A), GLB1 (SA-βgal), 

and several senescence-associated secretory phenotype (SASP) factors (Figure S1B). 

Interestingly, our analysis revealed variability due to intra- and inter-laboratory culture 

conditions (Figure S1B).

We first grouped the datasets based on the senescence stimulus (Figure 1A). For RS, the 

only group with more than one dataset, we performed a meta-analysis combining three 

different methods: we used (1) a negative binomial-generalized linear model (NB-GLM), 

pooling all the samples in all the datasets for one particular senescence-inducing stimulus 

and comparing them to proliferating counterparts, and within the model, we included a 

covariate that accounted for inter-laboratory and inter-strain differences (see STAR Methods 

for details); (2) an analysis of each individual dataset and subsequent combination of the p 

values using the Fisher method; and (3) an inverse-normal p value combination technique in 

which each dataset was weighted according to the number of replicates [17, 18]. We set a 

stringent threshold of nominal p ≤ 0.01 to reduce the odds of false-positive results and 

retained only those genes that were differentially expressed by the three different methods. 

For IRIS and OIS, where only one dataset for each condition was available, we used a 

normal differential expression analysis to select genes (adjusted p ≤ 0.01). To ensure the 

identification of genes associated with senescence, and not growth arrest per se, we analyzed 

quiescent (HCA2) fibroblasts and removed from subsequent analysis those genes similarly 

regulated in both quiescence and each of the senescence conditions.
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A number of genes were associated with a specific senescence-inducing stimulus: 1,699 

genes with RS, 2,365 genes with OIS, and 647 genes with IRIS (Figures 1A and S1C; Data 

S1B–S1D). Of note, the stimulus-specific signature might be influenced by the fact that 

more than one dataset was available only for RS. However, common differentially expressed 

genes between the different stimuli were not affected by this variable. Thus, we performed a 

meta-analysis using the same three methods described for the stimulus-specific signatures 

but pooled all the datasets available and compared senescent cells (regardless of the 

stimulus) to proliferating cells. We found that 2,330 genes were differentially expressed by 

senescent fibroblasts, regardless of the senescence inducer, and half of these genes (1311 

genes) were not shared with quiescent cells (Figure 1A; Data S1E). Within the senescence-

associated signature of fibroblasts, multiple genes related to transcription and RNA synthesis 

were downregulated, while genes involved in vesicle transport were upregulated (Figure 

1B). Among the main gene ontology (GO) pathways [19, 20] showing altered in senescent 

cells, “chromatin organization,” “DNA repair,” “membrane trafficking,” and “activation of 

NF-kappaB” were notable for their known links to senescence and aging (Figure 1C) (Figure 

1C) [1, 10, 21, 22].

An important contributor to the heterogeneity of the senescence program is the expression of 

cell-type-specific genes [23]. For example, upregulation of various components of the SASP 

has been reported to be dependent on the type of cell [24]. To identify variability due to cell 

type and identify genes at the core of the senescence program, we used datasets from 

melanocytes, keratinocytes, and astrocytes. We used inclusion criteria similar to those used 

for the fibroblast datasets (Data S2A). The datasets from melanocytes and keratinocytes 

were obtained in our laboratory: the cells were induced to senescence by IRIS, RNA was 

collected 10 days after induction, and senescence status was confirmed by SA-βgal activity 

and growth arrest (Figure S2A). The dataset from astrocytes was publicly available, and 

senescence was induced by oxidative stress [25] (Figure 2A).

To identify cell-type-dependent and -independent senescence signatures, we compared the 

lists of differentially expressed genes in the three cell types with the senescence-specific 

signature derived from fibroblasts (Figure 2A; Data S2B–S2E). Cell-type-dependent genes 

were enriched in different GO terms. For instance, few GO terms related to intracellular 

transport, RNA and/or protein expression, or processing and immune system functions were 

associated with the different cell types (Figure S2B). Three of the enriched GO terms for 

either astrocytes or keratinocytes were associated with differentiation in their tissue of origin 

(namely, “neurogenesis” or “neuron differentiation” and “epithelial cell differentiation,” 

respectively).

