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Automatic Knee Osteoarthritis 
Diagnosis from Plain Radiographs: 
A Deep Learning-Based Approach
Aleksei Tiulpin   1, Jérôme Thevenot1, Esa Rahtu3, Petri Lehenkari2 & Simo Saarakkala1,4

Knee osteoarthritis (OA) is the most common musculoskeletal disorder. OA diagnosis is currently 
conducted by assessing symptoms and evaluating plain radiographs, but this process suffers from 
subjectivity. In this study, we present a new transparent computer-aided diagnosis method based on 
the Deep Siamese Convolutional Neural Network to automatically score knee OA severity according 
to the Kellgren-Lawrence grading scale. We trained our method using the data solely from the 
Multicenter Osteoarthritis Study and validated it on randomly selected 3,000 subjects (5,960 knees) 
from Osteoarthritis Initiative dataset. Our method yielded a quadratic Kappa coefficient of 0.83 and 
average multiclass accuracy of 66.71% compared to the annotations given by a committee of clinical 
experts. Here, we also report a radiological OA diagnosis area under the ROC curve of 0.93. Besides 
this, we present attention maps highlighting the radiological features affecting the network decision. 
Such information makes the decision process transparent for the practitioner, which builds better trust 
toward automatic methods. We believe that our model is useful for clinical decision making and for OA 
research; therefore, we openly release our training codes and the data set created in this study.

Osteoarthritis: management, problems and diagnostics
Osteoarthritis (OA) is the most common musculoskeletal disorder in the world. The literature shows that hip 
and knee OA are the eleventh highest global disability factor1, thereby, causing a large economical burden to the 
society. It has been reported that the estimated overall costs per patient for OA treatments reach 19,000 €/year2. 
Part of these costs arise from the current clinical inability to systematically diagnose the disease at an early stage, 
when it might still be possible to slow down its progression or at least reduce the impact of its future disability. 
Because there is no effective cure for OA besides total joint replacement surgery at the advanced stage, an early 
diagnosis and behavioural interventions3 remain the only available options to prolong the patients’ healthy years 
of life. Clinically, early diagnosis of OA is possible; however, currently, it requires the use of expensive magnetic 
resonance imaging (MRI) available only at specialised centres or in private practice. Moreover, this modality does 
not capture the changes in the bone architecture, which might indicate the earliest OA progression4.

The current gold standard for diagnosing OA, besides the always required routine clinical examination of 
the symptomatic joint, is X-ray imaging (plain radiography), which is safe, cost-efficient and widely available. 
Despite these advantages, it is well known that plain radiography is insensitive when attempting to detect early 
OA changes. This can be explained by several facts: first, a hallmark of OA and the best measure of its progression 
is the degeneration and wear of the articular cartilage – a tissue that cannot be directly seen in plain radiography; 
second, although the evaluation of the changes in the joint should be a three-dimensional (3D) problem, the 
imaging modality uses only two-dimensional (2D) sum projection; and finally, the interpretation of the resulting 
image requires a significantly experienced practitioner. Eventually, the cartilage degeneration and wear are indi-
rectly estimated by the assessment of joint-space narrowing and bony changes, that is, osteophytes and subchon-
dral sclerosis5. For these reasons, an early OA diagnosis is difficult in clinical practice.

Apart from the aforementioned limitations of plain radiography, OA diagnosis is also highly dependent on 
the subjectivity of the practitioner due to the absence of a precisely defined grading system. The commonly used 
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Kellgren-Lawrence (KL) grading scale5 is semi-quantitative and suffers from ambiguity, which is reflected in 
the high number of disagreements between the readers (quadratic Kappa 0.566, 0.667, 0.678). Such ambiguity 
makes an early OA diagnosis challenging, thereby affecting millions of people worldwide. Such ambiguity makes 
an early OA diagnosis challenging, hence affecting millions of people worldwide. However, we believe that a 
computer-aided diagnosis (CADx) could be used as an objective tool to support clinicians in their decision.

