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Hotspots of dendritic spine turnover facilitate
clustered spine addition and learning and memory
Adam C. Frank1,2, Shan Huang1,2, Miou Zhou1,2, Amos Gdalyahu1,3, George Kastellakis4, Tawnie K. Silva1,2,

Elaine Lu1,2, Ximiao Wen5, Panayiota Poirazi4, Joshua T. Trachtenberg1 & Alcino J. Silva1,2

Modeling studies suggest that clustered structural plasticity of dendritic spines is an efficient

mechanism of information storage in cortical circuits. However, why new clustered spines

occur in specific locations and how their formation relates to learning and memory (L&M)

remain unclear. Using in vivo two-photon microscopy, we track spine dynamics in retro-

splenial cortex before, during, and after two forms of episodic-like learning and find that spine

turnover before learning predicts future L&M performance, as well as the localization and

rates of spine clustering. Consistent with the idea that these measures are causally related, a

genetic manipulation that enhances spine turnover also enhances both L&M and spine

clustering. Biophysically inspired modeling suggests turnover increases clustering, network

sparsity, and memory capacity. These results support a hotspot model where spine turnover

is the driver for localization of clustered spine formation, which serves to modulate network

function, thus influencing storage capacity and L&M.
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Recent findings indicated that memory storage processes
operate conjointly at the level of neurons, dendrites, and
dendritic spines1–5. Furthermore, dendritic spines are

dynamic structures whose formation and elimination is postu-
lated to expand memory storage capacity beyond that permissible
solely from synaptic weight changes of existing synapses4,6,7.
A variety of studies in varying preparations and organisms have
shown that spine turnover is modified by electrical activity,
sensory experience, and learning8–13. In addition, results from
juvenile zebra finch show that endogenously higher levels of spine
turnover before tutoring correlate with a greater capacity for
subsequent song learning during the critical period14. Further-
more, spine structural dynamics8,11,15–17 and activity18 are
thought to be clustered in dendrites. These findings support the
hypothesis that clustering of plasticity events within dendrites is a
means to efficiently store information2,7,19,20. However, although
both spine turnover and spine clustering are shown to impact

learning and memory, it remains unclear how spine turnover and
clustered spine addition relate to one and other and how these
subcellular processes influence neural network function.

Here, we used transcranial two-photon microscopy to track
spine dynamics, and examined the relation between basal spine
turnover, contextual or spatial learning and memory, and sub-
sequent spine clustering in the mouse retrosplenial cortex (RSC).
The RSC is a neocortical structure conserved from rodents to
humans that is critical for spatial and contextual learning and
memory21. Lesions of RSC impair performance in the Morris
water maze (MWM)22–25 and contextual fear conditioning
(CFC)26; inactivation of NMDA (N-methyl-D-aspartate) recep-
tors in RSC impairs contextual fear memory recall27 while
blockade of AMPA (α-amino-3-hydroxy-5-methyl-4-iso-
xazolepropionic acid) receptors impairs Morris water maze per-
formance; Overexpression of the transcription factor CREB
(cAMP Responsive Element Binding Protein) in this structure
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Fig. 1 Pre-training dendritic spine turnover and learning-related spine clustering correlate with contextual learning. a Timeline of contextual learning and
imaging. b Representative example of longitudinal imaging. Lost spine is denoted by green arrowhead. One gained spine is denoted by a red arrowhead;
another gained spine (yellow arrowhead) is added by day 5 within 5 µm, thus forming a cluster. Scale bar indicates 1 µm. c Learning curve of mice during
CFC. d Dendritic spine turnover before training correlates with future learning. Scatter plot shows spine turnover before training vs. average contextual
freezing (n= 17 mice; Spearman’s rho= 0.54, p= 0.0255). e Trained mice have a higher percentage of newly added spines that occur in clusters (≤5 μm)
(Trained= 42.0% vs Control= 23.2%, n= 17 mice per group; Mann–Whitney U= 51.00, p= 0.0014). f Contextual learning does not increase spine
clustering in primary motor cortex (Trained= 23.0% vs Control= 22.0%, n= 7 mice per group; U= 24.00, p= 1.00). g CFC significantly shifts inter-spine
distances between gained spines toward smaller values. (Trained, n= 155 distance measurements; Control, n= 173 distance measurements; Two-sample
Kolmogorov–Smirnov, D= 0.2610, p= 2.1006e−05). Inset is mean± s.e.m. of values in distribution (8.3% vs 13.6%, Mann–Whitney U= 10294, p=
0.0003). h Clustered spine addition is significantly greater than chance. The histogram shows percent clustering from 10,000 simulations of randomized
new spine positions; arrow represents spine clustering observed from data; black line is Gaussian fit (mean of Gaussian fit= 22.1%, observed= 42.0%, n=
17 mice; p< 0.0001). i In control mice, spine clustering is not greater than chance. Histogram is calculated as in h but using control mice data; arrow
represents percentage of clustered spines observed from data; black line is Gaussian fit (mean of Gaussian fit= 21.7%, observed= 23.2%, n= 17 mice; p>
0.05). j Clustered spine formation is linearly correlated with freezing averaged from Day 2 to Day 5 (n= 17 mice; Spearman’s rho= 0.61, p= 0.0088). k
Clustered spines have a higher survival rate than non-clustered spines 4–6 weeks after training (67.6% vs 49.0%, n= 9 mice; Mann–Whitney U= 8.000,
p= 0.0042). Data are represented as mean± s.e.m. for c, e, f, inset of g and k. ****p< 0.0001, ***p< 0.001, **p< 0.01; NS not significant
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results in enhanced spatial memory28. Immediate early gene
expression studies further support a role for RSC in learning and
memory by showing increases in c-fos and Arc gene expression
following context exposure and contextual fear conditioning29.
Finally, direct re-activation of the population of RSC cells active
during contextual fear conditioning is sufficient to drive freezing
responses and activate downstream neuronal circuits engaged
during fear memory retrieval30. Thus, RSC is an ideal cortical
structure in which to examine the effects of contextual and spatial
learning on spine dynamics.