Importantly, upon examining the list of common differentially expressed genes, we 

identified a significant number of hits (55 in total; Figure 2B; Data S2F) comprising a 

senescence core signature. Remarkably, none of the classical senescence markers 

(CDKN2A, CDKN1A, LMNB1, and members of the SASP) were among these hits, since 

either they were not differentially expressed in all the cell types, or they were shared with 

quiescence (Figure S2C). Nevertheless, within the senescence core signature, we found 

genes that had been previously linked to senescence: BCL2L2 (also known as Bcl-w), a 

negative regulator of apoptosis [26]; PATZ1, a transcriptional repressor whose expression 
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inhibits senescence in endothelial cells [27]; SMO, a component of the Hedgehog pathway 

[28]; and CCND1, a regulatory subunit of CDK4 or CDK6, whose activity is required for the 

G1/S transition [29]. Moreover, a number of other genes in the signature were reported to be 

implicated in oncogenesis or in known senescence-associated pathways (see Data S2G). In 

terms of GO and pathway analysis, some of the downregulated genes were associated with 

DNA binding or regulation of transcription, while upregulated genes were mainly related to 

DNA damage checkpoints and mitosis (Figures 2C and 2D). Of note, most of the genes had 

a moderate fold change, yet 26 of them changed greater than 1.3-fold in all cell types.

From this senescence-associated core signature, we selected a number of genes for further 

validation using qPCR and human BJ primary fibroblasts. We induced senescence by 

various means, including those used in the previous analyses (ionizing radiation, replication, 

and oxidative stress), as well as doxorubicin, a DNA-damaging chemotherapeutic agent 

known to cause senescence [30]) (Figures S3A–S3D). Senescence status was confirmed by 

SA-βgal activity (Figure S3A), lack of 5-ethynyl-2′-deoxyuridine (EdU) incorporation 

(Figure S3B), and increased expression of p16INK4a and p21CIP1 (for RS cells; Figure 

S3C). Furthermore, to investigate potential conservation among species, we measured the 

expression of a subset of genes in senescent mouse cells (mouse embryonic fibroblasts 

[MEFs] or neonatal endothelial cells) (Figures S3E and S3F). We confirmed the differential 

expression of these genes under most of the conditions tested, further validating our 

identification of a senescence core signature. In a few cases, the differential expression of 

individual genes was not statistically significant, suggesting that a combination of the 

expression level of senescence core genes might be a much stronger predictor of senescence. 

Moreover, we identified discrepancies between mouse and human cells for EFNB3, 

suggesting potential differences in senescence core signatures among species.

To validate the specificity of our senescence core signature and test its validity in predicting 

senescence in diseased tissues, we analyzed additional datasets. To exclude the possibility 

that genes in our core signature were predictors of a general response to genotoxic stress, we 

interrogated published datasets that used mild forms of DNA damage ([31]; 

GEO:GSE80207). Only one gene in our signature (PLK3) was reported differentially 

expressed in a radiosensitive lymphoblast line 4 hr after exposure to 2 Gy ionizing radiation 

(false discovery rate [FDR] ≤ 0.05), a dose that causes damage without pervasive permanent 

cell-cycle arrest. Importantly, this gene was no longer differentially expressed 24 hr or 14 

days after the radiation or at any time after radiation in a radioresistant lymphoblast line 

(data not shown).

To understand whether genes present in the core signature were differentially regulated in 

diseased and senescence-enriched tissues, we used an RNA sequencing (RNA-seq) dataset 

from lung tissues of patients with idiopathic pulmonary fibrosis, in which known senescence 

markers were detected [32]. Strikingly, ten genes in our core signature (DGKA, GBE1, 

GDNF, KCTD3, MEIS1, PDLIM4, RAI4, SPIN4, TAF13, and TRDMT1) were also present 

in this dataset (adjusted p ≤ 0.01; data not shown). These findings suggest that even in whole 

tissues where the number of senescent cells is small (most aged or diseased tissues contained 

1%–3% senescent cells [33]), some of the genes of our core signature can be identified as 

differentially regulated.
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The senescence phenotype, including the transcriptome, is highly dynamic, and not all the 

common senescence markers appear or persist simultaneously [34, 35]. However, most 

studies analyze senescent phenotypes 7–10 days after applying the senescence inducers [36, 

37]. To explore the temporal dynamics of senescence-associated gene expression, we 

generated RNA-seq datasets using fibroblasts (HCA-2), melanocytes, and keratinocytes (6 

biological replicates each) at 4 (early), 10 (intermediate) and 20 (late) times after ionizing 

radiation (Figure 3A; Data S3A–S3C). We identified 61 genes that were shared among all 

cell types and time points, 34 of which were not shared with quiescent cells (Figure S4A; 

Data S3D). GO annotations and pathway analysis revealed the differential regulation of 

genes involved in cancer and cell-cycle progression (Figure 3B).