Second, the diagnostic accuracy of these methods already reach human levels and could even outperform 
human experts in the future; thus, eventually the patients will obtain more reliable diagnoses. Third, supple-
menting the diagnostic chain with such methods, radiologists and other clinical experts can focus less on routine 
tasks such as image grading and focus more on incidental findings9. For all the aforementioned reasons, we 
believe that knee OA diagnosis from plain radiographs could be significantly improved by using CADx machine 
learning-based methods together with clinical evaluation.

Starting in 1989, automatic knee OA diagnosis has a long history10. Although the amount of data used in these 
studies was previously limited to the hundreds of cases collected at a single hospital11–14, research groups nowadays 
use thousands of cases in their analysis pipelines15,16. For example, Antony et al. released a study involving the com-
bined dataset from the Osteoarthritis Initiative (OAI) and Multicenter Osteoarthritis Study (MOST) cohort base-
lines16. The total number of images used for testing was 2,200 – approximately 1,100 subjects. The authors pointed 
out that the accuracy when using the combined dataset was higher than when the MOST dataset was used solely for 
training or the OAI dataset for testing. The method used in these studies was based on deep learning — a machine 
learning approach based on the automatic learning of the relevant features found in the data.

Deep learning (DL), and in particular convolutional neural networks (CNN), has recently shown ground- 
breaking results in a variety of general image recognition17,18 and CADx tasks19,20. These powerful models already 
can reach human-level performance in CADx, which clearly indicates the possibility for using them in clinical 
practice in the near future. CNN automatically learns relevant image representations to produce a specific out-
put, for example, diagnosis, bounding box, segmentation mask and so forth. The main disadvantages of these 
models, however, are that they require large datasets to be trained and the decision process is often considered a 
“black box”, thus being difficult to interpret. We believe that in clinical practice, the transparency of the decision 
made by any automatic tool is crucial both for the practitioner and validation of the method, which is always a 
prerequisite before clinical use. This is one of the main reasons why the use of automatic decision support tools 
in clinical practice is still quite limited. Although an objective and systematic data assessment is a huge benefit in 
diagnostics, an understanding of what each decision was based on is another key component of decision support 
tools. In an optimal decision support tool, all the decisions should be transparent so that they can be checked for 
errors and interpreted by the clinician. While access to publicly available databases can address the training data 
size requirements, the development of the approaches that provide transparency of a DL-based model is still an 
ongoing process21,22.

Yet another critical issue related to machine learning and DL in particular is overfitting23. This eventually 
results in the model’s inability to perform well on the new data not seen during training. Overfitting usually 
occurs because of the high complexity of the model (number of parameters)23; thus, especially in DL, where the 
number of parameters in the model is very high, different regularisation techniques are applied: reduction of the 
model’s complexity, dropout, weight decay and data augmentation17,18,24. To control for overfitting during train-
ing, the data are usually split into training, validation and test sets, where the training set is used for optimising 
the model’s hyperparameters, the validation set controls for overfitting and the test set remains unseen until the 
model is trained. This data split is used to estimate the final generalisation error.

All the mentioned difficulties related to overfitting are highly relevant to CADx systems’ development. Such 
data-driven systems should eventually be robust, generalisable and able to analyse new clinical data coming from 
various sources, for example, at other hospitals other than where the training data were acquired. Thus, it is 
extremely important to validate the trained model on a test set that is completely different from the training one. 
Thereby, combining different medical datasets into one can be considered a limitation16, if both the training and 
test samples are drawn from such combined data. Ideally, the independent test data should always be left out so 
that the generalisation measures, for example, accuracy, area under the ROC curve (AUC), mean squared error 
(MSE) and so forth will not be biased and will reflect the real model’s performance. Furthermore, in the case of 
knee radiography, the variability in the images comes not only from the knee joints, but also from the imaging 
settings and data acquisition set-up, which could vary significantly from one dataset to another. For example, a 
patient imaged in a different hospital might have a different X-ray image due to these reasons. The eventual “per-
fect” prediction model should be robust enough to produce a similar output for different data acquisition settings.