Here we show that pre-learning spine turnover predicts both
learning and memory performance and learning and memory-
related spine clustering. Accordingly, a genetic manipulation that
enhances pre-learning spine turnover also enhances clustering
and learning and memory. Furthermore, we find that pre-
learning spine turnover and learning-related clustering are related
processes that themselves exhibit spatial clustering within the
dendritic tree. Finally, using biophysically inspired modeling, we
find that turnover and clustering increase neuronal firing and
network sparsity, thus enhancing memory capacity. We posit a
hotspot model of spine formation in which higher rates of pre-
learning spine turnover facilitate the formation of learning and
memory-related clustered spines near regions of turnover, and
that clustering serves as a means to stabilize structural plasticity.

Results
Spine turnover and clustering predict learning and memory.
We used in vivo two-photon microscopy to image spines in RSC
in Thy1-YFP-H mice and coupled this with a CFC protocol
(Fig. 1a, b) that produced a gradual increase in contextual
freezing over 5 days of training (Fig. 1c). There was individual
variability in the pre-learning spine turnover ratio (proportion of
formed and lost spines) as measured in two imaging sessions
before commencement of training. Strikingly, we found that this
pre-learning turnover ratio correlated with levels of future con-
textual learning and memory (Fig. 1d) as well as learning rate
(Supplementary Fig. 1a, c), though no association was found
between spine turnover and animal age within the range tested
(Supplementary Fig. 2; see Supplementary Fig. 3a, b for correla-
tion of pre-learning turnover and freezing through training).
Therefore, increased pre-learning spine turnover is associated
with higher levels of learning and memory in mice—even when
turnover is examined outside of developmental critical periods—
indicating that spine turnover is an important determinant of
learning and memory, not only during a critical period in zebra
finch14, but also in adult mammals.

To determine whether contextual learning affects spine
dynamics, mice were split into two groups: one group underwent
CFC while the second remained in their home cages. Both groups
were imaged on the same schedule: in the early stages of learning
and again at the end of day 5 of training (Fig. 1a). Comparisons
between groups demonstrated that training had no impact on the
rate of gain, loss, or turnover of spines (Supplementary Fig. 4a-c),
such that both groups had similar numbers of spines at the start
and end of the experiment (Supplementary Fig. 4d). However,
trained animals showed a striking increase in the number of new
spines that were clustered (two or more spines within 5 µm of
each other; Fig. 1e). As the RSC is involved in processing context
exposure alone, shock alone, and conjoint context exposure plus
shock29, we utilized primary motor cortex in a separate group of
animals as an additional negative control. Specifically, primary
motor cortex is not known to be involved in contextual fear
conditioning31 and thus context exposure and shock are not
expected to influence spine dynamics in this brain region. In fact,
we found that in primary motor cortex, animals trained in

contextual fear conditioning and home cage control animals had
similar levels of clustering (Fig. 1f) suggesting that the changes we
saw in RSC are specific to structures involved in contextual
learning and memory. We found that clustered spine formation
occurred throughout training, but was more frequent with
additional days of training (Supplementary Fig. 5; additional
properties of spine clustering, Supplementary Table 1 and 2). This
finding suggests that as animals attain more information, there is
a concomitant increase in spine clustering. We chose a 5 µm
window for our analyses as a number of biochemical, electro-
physiological, and structural studies suggest that a 5–10 µm
distance between spines facilitates sharing of resources, spine co-
activation, and learning-induced structural plasticity16,18,32–36.
Furthermore, measurements of the nearest neighbor distances
(the distance between a new spine to its closest new spine
neighbor) for spines formed during learning were consistent with
the results of the 5 µm analyses: in trained animals, the
distribution of the nearest neighbor distances was significantly
shifted towards smaller values (Fig. 1g). Furthermore, resampling
analysis of the data from trained animals revealed that clustering
within 5 µm would occur randomly for only 22.2% of newly
added spines—consistent with the amount of clustering we
observed in control animals and in motor cortex—while an
average of 42.0% of new spines were clustered in RSC of trained
animals (Fig. 1h and Supplementary Fig. 6a). Resampling analysis
of data from untrained control animals revealed that clustering
within 5 µm would occur randomly for 21.8% of newly added
spines—consistent with random clustering calculated for trained
animals—and near the observed value of 23.2% in control
animals (Fig. 1i).