We then obtained transcriptomic signatures that were specific for each time point to 

determine the dynamics of the response to a senescence-inducing stimulus (Figure 3C; Data 

S3A–S3C). Early senescence was characterized by DNA damage response and p53 

signaling, perhaps reflecting the first response to the damage caused by the radiation. 

Intermediate senescence was characterized by metabolic changes (the citric acid cycle and 

respiratory electron transport), p53-associated pathways, and signaling mediated by p38-

gamma and p38-delta, two isoforms of p38-MAPK (mitogen-activated protein kinase) 

known to have an important role in senescence and the SASP [38]. Notably, only in late 

senescence were cell-cycle arrest and chromatin remodeling among the top differentially 

expressed pathways, surpassing other pathways in importance (Figure 3C). Interestingly, 

genes encoding SASP factors showed significant time-point- and cell-type-dependent 

heterogeneity (Figure 3D). This variability highlights the importance of time and cellular 

identity in determining the SASP and reflects the complexity of its regulation and biological 

functions [1].

Finally, we followed, over time, the 55 genes that constituted the senescence core signature 

(Figures 2B and 4). While we found differential expression of all the genes at day 10 for 

melanocytes and keratinocytes, other time points showed high variability. In the case of 

fibroblasts, the lack of significance of some genes at day 10 is likely due to the lack of 

power from using a single dataset, since these genes reached statistical significance only 

when multiple datasets were pooled. We also validated a subset of these genes in primary 

human HCA-2 fibroblasts and confirmed differential expression compared to that in 

proliferating and quiescent cells (Figures S4B and S4C). Nonetheless, among the 55 genes 

of the senescence core signature, 13 genes were differentially regulated at every time point 

and in every cell type (Figure 4, genes in red).

Many factors can influence the senescence program and the biological functions of 

senescent cells. Here, we investigated the senescence phenotypes related to 3 main variables: 

the stress signal, the type of cell, and the time after senescence induction. We found 1,311 

genes uniquely differentially regulated in senescent fibroblasts and not quiescent fibroblasts. 

55 genes were also shared among four different cell types induced to senesce by four 

different stimuli. The temporal dynamics of these genes exposed a new layer of complexity, 

revealing that the senescence signature found is highly time dependent. Nevertheless, we 

were able to identify 13 genes as differentially regulated in all the conditions considered, 

including time.
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Among the known senescence-associated genes, we identified PATZ1, a transcriptional 

repressor that inhibits senescence [27], and CCND1, a regulatory subunit of CDK4 or CDK6 

[29]. It is noteworthy that the common senescence markers, CDKN2A, CDKN1A, and 

LMNB1, were not within the core signature, supporting the idea that known senescence 

markers lack universality for different cell types and inducers of senescence [10]. Indeed, 

one of the studies used here [14] showed that p16INK4A mRNA levels are not always 

significantly changed in senescence in some fibroblast strains. Although RNA levels do not 

always reflect protein levels, p16INK4A expression is often used as a senescence marker. 

However, it is possible that samples collected to perform the RNA-seq experiments might 

have been in a pre-p16INK4A engagement phase, as p16INK4A is often induced late after 

senescence induction [39]. By contrast, p21CIP1 was among the genes differentially 

expressed by all senescent cell types and in response to all stimuli, although it was also 

slightly upregulated in quiescence, concordant with its known involvement in both types of 

cell-cycle arrest [40]. LMNB1 was strongly downregulated in all cell types, with the 

exception of melanocytes, but was also somewhat downregulated at quiescence.