In the present study, we demonstrate a new state-of-the-art automatic CADx method to diagnose knee OA 
from plain radiographs while simultaneously providing transparency in the physicians’ decision-making pro-
cess. Furthermore, to prove the robustness of our approach, the dataset used for training and model selection 
is different than the one used for the final testing. Our pipeline consists of previously published knee joint area 
localisation25 and a problem-specific CNN to grade the knee images according to the KL scale. Because the KL 
scale is very ambiguous and some level of uncertainty is always present in the clinical diagnosis of knee OA, our 
model predicts a probability distribution of the KL grades for the given image while also highlighting relevant 
radiological features by generating class-discriminating “attention maps”. Our method is schematically illustrated 
in Fig. 1. We believe that clinically, the attention map and KL grade distribution together are highly relevant; thus, 
the presented approach has a clear potential to complement the OA diagnostic chain and make radiographic knee 
OA grading more objective.

Novelties of this work
In this study, we focus not only on providing new state-of-the art classification performance, but also on developing 
an efficient neural network architecture that learns highly relevant disease features compared to the baseline – the  
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fine-tuned ResNet-34 that is pre-trained on the ImageNet dataset18, which is motivated by the transfer learning 
approach19. Additionally, we present class-discriminating attention maps, utilising gradient-weighted class acti-
vation maps (GradCAM)21 that can be used for supplementary diagnostic information. To summarise, our study 
has the following novelties:

	 1.	 We present new state-of-the art results in automated knee OA diagnostics from plain radiographs outper-
forming the existing approaches16.

	 2.	 We keep transparency in the decision process by providing the attention maps that show the areas of inter-
est that contributed to the network’s decision.

	 3.	 We show a new approach for utilising Siamese deep neural networks for medical images with symmetry, 
which significantly reduces the number of learnable parameters, thus making model more robust and less 
sensitive to noise.

	 4.	 We publicly release a standardised dataset for knee X-ray OA diagnosis algorithms.
	 5.	 Finally, we show that our method learns transferable image representation by performing an evaluation on 

a dataset that was not used during the training.

Materials and Methods
Data.  We acquired the data from two public datasets: MOST and OAI. We used the entire MOST cohort for 
training our models and the baseline from the OAI dataset for testing. The MOST cohort contains the data from 
3,026 subjects and their six follow-up examinations. The OAI baseline has data from 4,796 subjects. Both datasets 
include data from men and women aged between 50–79 years old and 45–79, respectively. The images in both 
cohorts were graded according to the aforementioned semi-quantitative KL scale5, which has five categories: KL-0 
(no OA changes), KL-1 (Doubtful OA), KL-2 (Early OA changes), KL-3 (Moderate OA) and KL-4 (End-stage 
OA). It should be emphasised here that in this study, we did not use the OAI dataset as training material, which 
contrasts the previous studies by Antony et al.15,16. Our dataset consisted only from MOST images taken in 5°, 10° 
and 15° beam angles. Our preliminary experiments showed that combining the projections taken from different 
angles creates more variability within the data.

We trained all our models for the right knee and used the horizontally flipped left ones to increase the dataset’s 
size. From the MOST cohort, we excluded the images with implants to avoid any disturbances in the data distri-
bution. A detailed description of the data is given in Table 1.

Knee joint area localisation and side selection.  Using a previously developed approach25, we anno-
tated the knee joint areas so that we could use them eventually as an input for our classification system. Using 
this method, we selected regions of size 140 × 140 mm according to the provided metadata: ImagerPixelSpacing 
DICOM tag. We performed a data augmentation and eventually used centre-cropping to obtain a region of size 
130 × 130 mm.

Figure 1.  Proposed classification pipeline. Here, we perform the knee joint area localisation, train three models 
using different random seeds and eventually fuse together the predictions. After this, we use the softmax layer to 
normalise the probability distribution and predict the resulting KL grade probability distribution = |P y j x( ), 
∀ =j 0,4, where x is the given model input. Consequently, we also visualise the attention map, which explains 
the decision made by the network.
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Because we used the pre-trained model ResNet34 as a baseline, we rescaled the obtained crop to 224 × 224 pix-
els. For our own model, we used the following processing strategy: First, we re-scaled the 130 × 130 mm regions 
to a size of 300 × 300 pixels and then cropped two squared patches S × S pixels with the vertical offset of K pixels. 
Second, one patch was cropped from the lateral side and the other one from the medial side. The left top corner 
X-coordinate of the lateral and medial patches were 0 and S − K, respectively. The patch from the medial side was 
horizontally flipped to employ knee joint symmetry and learn the same features for both sides of the joint. The 
parameters S and K were found by optimising the score on the validation set.