Mice that have higher rates of learning-related spine clustering
in RSC exhibited more contextual freezing (Fig. 1j) and higher
rates of learning and memory (Supplementary Fig. 1b, d; no
association was found between conditioning, clustering, or
baseline turnover in primary motor cortex, Supplementary Fig. 7;
no association was found between clustering and freezing by day
2, while there is a correlation between clustering and freezing at
day 5, Supplementary Fig. 3c, d; no association exists between
spine gain and average freezing, Supplementary Fig. 8a; a positive
correlation exists between spine loss during learning and average
freezing, Supplementary Fig. 8b). Of note, there is a significant
positive correlation between spine turnover rates before and
during learning (Supplementary Fig. 8c), and as such a significant
correlation between freezing and spine turnover during learning
(Supplementary Fig. 8d). The linear relationship between spine
clustering and contextual learning and memory highlights the
potential role of clustered plasticity as a mechanism for cortical
information storage. Consistent with the idea of sparse encoding,
clustered spines formed during learning in RSC are on average
only 2.5% of the total population of spines. Further supporting
the hypothesis that clustered spine addition contributes to
memory storage in CFC, we found that spines added in clusters
in RSC during training have a higher survival rate compared to
non-clustered spines (added during training) when examined
4–6 weeks after training (Fig. 1k); the survival rate of clustered
spines is independent of the original cluster size (i.e., the number
of constituent spines within a cluster, Supplementary Table 3).
When analyzed at the level of individual clusters, the majority of
clusters remain fully or partially intact, with an average of only
6.1% of clusters lost at 4–6 weeks (Supplementary Fig. 9).
Altogether, these results indicate that clustered plasticity is a
general information storage mechanism, not only for procedural
memory in motor cortex8, but also for episodic-like memory in
RSC.
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Genetic enhancement of spine turnover increases memory.
Given the results described above, we were interested in geneti-
cally manipulating spine dynamics and studying the impact on
learning and memory and clustering. To do so, we examined the
effect of a null heterozygous mutation of the C-C chemokine
receptor type 5 (Ccr5+/−) on basal spine turnover (Fig. 2a, f).
Remarkably we found that pre-training spine turnover was
enhanced in the RSC of Ccr5+/− mice (Fig. 2b, g). Chronic
blockade of NMDA receptors with the antagonist MK801 pre-
vented this increased spine turnover in Ccr5+/− mice, while
having no effect on their wild type (WT) littermates (Supple-
mentary Fig. 10a), demonstrating that the enhancement of pre-
learning spine turnover observed in Ccr5 mutants is NMDA
receptor dependent and that it may be due to plasticity-related

mechanisms. Ccr5+/− mice were recently shown to have
enhancements in contextual and spatial memory37. Given this
increased basal turnover, as well as enhanced contextual and
spatial memory performance, we posited that learning-related
spine clustering would also be enhanced. To test this hypothesis,
we trained Ccr5+/− mice and their WT littermate controls in
either CFC or MWM)—a spatial learning task—and imaged
dendritic spines in RSC in a subset of animals that expressed
Thy1-YFP (Fig. 2a, f). We confirmed that the Ccr5+/− mice
showed superior performances in both CFC (Fig. 2c and Sup-
plementary Fig. 11a) and MWM (Fig. 2h and Supplementary
Fig. 11b, c). The results showed that training in MWM also
induced clustered spine formation in RSC (Supplementary
Fig. 12), and this clustering is significantly greater than chance
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(Supplementary Fig. 13). Remarkably, contextual and spatial
learning-related spine clustering were enhanced in the RSC of
Ccr5+/− mice (Fig. 2d, i). Chronic treatment with MK801
impaired clustered spine formation in both Ccr5+/− and WT mice
(Supplementary Fig. 10b), demonstrating that spine clustering is
NMDA receptor dependent and that it may be a plasticity-
dependent mechanism involved learning and memory. Consistent
with the results presented above, clustered spines added during
training (CFC or MWM) were significantly more stable than non-
clustered spines at 4 weeks post-training for both Ccr5+/− and
WT animals (Fig. 2e, j). Importantly, at 4 weeks post-training, the
percentage of clustered spine survival correlated with remote
memory performance (Supplementary Fig. 14), again suggesting a
role for clustered spines in cortical information storage. Taken
together, these results indicate that enhancements of spine
turnover and spine clustering may be driving enhancements in
contextual and spatial learning and memory.

Spine clusters form within hotspots of spine turnover. We have
found that pre-learning spine turnover and learning-related spine
clustering both correlate with contextual learning and memory.
As expected, we also found a significant positive correlation
between pre-learning spine turnover and learning-related spine
clustering in both trained WT and Ccr5+/− mice (Fig. 3a, d). To
further explore the spatial relation between these two phenomena
within dendrites, we examined turnover and clustering at the level
of dendritic segments and found that segments with greater
amounts of pre-learning turnover also have increased levels of
learning-related clustering (Fig. 3b, e and Supplementary Fig. 15).
Next, we analyzed the distribution of dendritic segments
regarding levels of pre-learning turnover and learning-related
clustering. We found that the percentage of segments with con-
cordant turnover and clustering (segments having both clustering
and turnover or segments with neither) was higher than random
chance, while the percentage of segments with discordant turn-
over and clustering (segments with only one of the two) was
lower than chance level (Supplementary Fig. 16). Accordingly, we
analyzed the average nearest-neighbor distance between learning-
related clustered spines and spines having undergone pre-
learning turnover and found this value to be significantly smal-
ler than random chance (Fig. 3c, f and Supplementary Fig. 6b).
Furthermore, the average distance between clustered spines and
turnover spines is significantly smaller in trained animals relative
to home cage controls (Supplementary Fig. 15c). Finally, we find
that the average nearest neighbor distance from lost spines to new
spines is significantly smaller for neighboring new spines that are
part of a cluster (Fig. 3g). All together, these data demonstrate the
presence of hotspots of turnover and clustered spine addition in

dendrites. We propose that pre-learning spine turnover may be
used by neurons to sample their surrounding synaptic space.
Increased turnover rate, may allow neurons to more frequently
sample this space and thus optimize connectivity with appro-
priate presynaptic partners during learning. Clustering may then
serve to stabilize these new synapses (Fig. 3h).