Finally, we showed that temporal dynamics strongly influence the detection of differentially 

expressed genes. In addition to the expression of the genes in our core signature, we 

included genes encoding known SASP factors (Figure 3D), further illustrating the 

heterogeneity among cell types and time points after senescence induction. These findings 

emphasize the need to include time as a variable when studying senescence. It is clear, 

though, that there is, as yet, no universal marker of senescence. Others have proposed the 

use of multiple markers [10], and we propose here the use of core transcriptome signatures 

such as we provide here. These signatures can help identify senescent cells and discriminate 

among different senescence programs. The number of genes to be tested to achieve precision 

still needs to be determined, particularly in vivo. However, our data clearly highlight the 

heterogeneity of senescent cells in culture, anticipating that these challenges might be 

amplified in vivo, where less is known about the stimuli and cell types associated with 

senescence.

STAR★METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, Peptides, and Recombinant Proteins

DMEM, GlutaMAX Supplement, 
pyruvate

GIBCO Cat#31966021

Dermal Cell Basal Medium ATCC Cat#ATCC PCS-200-030

Fetal Bovine Serum GE Healthcare Bio-Sciences Cat#SV30160.03

Pen/strep stock, 10,000/10,000, 
100ml

Lonza Cat#LO DE17-602E

Hydrogen Peroxide Solution Sigma Aldrich Cat#216763-100ML-D

Doxorubicin hydrochloride Tebu-bio Cat#BIA-D1202-1

25% Glutaraldehyde solution Thermo Fisher Scientific Cat#MERC8.20603.1000
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REAGENT or RESOURCE SOURCE IDENTIFIER

16% Formaldehyde (w/v), 
Methanol-free

Thermo Fisher Scientific Cat#28906

Diamidino-2-phenylindole (DAPI) Sigma-Aldrich Cat#D9542

Critical Commercial Assays

Beta-Galactosidase Staining Kit BioVision Cat#K802

Click-iT EdU Alexa Fluor 488 
Imaging kit

Thermo Fisher Scientific Cat#C10337

Isolate II RNA Mini Kit Bioline Cat#BIO-52073

High-Capacity cDNA Reverse 
Transcription kit

Applied Biosystems Cat#4368813

Universal Proble Library System Roche Cat#04683633001

SENSIFast Probe no-ROX One-
step Kit

Bioline Cat#BIO-76001

RNAeasy mini kit QIAGEN Cat#74104

Truseq RNA Sample Preparation 
kit

Illumina Cat#RS-122-2001 or RS-122-2002

HiSeq PE Cluster Kit v4 – cBot Illumina Cat#PE-401-4001

HiSeq SBS Kit v4 (50 cycles) Illumina Cat#FC-401-4002

Deposited Data

Self-generated RNA-seq datasets 
of IRIS in fibroblasts, 
melanocytes and keratinocytes

ArrayExpress database ArrayExpress: E-MTAB-5403

Experimental Models: Cell Lines

Human foreskin fibroblasts HCA2 O. Pereira-Smith 
(University of Texas Health 
Science Center, San 
Antonio)

N/A

Human foreskin fibroblasts BJ ATCC Cat#CRL-2522

Mouse Embryonic Fibroblasts 
(MEFs)

Self-produced N/A

Mouse primary skin 
microvascular endothelial cells

Cellbiologics Cat#C57-6064

Human Epidermal Keratinocytes 
Neonatal Foreskin

ATCC Cat#PCS-200-010

Human Epidermal Melanocytes 
Neonatal

ATCC Cat#PCS-200-012

Oligonucleotides

Sets of primers for qPCR IDT Table S1

Software and Algorithms

SRA Toolkit 2.6.2 GitHub https://github.com/ncbi/sra-tools

FastQC software v0.11.5 Babraham Institute https://www.bioinformatics.babraham.ac.uk/projects/fastqc/

Trimmommatic 0.36 Usadellab http://www.usadellab.org/cms/?page=trimmomatic

STAR-2.5.1b GitHub https://github.com/alexdobin/STAR/releases

DESeq2 Bioconductor https://bioconductor.org/packages/release/bioc/html/DESeq2.html

MetaRNaseq CRAN https://cran.r-project.org/web/packages/metaRNASeq/index.html

Consensus Path DB-human Max Planck Institute http://cpdb.molgen.mpg.de/
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REAGENT or RESOURCE SOURCE IDENTIFIER