Network architecture.  Our approach is based on the Deep Siamese CNN architecture. The original appli-
cation of this architecture was to learn a similarity metric between pairs of images26. Usually, the whole network 
consists of two branches, where each one corresponds to each input image. In our approach, we did not train our 
model to compare image pairs; rather, we used the symmetry in the image, which allowed the architecture to 
learn identical weights for every image side. The conceptual difference between our method and the traditional 
application of a Siamese network is illustrated in Fig. 2.

The proposed network consists of two branches, each having convolution, max-pooling, rectified linear unit 
(ReLU), batch normalisation27, global average pooling and concatenation layers, as described in Fig. 3. As men-
tioned above, we learned the same convolutional and batch normalisation weights for both branches because we 
employed the symmetrical structure of the knee joint. Here, we did not consider the knee joint to be symmetrical, 
but only the features that are learned, that is, we assumed that learned edge-detection features are not different 
for the lateral and medial sides. Eventually, we concatenated the outputs from the lateral and medial branches and 
used a final fully connected layer to make the prediction.

Our proposed application of a Siamese network can also be related to the recent developments in neural net-
works for fine-grained classification: recurrent attention networks28,29. In this approach, the sequence of image 
locations is adaptively selected for further prediction. However, here, we did not select the relevant image regions 
adaptively because the image structure was known. In particular, we constrained the network attention to only 
two regions on the knee joint’s sides (see Fig. 3). Such an approach is close to the real radiological diagnosis and 
grading conducted by a human evaluator. By the definition found in the KL system, knee joint tibial and femoral 
corners, as well as the joint space, are used in the grading. Thus, we explicitly mapped the relevant attention zones 
to the network input and took only these into account when making the decision. Moreover, because knee joints 
are relatively symmetrical, we learned the same weights for the medial and lateral sides by flipping the medial side 
horizontally (illustrated in Figs 1, 2b and 3). This allows to drastically reduce the number of learnable parameters 
and constrain the network to learn only the relevant features used also by human evaluators.

The design of the individual network branches in our model was motivated by the CNN design approach 
presented by Simonyan et al.17. Therefore, we used a stack of 3 × 3 convolutional filters instead of the larger ones. 
However, in contrast to17, we did not employ zero padding for 3 × 3 filters, which does not change the input size 
and used to build very deep networks. Because the problem of knee OA diagnosis from plain radiographs is 
fine-grained16, we wanted to keep a strong signal from the first layers; thus, we designed the network branches 
using only five convolutional layers, where each one reduced the input size. For this, we also used max-pooling 
2 × 2 and a convolution stride (see, Fig. 3) of 2 in the first layer. In our architecture, we used a global average 

Group Dataset Images KL-0 KL-1 KL-2 KL-3 KL-4

Train MOST 18,376 7,492 3,067 3,060 3,311 1,446

Validation OAI 2,957 1,114 511 808 435 89

Test OAI 5960 2,348 1,062 1,562 792 196

Table 1.  Description of datasets used in this study. The numbers provided in the tables indicate the number of 
knees used in each group. The validation set consisted of 1,502 subjects and 2,957 knee joint images. Subjects in 
the train and tests sets were different. The training data were used to train the models, and the validation data 
were used to tune the hyperparameters and evaluate overfitting. The testing set was used to estimate the final 
performance and contained the images from 3,000 subjects.

Figure 2.  Comparison between common Siamese network and our approach, in which we utilise image 
symmetry. Light blue rectangles denote the images. In part (a), we show a classic Siamese network application 
that learns a discriminative image similarity function. In this case, images are fed to the network, and the 
Euclidean distance is computed afterwards. In part (b), we show a symmetrical image consisting of two parts, 
which are the inputs for our model. 2(f) indicates the horizontal flipping of the second part. Dark blue boxes 
denote the shared network branches. The green box labelled as C indicates the concatenation of the outputs 
from the two network branches.
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pooling at the end of each branch to keep the higher resolution, helping the system learn more local features, 
because we believe that they are relevant to OA diagnosis.