Computational modeling of spine turnover impacts network.
We have demonstrated that pre-learning turnover predicts
learning-related clustering, localization of clustering, and rates of
learning and memory. Next, we explored how these processes
might relate to neural network function. Using a biophysically
inspired neuronal model38 (parameters in Supplementary
Table 4), and working under the framework of dendritic protein
synthesis32 and synaptic capture39, we found that increased spine
turnover predicted increased spine clustering following learning
(Fig. 4a and Supplementary Fig. 17). In addition, we found that
new spines which are added and consolidated after the first day of
simulated training tended to be more clustered as spine turnover
was increased (Fig. 4b), in line with our experimental findings. To
assess the discrimination capacity of this network and its relation
with spine turnover, we then serially encoded 10 memories in the
same model network. As the number of dendrites with high
synaptic turnover increased, the sparsity of the firing rates of
memory engrams was also increased (Fig. 4c). This property
could allow the network to discriminate between a larger number
of memories and thus may increase overall memory capacity.
Taken together, these results support the hypothesis that spine
turnover is a driving mechanism for the localization of spine
clustering, which in turn influences neuronal firing, memory
discrimination, and therefore storage capacity.

Discussion
Our understanding of how information is stored and memories
formed within the brain has seen remarkable advancements
recently4,40. For example, it is now generally accepted that
information processing and storage occurs across physiological
and morphological levels from neurons to dendrites to individual
dendritic spines1–5. For instance, a recent study demonstrated
that light-activated shrinkage of new or recently potentiated
dendritic spines was sufficient to weaken memory strength41.
However, we still lack a unifying framework for how subcellular
processes, such as dendritic spine addition, affect cellular and
network properties during learning and information storage.

An emerging theory, known as the clustered plasticity
hypothesis, proposes that plastic events occur in a clustered
fashion within the dendritic tree2,7,19,20. In agreement with the
clustered plasticity hypothesis, several studies have shown that

Fig. 2 Ccr5 heterozygous null mutation (Ccr5+/−) augments pre-training and learning-related spine dynamics in RSC. a Timeline of CFC training and
imaging. b Ccr5+/− mice have increased baseline spine turnover prior to CFC (Day −3 to Day 0) relative to WT littermates (Ccr5+/− n= 10 (12.5%), WT n
= 9 (7.6%); U= 6.00, p= 0.0006). c Ccr5+/− mice show enhanced contextual learning and memory relative to WT littermates (Ccr5+/− n= 12, WT n= 15;
Two-way RM ANOVA, genotype×time interaction: F(4,100)= 2.60, p= 0.0404; Bonferroni post-test for Day2: p< 0.05). d The percentage of new spines
added in clusters during CFC is significantly greater for Ccr5+/− vs WT (Ccr5+/− n= 10 (62.6%), WT n= 9 (42.1%); U= 15.50, p= 0.0178). e Clustered
spines added during CFC are more stable at 4 weeks post-training than non-clustered spines (61.6% vs 36.4%, n= 18 mice with combined Ccr5+/− and
WT; U= 62.50, p= 0.0017). f Timeline of MWM training and imaging. g Ccr5+/− mice have increased baseline spine turnover prior to MWM (Day −4 to
Day −2) compared to WT (Ccr5+/− n= 14 (12.4%), WT n= 12 (9.5%); U= 38.00, p= 0.0193). h In a MWM probe test at 3 days of training, Ccr5+/− mice
spent significantly more time in the target quadrant; at this point in training WT mice did not search selectively for the platform (Ccr5+/− n= 14, WT n= 13;
Two-way RM ANOVA, genotype×percent time in each quadrant interaction F(3,75)= 9.11, p< 0.0001; Bonferroni post-tests for target quadrant vs. all other
quadrants: p< 0.0001 for Ccr5+/−, p> 0.05 for WT; Unpaired t-test for target quadrant, t(25)= 4.173, p= 0.0003). Heat maps below bar graphs show
combined traces of mice from each group during the probe test. i The percentage of new spines added in clusters during MWM training is significantly
greater for Ccr5+/− vs WT (Ccr5+/− n= 14 (58.7%), WT n= 11 (42.6%); U= 33.50, p= 0.0186). j Clustered spines added during MWM are significantly
more stable at 4 weeks post-training than non-clustered spines (63.6% vs 41.5%, n= 8 mice with combined Ccr5+/− and WT; U= 10.00, p= 0.0207).
Data are represented as mean± s.e.m. Mann–Whitney U-test was used in b, d, e, g, i and j. ****p< 0.0001, ***p< 0.001, **p< 0.01, *p< 0.05; NS not
significant

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-02751-2 ARTICLE

NATURE COMMUNICATIONS |  (2018) 9:422 |DOI: 10.1038/s41467-017-02751-2 |www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


long-term potentiation (LTP) induces biochemical interactions
between clustered spines that alter the threshold for induction of
LTP16,33,35. Furthermore, facilitation of LTP between clustered
spines is also due to the sharing of protein synthesis products32.
Studies of structural plasticity have additionally shown that
learning drives clustered addition of new dendritic spines8,34.
From a functional perspective, recent data demonstrated
enhanced orientation selectivity due to clustered synaptic