R and associated R-packages 
(pheatmap, ggplot2, ggfortify, 
RcolorBrewer, VennDiagram)

Bioconductor, CRAN https://cran.r-project.org/web/packages/

ImageJ NIH – public domain https://imagej.nih.gov/ij/download.html

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Marco Demaria (m.demaria@umcg.nl).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell strains and culture—Human foreskin fibroblasts HCA2 (male) were obtained from 

the laboratory of O. Pereira-Smith (University of Texas Health Science Center, San 

Antonio); human foreskin fibroblasts BJ were purchased from ATCC (Cat: CRL-2522); 

Human neonatal foreskin epidermal melanocytes and keratinocytes (male) were purchased 

from ATCC (Cat: PCS-200-012 and PCS-200-010, respectively). HCA2 cells were not re-

authenticated by the laboratory, but regularly monitored for mycoplasma contaminations 

(once/2 weeks). Commercial cells were authenticated by ATCC. Mouse Embryonic 

Fibroblasts (MEFs – from unknown gender due to developmental stage) were produced from 

13.5 day embryos as previously described [41]; mouse primary skin microvascular 

endothelial cells (gender not provided by the source) were purchased from Cellbiologics 

(Cat: C57-6064). All cells were cultured in 5% oxygen and 37C for at least 4 Population 

Doublings (PD) prior to use and tested regularly for mycoplasma infection. Fibroblasts were 

cultured in DMEM (Thermo Fisher Scientific) enriched with 10% fetal bovine serum (FBS, 

GE Healthcare Life Sciences) and 1% penicillin/streptomycin (Lonza). Endothelial cells 

were grown in an endothelial cell growth media (ATCC).

METHOD DETAILS

Technical and biological replications are described in the individual methods. 

Randomization and blinding of most experiments were not possible, but otherwise 

described. Statistical methods of computation are described in specific paragraphs. Inclusion 

and exclusion criteria for RNaseq datasets are provided in Data S1A.

Sample preparation—For each condition, 3 biological replicates were generated.

Quiescence was induced by culturing the cells for 48 hr in DMEM supplemented with 0.2% 

FBS.

For ionizing radiation-induced senescence (IRIS), cells were subjected to a 10Gy dose of γ-

radiation using a137 Cesium source and medium was refreshed every 2 days. Cells were 

harvested at day 10 after irradiation for most of the experiments and validations. For the 

time series, cells were harvested at day 4, 10 and 20 after irradiation.

Hernandez-Segura et al. Page 8

Curr Biol. Author manuscript; available in PMC 2018 January 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://cran.r-project.org/web/packages/
https://imagej.nih.gov/ij/download.html


For replicative senescence (RS), cells were propagated in culture for ~4 months (re-cultured 

at 30%–40% density every time they reached 70%–80% confluency) until they stopped 

growing (~PD 65 for BJ cells).

For oxidative stress-induced senescence (OSIS), cells were treated with 200uM of hydrogen 

peroxide (Sigma Aldrich) for 2 hr, followed by drug removal and culturing in fresh DMEM 

supplemented with 10% FBS. Treatment was repeated at day 0, 3 and 6, with medium 

refreshed every 2 days in between, and cells harvested on day 10 after the first treatment.

Doxorubicin (Tebu-bio) was used in a concentration of 250 nM for 24 hr. The medium was 

then replaced by normal DMEM supplemented with 10% FBS and refreshed every 2 days. 

Cells were harvested on day 7 after treatment.

Proliferating controls for each condition were generated stimulating cells with the 

corresponding vehicles and/or considering the same PD of the treated samples. When only 

one control for multiple conditions is shown, it represents the average of controls for each 

condition.

SA-βgal assay—Cells were plated in a 24-well plate, fixed in a mixture of gluteraldehyde 

and formaldehyde (2%/2%) for 10–15 min and stained overnight with an X-Gal solution 

using a commercial kit (Biovision). Cells were counter-stained with a 1 μg/ml 4′,6-

diamidino-2-phenylindole (DAPI, Sigma-Aldrich, D9542) solution for 20 min. Every 

biological replicate was stained in duplicate, and counting was made in blind.