Models ensemble and inference.  Considering the real-life situation when an OA diagnosis is done by a 
practitioner, the diagnosis can be wrong due to the limitations mentioned in the introduction. However, the OAI 
and MOST datasets include data graded by several readers to ensure their reliable KL grading. In this work, we 
imitated this process by training three separate models initialised with different random seeds. Subsequently, for 
each seed we picked the model that best performed on the validation set, summed their predictions and prop-
agated them through the softmax layer. Eventually, the class probability of the KL grade j for given image x was 
inferred as follows:
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where the number of models in the ensemble M = 3, number of classes K = 5, and = |P̂ y j x( )m  an unnormalised 
probability distribution (individual network output before the softmax layer). The described approach is illus-
trated in Fig. 1.

Ensembled GradCAM for Siamese networks attention visualization.  The problem with automatic 
KL grading is that it is fine-grained, and moreover, only several thousands of cases are available to train the model 
on. Therefore, the models with large number of parameters may overfit to the background noise or react to image 
artefacts instead of paying attention to the disease-relevant features.

Here, we would like to highlight the importance of understanding these automatic methods, such as deep 
neural networks, because they automatically learn the relevant features to produce the target label. As mentioned 
above, the learnt features may not be relevant to the disease; thus, it is important to examine them and the region 
where the network is looking. In this work, we utilised a state-of-the art approach, GradCAM21, which allowed us 
to obtain class-discriminating activation maps. Following the original methodology21, here, we describe a modi-
fication of the method, which can be applied to Siamese networks and their ensembles.

Let us denote Ai
lk a kth activation map of size X × Y from the layer of interest l belonging to the branch i and yc – 

the output of the network. The attention map of the branch i with respect to the class c was computed as follows:
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which are found by computing the global average pooled gradient from the following network layer l + 1:
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These gradients are obtained by guided backpropagation of the prediction c. In the original GradCAM 
approach, the incoming gradients were averaged manually for each activation map Ai

lk, while in the presented 
above architecture, those are computed automatically, since we chose l to be a penultimate layer of the network. 

Figure 3.  Schematic representation of the proposed Siamese network’s architecture. First, we took the patches 
from the lateral and medial sides of the knee joint, horizontally flipping the latter. These patches were the inputs 
of the two network branches, which consisted of the following blocks having the shared weights (parameters). 
Blue blocks denote convolution (Conv), batch normalisation (BN) and rectified linear unit (ReLU) layers. Grey 
circles indicate a max-pooling 2 × 2. Light-red blocks consist of Conv-BN-ReLU layers followed by the global 
average pooling. The final green block is a softmax layer (classifier) taking a concatenation of the two network 
branches outputs and predicting KL grade probability distribution over five grades. The numbers inside the 
Conv-BN-ReLU blocks indicate the number of feature maps (convolutional filters), and the numbers on top of 
them indicate their parameters K × K, S, where K is a filter size and S is the convolution stride.
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Thus, the averaging in the equation 3 can be omitted because X = Y = 1. Since our model has two branches, the 
final attention map with respect to the class c is a pair { }A A,c c1 2

.
In the previous section, we presented our ensembling approach of the Siamese branches. In the case of the 

attention maps, we perform exactly the same procedure as we do for a single model; however, in this case, we add 
the attention maps for lateral and medial branches, respectively:
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After obtaining a pair { }A A,c c1 2
, we horizontally flip the map corresponding to the medial side and project both 

maps back to the original image. Finally, we use a min-max normalisation to equalise the final attention map.

Implementation details.  Dataset distribution and pre-processing.  We used our previously developed knee 
joint area localisation method25. Mislocalised knee joints (1.5%) in the test sets were manually re-annotated to 
increase their size. In total, our training, validation and test sets included 18,376; 2,957 and 5,960 images, respec-
tively. Further details regarding the data distribution are presented in Table 1. It should be mentioned that the 
left knee images were horizontally flipped to be similar to the right ones. The parameters K = 100, S = 128 were 
selected to generate the input pair of patches out of the knee joint image (see section 2.2).