inputs18. Interestingly, studies in sensory cortices also suggest that
clustered spines may serve to integrate different inputs, as
synapses on nearby spines appear to code for distinct visual
orientations, sound frequencies, or whisker combinations42–44.
However, the principles that govern where and to what extent
clustered plasticity operates within dendrites, as well as how these
subcellular events impact network dynamics have remained
unclear.
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Fig. 3 Learning-related spine clustering occurs within segments of increased pre-learning spine turnover. a, d A significant positive correlation exists
between pre-learning spine turnover and learning-related spine clustering within individual WT (a, n= 17 mice; p= 0.0154) and Ccr5+/− mice (d, n= 14
mice; p= 0.0014). b, e A significant positive correlation exists between density of spines undergoing pre-learning turnover and density of learning-related
clustered spines on each dendritic segment of WT (b, n= 577 segments across 17 mice; p< 0.0001) and Ccr5+/− mice (e, n= 157 segments across 14
mice; p< 0.0001). Clustering and turnover were normalized to dendritic length to facilitate comparisons across mice. c, f The average nearest neighbor
distance (NND) from each learning-related clustered spine to the closest pre-learning turnover spine is significantly smaller than chance in both WT (c)
and Ccr5+/− mice (f). 10,000 simulations of randomized pre-learning turnover spine positions were run, with NND from a clustered spine to a pre-learning
turnover spine measured and averaged. Arrow represents the actual average NND (4.0 µm in WT, and 4.2 µm in Ccr5+/−) observed in the data. Black line is
Gaussian fit of data (WT: mean of Gaussian fit= 7.3 µm, n= 152 distance measurements over 17 mice; p< 0.0001; Ccr5+/−: mean of Gaussian fit= 4.9 µm,
n= 322 distance measurements over 14 mice; p= 0.0293, one sided). g Average distance between lost spines and gained spines is significantly smaller for
clustered spine neighbors. NND were measured from each lost spine to the closest gained neighboring spine and this average distance is smaller if nearest
gained spine is a part of a cluster (6.67 µm vs 9.09 µm, n= 98 clustered neighbor (ngh) measurements, n= 214 non-clustered neighbor measurements;
Mann–Whitney U= 8996, p= 0.0440). h Model of clustered structural plasticity. Dendrites with higher rates of pre-learning spine turnover may allow
neurons to more efficiently sample the surrounding synaptic space and subsequently establish more clustered connections. Clustered spine addition within
a small spatial window allows for stabilization of the encoded information. Spearman’s rho is indicated in a, b, d and e. *p< 0.05. Data are represented as
mean± s.e.m. in g. Mann–Whitney U-test was used in g
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Our in vivo imaging and computational modeling suggest
answers to these outstanding questions. First, we have shown that
animals have individual variability in their baseline rate of spine
turnover, and that higher rates of this pre-learning spine turnover
correlate with future levels of learning and memory. While
similar findings of pre-learning spine turnover predicting future
learning have been previously demonstrated in zebra finch during
the critical period for song learning14, our results are important in
extending these findings to adult mammalian learning and
memory. Critical period plasticity is generally regarded as unique
during brain development45. However, our work shows that
structural mechanisms of plasticity, important during this juve-
nile period of learning, also operate in adult mammals. Further-
more, our results show that spine dynamics are an important
component of neuronal plasticity, and learning & memory, and
that this spans both classes within the phylum Chordata as well as
very different memory systems. Finally, existing studies demon-
strate that spine addition and elimination operate on a multitude
of time scales, ranging from hours to days depending on brain
region and learning task10,12,17,46–51, and our data from RSC add
to this growing understanding of the rich diversity of spine
dynamics within the mammalian brain.

We also show that learning of contextual and spatial tasks
increases clustered addition of dendritic spines in RSC. Spine
clustering in association with learning has been demonstrated in
primary motor cortex during motor learning tasks8 and in barn
owl vestibular systems during prism adaptation34. Our data add
to this body of evidence in support of the clustered plasticity
model by showing that spine clustering also occurs in association
with episodic-like learning, and is moreover positively correlated
with learning and memory. Importantly, we showed that the
Ccr5+/− mutation alters spine dynamics and causes enhancements
in learning and memory. Moreover, our Ccr5+/− results show that
a genetic manipulation that increases spine turnover also causes
an increase in clustering. While other studies have shown that
shrinkage of spines41 negatively impacts memory, our positive
manipulation of spine dynamics adds a critical line of convergent
evidence in support to the clustered plasticity model.

The increases in pre-learning spine turnover and clustering by
the Ccr5+/− mutation could be prevented by an NMDA receptor
antagonist, suggesting that both spine turnover and clustering are
due to plasticity-dependent mechanisms mediated by NMDA
receptors. In contrast, NMDA receptor antagonists did not affect
the increased rates of spine turnover in Fmr1 knockout mice, a
mouse model of autistic spectrum disorder52, demonstrating that
they are not due to plasticity mechanisms mediated by NMDA

receptors. In addition, the Ccr5+/− mutation also causes increased
clustered spine formation after learning. We showed that clus-
tered spines are more stable and therefore this may facilitate
information storage. As such, although Ccr5 knockout mice and
Fmr1 knockout mice both show enhanced spine turnover52–55,
the two mutations result in opposite effects on L&M: while the
Ccr5 mutation causes L&M enhancement37, the Fmr1 mutation
causes L&M deficits56–60.

Given our finding that increases in turnover occur in associa-
tion with increased spine clustering and learning, we explored a
possible structural relation between these phenomena. We find
that learning-related clustering preferentially occurs on segments
of dendrites that have undergone pre-learning turnover. Strik-
ingly, our simulation results show that clustered spine addition
preferentially occur near areas of spine turnover on these den-
dritic segments. These data suggest that pre-learning turnover
facilitates the process of clustering and thus generates hotspots of
structural plasticity. We propose that increased baseline turnover
allows neurons to efficiently sample their synaptic space, such
that they can optimize synaptic connectivity during learning.
When new connections do occur, clustering then integrates and
stabilizes the acquired information.

Finally, using biophysically inspired models, we show that
spine turnover impacts network function by increasing clustering
and network sparsity during memory recall. The net effect of
these network dynamics would be an increase in network storage
capacity. These results, in conjunction with recent electro-
physiological data18,42–44, begin to uncover how subcellular
processes such as spine turnover and clustering could intersect
with physiology to influence neuronal firing and subsequent
network function. Altogether, the results presented here support a
hotspot model where spine turnover is the driver for localization
and rate of clustered spine formation, which serves to modulate
network function, thus influencing storage capacity and therefore
L&M.