EdU staining—Cells were cultured for 24 hr in the presence of EdU, and fixed and stain 

using a commercial kit (Click-iT EdU Alexa Fluor 488 Imaging kit; Thermo Fisher 

Scientific). Every biological replicate was stained in duplicate, and counting was made in 

blind.

Real Time-PCR—Total RNA was prepared using the Isolate II Rna Mini Kit (Bioline). 

255 – 500 ng of RNA was reverse transcribed into cDNA using a kit (Applied Biosystems). 

qRT-PCR reactions were performed as described [1] using the Universal Probe Library 

system (Roche) and a SENSIFast Probe kit (Bioline). Expression of tubulin was used to 

normalize the expression of CT values. List of primers used is provided as Table S1. Every 

biological replicate was analyzed in duplicate.

Public Datasets—A summary of the selection of the datasets and the samples used can be 

found in Data S1A. The raw data for the different public datasets used was collected from 

the “GEO repository” (https://www.ncbi.nlm.nih.gov/geo/). Five public datasets studying the 

transcriptome of senescent fibroblasts were included: 1) Alspach et al. (ID code: GSE56293) 

used RS in BJ cells as a model to study SASP induction. 2) Herranz et al. (ID code: 

GSE61130) studied the control of SASP factors in an OIS (induced by Ras) model in IMR90 

cells. 3) Marthandan et al. [2] (ID code: GSE64553) used five different strains of fibroblasts 

(BJ, WI-38, IMR90, HFF and MRC-5 cells) to study RS. 4) Marthandan et al. [1] (ID code: 

GSE63577) used MRC-5 and HFF cells to study the effect of rotenone in different PD. Only 

the first (proliferation) and last time point (RS) for HFF cells were used. 5) Rai et al. (ID 
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code: GSE53356), used IMR90 cells to study the chromatin landscape of RS. One public 

dataset produced by Crowe et al. (ID code: GSE58910) studying OSIS in astrocytes was 

used for the core signature of senescence shared by different cell types. The ID code for this 

dataset is: GSE58910.

RNaseq—Cells (6 biological replicates per condition) were prepared for RNA extraction 

via an RNAeasy mini kit (QIAGEN). Samples were treated with Qiasol lysis buffer and 

extracted for total RNA on a Qiacube robot per the manufacturer’s instructions (Invitrogen). 

The extracted RNA was quantitated using a NanoDrop (higher than 1 μg) and RNA quality 

was measured via BioAnalyzer chip (Agilent) (RIN of 8 or greater). Purified RNA samples 

were then sent to the University of Minnesota BioMedical Genomics Center for Illumina 

HiSeq RNA sequencing, where RNA-Seq library preparation was carried out using 

Illumina’s Truseq RNA Sample Preparation kit (Cat. # RS-122-2001 or RS-122-2002) 

according to the manufacturer’s protocols. Briefly, RNA was oligo-dT purified using oligo-

dT coated beads and then reverse transcribed into cDNA. The cDNA is fragmented, blunt-

ended, and indexed (barcoded) adaptors are ligated to the ends of the fragments that are then 

amplified using 15 cycles of PCR. The final library size distribution was validated using 

capillary electrophoresis and quantified using fluorimetry (PicoGreen) and via qPCR. 

Indexed libraries are then normalized, pooled and size selected to 320bp ± 5% using 

Caliper’s XT instrument. Samples were then paired-sequenced on the Illumina HiSeq 2000 

System using Illumina’s HiSeq PE Cluster Kit v4 – cBot (PE-401-4001) HiSeq SBS Kit v4 

(50 cycles) (FC-401-4002). For the primary analysis and de-multiplexing, base call (.bcl) 

files for each cycle of sequencing are generated by Illumina Real Time Analysis (RTA) 

software. Primary analysis and de-multiplexing were performed using Illumina’s CASAVA 

software 1.8.2. Average Quality scores for the completed run across all samples was > 30, 

with an average number of reads for each pooled sample greater than 10 million reads.

Quality Control and Alignment of Sequencing Datasets—Raw data of the public 

datasets was downloaded as fastq files using the SRA Toolkit 2.6.2. Quality control of all 

samples, including our own, was performed using the FastQC software v0.11.5 and the low 

quality reads (Average Quality: < 20) were discarded. End-trimming was performed when 

necessary by using the tool Trimmommatic 0.36. Samples were aligned to the GRCh38 

genome using STAR-2.5.1b aligner and a count table was directly obtained with Star. Only 

genes annotated as protein-coding were included in the analysis.