We used 16-bit DICOM files and converted them to an 8-bit resolution, with a preceding global contrast 
normalisation and histogram truncation between the 5th and 99th percentiles. This step was performed to reduce 
the impact of noise. For testing the images, we non-linearly changed the contrast of the over- and underexposed 
images using gamma correction.

During the training we balanced the data using oversampling and eventual bootstrapping. We applied random 
rotation, contrast, brightness, jitter and gamma correction data augmentations to the bootstrapped samples on 
the fly. Further parameters of the data augmentation are supplied with our model training scripts. After the data 
augmentation, we cropped the images 130 × 130 mm. All augmentations were performed in a random order on 
the fly.

Model training.  We used PyTorch30 and 4× Nvidia GTX1080 cards with 8 GB memory for each of the exper-
iments. In the study, we compared three different settings with a fixed random seed of 42. First, we evaluated 
our network architecture with different values of the parameter, and for each of these settings, we compared the 
shared weights implementation versus the case when the network branches are not shared (see Fig. 3). Secondly, 
we implemented the previously published method by Antony et al.16. Finally, motivated by the transfer learning 
approach19, we fine-tuned a ResNet-34 network18 pre-trained on the ImageNet dataset. To train all the analysed 
models, we used a mini-batch size of 64.

In the experiments done on our architecture, we used Adam optimizer31 and a cross-entropy loss function. We 
optimised the network stochastically, giving it a learning rate of 1e − 2 for 50,000 iterations evaluating every 500 
iterations. To combat overfitting, we used L2-norm regularisation (weight decay) with the coefficient 1e − 4 and a 
dropout24 of 0.2. The dropout was inserted after the concatenation of the branches (see, Fig. 3). The regularisation 
parameters were optimised based on the validation set loss. Eventually, we used this procedure three times with 
random seeds 21, 42 and 84 and selected the best model snapshots for these three settings (M = 3 models). We 
found the aforementioned configuration the most promising from the model selection. Complete simultaneous 
training of the whole model ensemble (seeds 21, 42 and 84) for 50,000 iterations per one training epoch took 
roughly six hours.

To train the network by Antony et al.16, we implemented the architecture and the custom loss function pro-
posed in the article. For this experiment, we trained the network using stochastic gradient descent and Nesterov 
momentum, dropout, weight decay and the aforementioned data augmentations. In total, we trained the model 
for 250,000 iterations with the epoch size of 500 iterations.

To train the fine-tuned ResNet-34, we used Adam method with a learning rate of 1e − 3 for 14,300 iterations, 
having the epoch size of 300 iterations. We inserted a dropout of 0.5 before the final linear classifier and used a 
weight decay of 1e − 4. We provide further details of the training procedure and model selection of all mentioned 
models in the supplementary information.

Experiments and Results
Knee osteoarthritis diagnosis.  As described, we trained multiple networks and used the Kappa metric on 
the validation set to select the baseline for the final comparison with our best-performing model. Fixing the seed 
to 42, we found our shared weights model N = 64 and a fine-tuned ResNet-34 network yielding the best validation 
set performance.

After the model selection, we trained an ensemble of the networks, as described in section 2.4, for seeds 21 and 
84, and we used the already obtained model for the random seed value of 42. For each of the seeds, we selected the 
snapshot of the network that yielded the best validation set performance. Selected snapshots were corresponded 
to 32,000 (seed 21), 48,500 (seed 42) and 48,000 (seed 84) iterations.

We performed the final testing solely using the OAI dataset while the training was done using only MOST 
data. The final model evaluation was performed on 3,000 subjects (5,960 knee joints in total) randomly selected 
from the OAI dataset baseline. The average test set multi-class accuracy achieved by our method was 66.71%. 
The confusion matrix is presented in Fig. 4. Furthermore, in Fig. 4, we show the radiographical OA diagno-
sis ROC-curve (KL ≥ 2). The achieved AUC of 0.93 was higher than any previously published results14,32. 
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Importantly, considering the fact that OAI data were not used as a training material, these results indicate a good 
clinical applicability of the method.