Methods
Subjects. All experiments were approved by the guidelines established by the
UCLA Animal Research Committee. Adult (3–8 months old) male and female
Thy1-YFP-H mice were used for experiments in Figs. 1 and 3. Adult (3–8 months
old) male and female Ccr5+/−; yfp+ double transgenic mice and their WT litter-
mates Ccr5+/+; yfp+ mice were used for the spine imaging experiments in Fig. 2
(Ccr5+/− breeders were C57BL/6NTac; Thy1-YFP-H breeders were C57BL/6 J).
Ccr5+/− and WT littermates, with or without Thy1-YFP were used for the beha-
vioral enhancement experiments. Animals were kept on a 12:12-h light:dark cycle
with food and water ad libitum. For MK801 experiments, Ccr5+/−; yfp+ double
transgenic mice and their WT littermates Ccr5+/+; yfp+ mice were used for the
spine imaging and trained with CFC task. Intraperitoneal injections of MK801 were

a b c

No. of dendrites with turnover

A
ve

ra
ge

po
pu

la
tio

n 
sp

ar
si

ty
 (

a.
u.

)

0 5 10 15 20
0.45

0.50

0.55

0.60

0.65

0.70

0.75 ****

No. of dendrites with turnover

N
ew

  c
lu

st
er

ed
sy

na
ps

e 
pa

irs
 (

%
)

0 5 10 15 20
0

5

10

15 ****

No. of dendrites with turnover

P
ot

en
tia

te
d 

cl
us

te
re

d
sy

na
ps

e 
pa

irs
 (

%
)

0 5 10 15 20
30

35

40

45

50 ****

Fig. 4 Spine turnover influences clustering and network functions in a computational model. a Increasing the number of dendritic branches that undergo
high synaptic turnover increases the incidence of potentiated clustered synapse pairs (two synapses within 0.2 a.u.) (n= 10 simulation trials; F(4,45)=
16.69, p< 0.0001; m= 2.05, r2= 0.41, p< 0.0001). Clusters were evaluated after 4 repeated learning episodes spaced 24 h apart. b Increasing the number
of dendritic branches with turnover increases the percentage of new synapse pairs that occur in clusters (n= 10 simulation trials; F(4,45)= 14.19, p<
0.0001; m= 2.34, r2= 0.54, p< 0.0001). Synapses were considered as new if they emerged after day 1 of simulated training. c Increasing the number of
dendritic branches with turnover increases the average neural population sparsity of 10 memory engrams which are serially encoded in the same circuit,
24 h apart (n= 10 memory engrams; F(4,45)= 7.96, p< 0.0001; m= 0.05, r2= 0.39, p< 0.0001). Sparsity was assessed by the Treves-Rolls sparsity
metric. Data are represented as mean± s.e.m. Second reported p-value is from the post test for linear trend following one-way ANOVA. ****p< 0.0001
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performed twice daily (0.25 mg/kg dissolved in saline)52,61. Injections started at
4 days before the first imaging day, and continued for 13 days until the last imaging
was done.

Surgery and cranial window implantation. The procedure we utilized for window
implantation has been described in detail62; briefly, mice were anesthetized with
isoflurane, placed in a stereotaxic frame, and kept warm with a monitored heating
pad. Custom cut coverslips (square, 2 × 2 mm) were cleaned in ethanol and ster-
ilized. A square region of skull 2 mm in width was marked using stereotactic
coordinates (RSC: center at bregma −2.5 mm AP). The skull was thinned with a
dental drill and removed. After cleaning the surgical site with saline, the coverslip
was placed on the dural surface and fastened with adhesive and dental acrylics to
expose a square window of ~2 mm. Next, an aluminum bar with a threaded hole
was attached to stabilize the mice during imaging sessions. Finally, mice were
maintained on antibiotics during recovery and also given daily injections of car-
profen and dexamethasone for 1 week to reduce inflammation. Mice are allowed to
recover for 2 weeks before the first imaging session.

Contextual fear conditioning. Following recovery from surgery, mice were han-
dled and habituated to transport cues for 2 weeks. On the first day after handling/
habituation mice underwent the first home cage baseline imaging session (day 3).
2 days later (day 0) mice underwent the second baseline imaging session. The
following day half the mice were randomly selected to begin contextual fear con-
ditioning using a multi-day paradigm. Animals were placed in conditioning
chambers, 45 s later were given one 1.5-s 0.5 mA shock, and 10 s later were given a
second shock of the same intensity and duration. Animals were removed from the
conditioning chamber 2 min later and placed in their home cage. On day 2 mice
were conditioned again as on day 1, except that 90 min after conditioning mice
were imaged. Training continued as above for a total of 5 days. Each conditioning
chamber (32 cm wide, 25 cm high, 25 cm deep) is equipped with stainless steel grid
floor (36 rods, each rod 2-mm diameter, 8-mm center to center; Med-Associates,
Inc., Georgia, VT) and stainless steel drop-pan. Chambers are scented with 100%
isopropyl alcohol to provide a background odor. Each chamber is equipped with an
overhead LED light source providing white light. Each chamber is connected to a
solid-state scrambler, providing AC constant current shock, controlled via an
interface connected to a Windows computer running Video Freeze (Med-Associ-
ates, Inc.), a program designed for the automated assessment of freezing, an index
of fear memory. Learning rate for each mouse was calculated as the slope of the line
connecting baseline freezing on day 1 before 1st shock and the asymptote level of
freezing on the day this occurs. The asymptote level of freezing is the highest
freezing that occurs chronologically before any decreases in freezing occur. Slope is
then calculated as m = (asymptote freezing−baseline freezing)/(day of asymptote
freezing−day 0 of training). Ccr5+/− and WT littermates follow the same contextual
fear conditioning and imaging protocol. Activity suppression ratio for each day is
calculated as average activity during test divided by the sum of activity during
baseline (activity on Day 1 before 1st shock) plus activity during test. Area under
the curve is calculated in GraphPad Prism utilizing each animals fear learning
curve.