Meta-Analysis of Fibroblasts—The heterogeneity of the data was evaluated with a 

Principal Component Analysis (PCA)-plot of the log-transformed normalized counts for the 

protein-coding genes, evaluating whether they clustered with similar samples in the same 

dataset.

For the meta-analysis (both for RS and for the senescence signature for fibroblasts), we used 

three different methods: negative-binomial generalized linear model (GLM), Fisher p value 

combination and Inverse Normal p value combination. In the case of the senescence 

signature for fibroblasts, we included all the samples in one unique meta-analysis. The first 

approach for the meta-analysis used the R-package DESeq2 for differential expression 

analysis. We included two variables in the model: a) Condition: senescence versus 
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proliferation as the main variable of the model; b) Batch: we created this covariate to 

account for the differences in cell strain and the study they belonged to. In this variable, an 

identifier was assigned to each set of samples that belonged to the same dataset and same 

cell strain. Thus, every dataset included as many identifiers as number of cell strains used. 

The other two approaches were done by analyzing each dataset individually using DESeq2 

to later combine the p values of the results by using the R-package MetaRNaseq. Therefore, 

the second approached used a Fisher- and the third one an Inverse Normal-p value 

combination. Genes with an adjusted p value ≤ 0.01 in the negative-binomial GLM and a 

combined p value ≤ 0.01 in the other two methods were included in the corresponding 

signature.

Genes that were also differentially regulated in the quiescence samples (adjusted p value ≤ 

0.01 and sign of the fold change in the same direction than senescence) were removed from 

the list of possible senescence markers after each meta-analysis was finished.

Enriched pathways and Gene Ontology (G.O.) terms in the differentially expressed genes 

within the “Fibroblast Senescence signature” were evaluated by using the online tool “Over-

representation analysis” of the Consensus Path DB-human (http://cpdb.molgen.mpg.de/) [19, 

20].

Universal Senescence Signature shared in different Cell Types—Differential 

Expression analysis was also performed with DESeq2 for each individual dataset separately 

and the gene lists of differentially expressed genes were compared to the senescence 

signature of fibroblasts, without combining their p values. As before, only genes with a p 

value ≤ 0.01 in every dataset and within the signature of fibroblasts were included in the 

core senescence signature.

QUANTIFICATION AND STATISTICAL ANALYSIS

SA-βgal assay—Images were acquired at 100× magnification, and the number of cells 

counted by the software ImageJ (http://www.rsbweb.nih.gov/ij/). The number of positive 

cells was counted manually in blind.

EdU staining—Images were acquired at 400× magnification, quantified using ImageJ 

(http://www.rsbweb.nih.gov/ij/). In all cases, both for SA-βgal assay and for EdU staining, 

samples were done in triplicates and at least 100 cells were counted in each replicate (in 

blind) and corresponding barplots were generated, where error bars represent the Standard 

Error of the Mean (SEM).

Real Time-PCR—Tubulin was used for normalization of the CT values. All samples were 

run with a technical replicate and in 2–3 biological replicates. An unpaired two-tailed 

Student’s t test was used to determine statistical significance based on delta-CT values. P 

values of 0.05 or less were considered statistically significant.

DATA AND SOFTWARE AVAILABILITY

Self-generated RNaseq data—RNaseq data has been deposited in the ArrayExpress 

database (http://www.ebi.ac.uk/arrayexpress) under ID code ArrayExpress: E-MTAB-5403.
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Plots—All plots were made in R using the following R-packages: “pheatmap,” “ggplot2,” 

“ggfortify,” “RColorBrewer” and “VennDiagram.”

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• The transcriptome of senescent cells is highly heterogeneous

• Senescence transcriptome programs depend on the cell type and stress

• Gene expression in senescent cells is temporally dynamic

• We identified 55 genes at the core of the senescence-associated transcriptome

Hernandez-Segura et al. Page 15

Curr Biol. Author manuscript; available in PMC 2018 January 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. Meta-Analysis of Senescent Fibroblast Transcriptomics
(A) Experimental design. Seven RNA-seq datasets obtained from the indicated studies were 

used to build a stimulus-specific signature and general signature of senescent fibroblasts, 

regardless of the stimulus. Only genes with a p ≤ 0.01, calculated by the three methods and 

with expression unchanged or in the opposite direction in quiescence, were included in each 

signature. The number of genes constituting each signature is displayed in the flower plot.