We also compared the quadratic Kappa coefficient and MSE values because they were used previously in clin-
ical studies6,8. The Kappa metric reflects the agreement between two raters and weighs the different misclassifica-
tion errors differently, for example, mistake 1 versus 2 has less impact on the score than 0 versus 4. In this case, we 
considered our model to be an X-ray reader (evaluator) and used its predictions to assess the agreement between 
its predictions and the expert annotations from the OAI dataset. Our Kappa value on the test set was 0.83, which 
is considered to be an excellent agreement between the raters33. The classification MSE value achieved was 0.48, 
which is lower than previously published results16.

As mentioned before, besides our method, we also evaluated a fine-tuned ResNet-34 network because it per-
formed similarly on the validation set. On the test set, the baseline also performed similarly to our approach in 
terms of MSE (value of 0.51), Kappa agreement (value of 0.83) and average multi-class accuracy (value of 67.49%). 
However, the qualitative assessment showed (see, the next section) that despite having a similar performance, the 
fine-tuned model sometimes pays more attention to the regions that do not have relevant radiological findings. 
Additionally, when comparing the classification accuracy of the most clinically relevant case KL-2, our method 
outperformed the baseline by roughly 4% (52% with our method versus 48% baseline). parameters and that the 
ImageNet distribution significantly differs from our data distribution. Thereby, such an extensive network has a 
high possibility of overfitting to the background noise and finding other possible relevant correlations present in 
the data, for example, bone texture14, patella intensity and so forth.

Class-discriminating attention maps and prediction confidence.  We obtained the visualisations for 
the baseline method, ResNet-34, as described in21, and visualisations for our network using its modification, as 
described in section 2.5. The pre-trained baseline model paid the strongest attention to the image regions, which 
do not have the findings used by the radiologists for the decision. For example, the strongest network activation 
comes from the centre of the knee joint, surrounding fat tissue or bone texture. In contrast, the attention map 
of our model clearly learns more local features that highlight the true relevant radiological findings. The most 
probable reason is that we imposed domain-knowledge constraints (prior anatomical knowledge) to the net-
work’s architecture, thereby forcing it to learn only the features related to the radiographical findings, such as 
osteophytes, bone deformity and joint-spacing narrowing, which are all used to grade the image according to the 
KL scale (see, Fig. 3).

Here, we also report another clinically relevant result: the probability distribution of the KL grades over the 
images. This information comes inherently from the network’s architecture and can be used as another source 
of supplementary diagnostic information (see, Figs 1 and 5). For example, if the model is not confident in the 
prediction, this is seen in the distributions. Further examples of the attention maps and the probabilistic outputs 
are also provided in the supplementary information section.

Discussion
In the present study, we demonstrated a novel approach for automatically diagnosing and grading knee OA from 
plain radiographs. In contrast to previous studies, our model uses specific features relevant to the disease, ones 
that are comparable to the ones used in clinical practices (e.g., bone shape, joint space, etc.). Furthermore, com-
pared to the previously published approaches, our method achieves the highest multi-class classification results, 
despite having a different testing set: average multi-class accuracy of 66.71%, radiographical OA diagnosis AUC 

Figure 4.  (a) Confusion matrix of KL grading and (b) ROC curve for radiographic OA diagnosis KL ≥ 2 
produced using our method. Average multi-class accuracy is 66.71%, and AUC value is 0.93. Corresponding 
Kappa coefficient and MSE value are 0.83 and 0.48, respectively.
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of 0.93, quadratic weighted Kappa of 0.83 and MSE of 0.48. If we compare this to the average human agreements 
in KL grading (0.5–0.8), our method achieves a very high quadratic Kappa, indicating it can perform at a human 
level.

An important issue to consider in our model is that it was trained solely with the MOST dataset and tested 
with the OAI dataset. The main advantage of this study’s design was the demonstration of the model’s ability to 
learn relevant OA features that are transferable across different datasets. This clearly indicates that our method 
is robust toward different artefacts and data acquisition settings. To create a clinically applicable model, we 
considered multiple steps to enhance its robustness. First, we normalised the data to always have a constant 
region-of-interest (130 × 130 mm) and constrained the attention zones by taking into account only the regions 
of interest used by a radiologist when making the decision. Second, we included the full MOST cohort, including 
image data from the same subject multiple times, that is, used several follow-up examinations. This increased the 
training data size. Third, we included the radiographs taken 5°, 10° and 15° X-ray beam angles, which helped to 
regularise the training and induced more variability to the dataset. Fourth, we used rotation, jitter, contrast and 
brightness data augmentation techniques, which made our training more robust. Finally, we used an ensemble of 
three networks trained with different random seeds, which induced less variance into the model decisions.