Morris water maze. On the first day after handling/habituation (same as CFC)
Ccr5+/− and WT littermates underwent the first home cage baseline imaging ses-
sion (day 4). 48 h later (day 2) and 96 h later (day 0) mice underwent the second
and third baseline imaging session. The following day, all mice with Thy1-YFP
were trained with four trials per day for 5 days to find a hidden platform in Morris
Water Maze. Each block consisted of two trials with 30 s interval between the trials.
In each trial, mice were given 60 s to find the platform. If mouse found the platform
earlier than 60 s in a certain trial, that trial terminated at the time mice finds the
platform. If mice failed to find the platform, the trial terminated at 60 s. After each
trial, mice were put on the platform for 15 s. Average latency (time spent in
searching for platform) of four trials per day were analyzed and compared between
days and between Ccr5+/− and WT littermates. On day 3 and day 5, probe tests
with a time of 60 s were administered 1 h after training. During the probe test,
platform was removed from the maze. (1) Percentage of time mouse spent in each
quadrant and (2) platform crossing in each quadrant during probe test—which
tests the accuracy of positional memory—were analyzed.

Two-photon imaging. A custom-built two-photon laser scanning microscope was
paired with a Spectra-Physics 2-photon laser tuned to 920 nm. A 40 × 1.0 NA water
immersion objective (Zeiss) was used to acquire images 90 min after each beha-
vioral session. Mice were lightly anesthetized with isoflurane and attached to the
head mount using a small screw. During the first imaging session, segments of
apical dendrites from Layer V pyramidal cells were imaged. These segments were
acquired within 200 μm from the cortical surface, likely representing dendrites
located in layers I and II/III. Imaged segments were generally oriented in the x, y
plane of imaging with minimal z-projection. 512 × 512 pixel images were acquired
at 0.5μm intervals to fully capture the segment of dendrite, and image stacks
generally consisted of 20–30 slices. If a segment of dendrite was larger than could
be acquired in one 512 × 512 stack, additional image stacks were sequentially

acquired through the x, y, z plane of the dendrite in question so that its extent
could be visualized. The same segments were repeatedly imaged across experi-
mental days by locating their position via a coordinate system established during
the first imaging session.

Image and data analysis. Dendritic spines were analyzed and counted by estab-
lished criteria62. Specifically, the Spine Analysis software included in ScanImage
was used to open all imaging days for a given segment of dendrite. A segment is
classified as the entire visible length of a piece of dendrite; and segments were often
followed across several images. The presence, gain, and loss of spines were quan-
tified across days for each segment, and all segments were examined for a given
animal. Distance measurements between spines occurred from the base of one
spine to the base of the next spine and followed the shape of the dendritic shaft.
Importantly, all images were coded following completion of the experiment so that
the experimenter was blind to training status and genotype of all mice while
analyzing and counting spines. A subset of the images was counted by two
experimenters independently to confirm the results.

Statistics. Five and 3 separate replicates of imaging in RSC during CFC and
MWM were run, respectively. The data from all replicates were pooled. Results for
motor cortex CFC and imaging were collected from a single experiment. The size of
each replicate was chosen to include approximately equal numbers of mice for
group comparison, and to maximize the number of animals able to be imaged in
one replicate cycle (~8–12 h). On the first day of training, every other cage was
taken for behavior. Cage placement on the rack was random, choice of animals for
CFC was as well. All available Ccr5+/− and their wildtype littermates at the age
between 3 and 8 months were used for experiments. Correlations were calculated as
Spearman’s rho to compensate for the non-normality of the data. Similarly, the
Mann–Whitney U-test was used for all other group comparisons, except where
indicated. All p-values represent results from two-sided tests, except where indi-
cated. Animals with behavioral data outside two standard deviations of the mean
were excluded from statistical analysis. Animals with <5 spines formed during the
learning phase were excluded from analysis. The turnover ratio equals the sum of
the number of formed and lost spines between two time points divided by the sum
of the total number of spines in each time point. The clustering ratio equals the
number of clustered spines divided by total number of new spines formed after day
0 and stable at day 5. Clustered spines are defined as a new spine that has a distance
<5 μm with another new spine. For analyses of the cumulative probability dis-
tributions of nearest neighbor measurements for newly formed spines and lost
spines, the two-sample Kolmogorov–Smirnoff test was utilized.

For the resampling analysis of clustering, we have run simulations in two ways.
First, in each resampling, the number of new spines added per segment of dendrite
was used to pick an equivalent number of random positions along the same
segment and assess whether these positions were within 5 µm of each other. When
this was completed for all dendrites for a given animal the percent of clustered
spines was calculated as the number of randomly selected new spine positions
within 5 µm of each other divided by the total number of stably added new spines
for that animal. In turn each animal’s resampled clustering percentage was
calculated and then these values were averaged together. This completed one
resampling event, and this average value was plotted on the distributions shown in
Fig. 1h for trained animals and Fig. 1i for controls. This process was then repeated
for a total of 10,000 resampling events, which then gives the full distribution of
random sampling. In our alternative approach, shown in Supplementary Fig. 6a, we
utilized the number of new spines added to a segment of dendrite to select an
equivalent number of positions along the dendrite at random, but only utilizing
positions where a spine had been observed (whether previously observed or still
present; i.e., the identity of new spine was permuted). Here, the difference was that
selected positions for each permutation were constrained to occur where spines
were or had been in the dataset. This method was utilized to account for any
unforeseen biological processes which might govern where spines can possibly exist
(i.e., areas or regions of dendrite might exist that do not typically support new
spine addition); for each resampling, by selecting positions at which spines
occurred in our dataset we would then be assured that we did not inadvertently
violate any processes that might govern potential spine locations.