(B) Heatmap of the 1,311 genes in the senescence signature of fibroblasts and the top 10 

enriched GO terms. The graph shows the logarithm base 2 of the fold change for each 

senescence-inducing stimulus tested with respect to proliferating cells. Blue indicates 

downregulated genes; red indicates upregulated genes.

(C) Top 10 enriched pathways in the senescence signature of fibroblasts. The pathways 

enriched in genes within the senescence signature of fibroblasts (in B) are enlisted with their 

corresponding p value and source. ER, endoplasmic reticulum. HAT, histone 
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acetyltransferases; KEGG, Kyoto Encylopedia of Genes and Genomes; PID, Pathway 

Interaction Database.

See also Figure S1 and Data S1.
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Figure 2. Characteristics of the Core Senescence-Associated Signature
(A) Experimental design. RNA-seq datasets obtained from the indicated studies of 

melanocytes, keratinocytes, and astrocytes were compared to the senescence signature of 

fibroblasts. The intersection of genes differentially expressed (p ≤ 0.01) in all the datasets 

are shown in the flower plot. D.E., differential expression.

(B) Heatmap of the 55 genes of the senescence core signature. The figure shows the 

logarithm base 2 of the fold change for each cell type with respect to proliferating cells.

(C) GO terms enriched in the core senescence signature. The GO terms enriched in genes 

within the core senescence signature (in B) are listed with the corresponding p value and the 

associated genes.
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(D) Pathways enriched in the core signature of senescence. The pathways enriched in genes 

within the core senescence signature (in B) are listed with their corresponding p value, 

source, and the associated genes. INOH, integrating network objects with hierarchies; NF-

κB, nuclear factor κB; PID, Pathway Interaction Database.

See also Figures S2 and S3 and Data S2.
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Figure 3. Temporal Dynamics of the Senescence Transcriptome
(A) Experimental design. Fibroblasts (HCA-2; yellow), melanocytes (red), and keratinocytes 

(magenta) were exposed to ionizing radiation (IR), and RNA was harvested 4, 10, or 20 days 

later. Transcriptomes of the different cell types and intervals after senescence induction were 

obtained by RNA-seq. A time-point signature with genes differentially expressed (p ≤ 0.01) 

in all three cell types and a shared IR-induced senescence (IRIS) signature with genes shared 

by all cell types and time points (p ≤ 0.01) were generated.
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(B) GO terms and pathways enriched in the shared IRIS signature among all time points and 

cell types. The figure shows enriched GO terms in the upregulated (red) and downregulated 

(blue) genes of the signature. Bars indicate the logarithm base 10 of the p value.

(C) Top 5 GO terms and pathways enriched at each time point. The figure shows the 

enriched GO terms and pathways for days 4, 10, and 20. Bars indicate the logarithm base 10 

of the p value.

(D) Heatmap showing the dynamics of genes encoding SASP factors for each cell type. 

Known SASP factors that were significantly differentially expressed during at least one time 

point in each cell type are shown. The heatmap shows the logarithm base 2 of the fold 

change for each time post-irradiation with respect to proliferating cells. Quiescence was 

measured only on fibroblasts. The violet arrows highlight MMP1, the only SASP factor 

commonly regulated at days 10 and 20 in all cell types.

See Figure S4 and Data S3.
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Figure 4. Dynamic Changes in Expression of Genes in the Core Senescence Signature
Each panel shows one of the 55 genes in the core signature at the indicated points before and 

after irradiation. All genes show a dynamic temporal behavior at the time points tested: day 

0 (proliferation), day 4, day 10, and day 20 after irradiation. Notably, all genes show a 

similar trend in the three cell types tested: fibroblasts (yellow), keratinocytes (red), and 

melanocytes (magenta). Genes in red correspond to those that reached significance (p ≤ 

0.01) at all time points tested. N = 6.

*p ≤ 0.05; **p ≤ 0.01.

See also Figure S4 and Data S3.
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