There were also several limitations in our study. Our validation set was selected from the OAI dataset, but 
an alternative approach would be to keep these data out. However, our method performed the best among the 
compared models from a clinical point of view: it learned local radiographical findings and yielded better classi-
fication performance of early OA cases than other approaches. Despite this, in our future studies, we will investi-
gate the generalisability of the method across multiple datasets using larger amounts of data. Another limitation 
is that we reduced the image resolution to 8-bit, which could have led to the loss of fine-grained information 
stored in the images. It is possible that the use of the original image’s resolution with reasonable data filtering 
could further improve our results. Apart from this, the attention maps from the baseline method (fine-tuned 
ResNet-34 motivated by a transfer learning approach) had a lower resolution than the ones produced by our 
model – the network from the last ReLU layer in the model was only 7 × 7 pixels than the output of our model – so 
each branch of the network had 10 × 10 pixels output. Despite this limitation, it is still evident that the baseline 
method learned only those image representations that best correlated to the target variable (KL grade) while hav-
ing similar performance with our method. Furthermore, in some of the misclassified images, our radiologist and 
orthopaedist strongly disagreed with the ground truth KL grades. Thus, it is possible that in certain limited cases, 
the KL grade in the OAI dataset is erroneous. Our version of the OAI dataset had images from the releases 0.C.2 
and 0.E.1, while the newer releases are also available now, and these could include the corrected KL grades for 
those individual cases. Finally, we would like to mention that our method could be further improved by utilising 
a different loss-function that optimises the Kappa coefficient itself, as well as by using larger amounts of training 
data from different sources. Finally, the images used in this study were obtained in standardised settings, includ-
ing the positioning frame. Consequently, the method cannot be directly adapted to every health care practice, 
and further research is needed to understand how our model, trained with MOST dataset, would perform on the 
images acquired without such a frame.

As mentioned above, in contrast to the baseline, our approach was capable of learning highly localised radi-
ographical findings from knee images (see Fig. 5). An important benefit of our method is the supplementary 
information produced by the attention maps. We believe that having this attention map in the automatic CADx 
systems will eventually build better trust in the clinical community regarding these the artificial intelligence based 
methods. Additionally, we proposed to use a probability distribution of the grades over the images to assess KL 
grading CADx systems (see, Fig. 1 and the supplementary information section). We believe that having such 

Figure 5.  Comparison of the attention maps of the correctly classified examples between the baseline and 
our method. The original image is (a), the attention map produced from the last residual block in the baseline 
model is (b), and the attention map produced by our model is (c). From the presented example images, the 
baseline can react to the background noise values or bone texture in classification. Underneath (b,c), we present 
the predicted probabilities. Attention maps show that our model reacts to the relevant radiological findings – 
osteophytes – while the baseline reacts to the joint centre.
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outputs could provide further information to the practitioner, showing that the severity of the disease is not a 
finite grade. By providing the probability for specific KL grades, the model mimics the decision process of the 
practitioner: choosing between two KL grades by considering the closest one to the medical definition. This could 
highly benefit inexperienced practitioners and eventually decrease their training time.

To conclude, we believe that the proposed approach has several benefits. First, it can help patients suffering from 
knee pain receive a faster diagnosis. Second, health care in general will benefit by reducing the costs of routine work. 
Although the present study focused on OA, our model possesses the ability to systematically assess a patient’s knee 
condition and monitor it for other conditions (e.g., follow-up of ligament surgery, assessment of joint changes after knee 
unloader prescription, etc.). Third, the research community will benefit from utilising our method as a tool with which 
to analyse large cohorts, such as OAI and MOST. To boost such research, we provide a standardised benchmark for 
automatic OA radiographical grading methods comparison. Here, we release a public dataset that contains bounding 
boxes for the MOST cohort and OAI cohort baselines used for our experiments. We also provide pre-trained models 
and training codes for all analysed models. Our codes and datasets are publicly released on GitHub.
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