For resampling analysis of average distance between clustered spines to spines
undergoing turnover, both aforementioned methods were utilized. Specifically, the
distribution shown in Fig. 3c, f was calculated by assessing the number of spines
undergoing pre-learning turnover on each segment of dendrite and randomly
selecting the same number of positions along this segment of dendrite; the distance
from each clustered spine on the segment to the nearest randomly selected position
was measured; these values were averaged for each animal and then all animals
averaged together for each permutation, with the process repeated a total of 10,000
times. In the second method, shown in Supplementary Fig. 6b, positions along the
dendrite were chosen at random but could only occur where a spine existed or had
existed (i.e., permuted turnover spine identity), as described above for the
resampling analysis of clustering.

For resampling analysis of distribution of segments with different levels of pre-
learning turnover and post-learning clustering, the null hypothesis simulation is
done by permuting the number of clustered spines on each dendritic segment
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within each animal and recalculating the percentages of segments of the four
categories. For example, a mouse has 10 segments and each segment has 2
numbers: number of clustered spines, and number of turnover spines. We simulate
the null hypothesis by permuting the number of clustered spines on the
10 segments, without changing the original number of turnover spines on each
segment. This will yield a random distribution of clustered spines on dendritic
segments that is independent of pre-learning turnover. The permutation was
repeated for 10,000 times.

Computational modeling. A previously published model network for memory
allocation in neuronal populations was used to assess the role of synaptic turnover
in memory38. The model consists of a network of excitatory and inhibitory neu-
rons. Excitatory neurons are modeled as 2-layer units63, consisting of a somatic
spiking unit and 20 independent dendritic subunits capable of nonlinear synaptic
integration, dendritic spike initiation and compartmentalized plasticity7,64,65. Each
dendritic subunit integrates the incoming synaptic inputs which reside on it
independently as follows:

τb
dVb

dt
¼

X

i;j

wjEsyn δ t � ti;j
� �� Vb ð1Þ

Where Vb is the dendritic depolarization, τb, Esyn are constants (Model parameters
and constants are listed in Supplementary Table 4), wj is the weight of synapse j
and ti,j are the timings of incoming spikes. Somatic spiking is given by an Integrate
and fire model with adaptation66:

C
dV
dt

¼ �gL V � ELð Þ � gAHP V � EKð Þ þ IsynðtÞ ð2Þ

τAHP
dgAHP

dt
¼ aAHPδ t � tspike

� �� gAHP ð3Þ

Where V is the somatic voltage, C is the somatic membrane capacitance, gL, the
leak conductance, EL the resting potential (0 mV), gAHP is the conductance of the
adaptation (afterhyperpolarization, AHP) current and EK is the AHP reversal
potential. τAHP is the adaptation time constant and aAHP, the quantal increase of
gAHP after a somatic spike which occurs at time tspike. The synaptic current reaching
the soma Isyn is given by

IsynðtÞ ¼ gsyn
X

n

Vb;nðtÞ
� �� IPSC ðtÞ ð4Þ

where IPSC(t) is the total inhibitory input that the neuron receives and gsyn is the
dendritic coupling constant. Somatic spiking occurs when the somatic voltage
reaches the spike threshold θsoma. The backpropagating action potential (bAP) is
modeled by a depolarization component VbAP which is added to the depolarization
of all the dendritic subunits. VbAP (t):

VbAP tð Þ ¼ EbAPe
� t

τbAP ð5Þ

EbAP is the peak of the backpropagating depolarization and τbAP is the time
constant of the bAP.

Calcium influx ΔCsyn near a synapse after a presynaptic spike is dependent on
the depolarization of the dendritic subunit using a sigmoid rule that mimics the
voltage dependence of the NMDA receptors as follows:

ΔCsyn ¼ aCa
1

1þ exp � V�30 mV
5 mV

� � ð6Þ

where αCa is the maximum Ca2+ influx and V=Vb+VbAP.
Synapses are initially allocated randomly in dendritic subunits, given a random

position between 0.0 and 1.0 in arbitrary units, and initial weight winit. Calcium
influx in a synapse during stimulation is the determinant of plasticity following the
synaptic tagging and capture model39: Low-to-intermediate levels of calcium after
stimulus presentation lead to the generation of a depotentiation synaptic tag while
high levels of calcium lead to a potentiation tag (see Supplementary Table 4). The
consolidation of synaptic tags into the weight of synapses is dependent on the level
of plasticity-related-proteins (PRPs). The level of PRPs near a synapse is increased
to its maximum value (1.0) when the calcium level at the synapse exceeds the
threshold ΘPRP and decays exponentially with time constant τPRP. During the
consolidation phase of LTP, tagged synapses capture proteins from all neighboring
synapses which are at a distance of up to 0.2 a.u. away. This sum of available
proteins determines the rate of consolidation of synaptic tags into the permanent
weights w of synapses. Considering that dendritic subunits correspond roughly to
the size of oblique dendrites capable of independent dendritic integration (~ 50
μm), the distance of 0.2 a.u. translates to ~ 10 μm, a distance which is known to
facilitate synaptic cross-talk33. Synaptic weights are subject to homeostatic
plasticity, which normalizes the total synaptic input to a neuron over long time

scales:

dwj

dt
¼ 1

τH
1�

P
j wj

winitNsyn

� �
ð7Þ

where winit is the initial synapse weight of synapses (0.2), Nsyn the total number of
synapses in the neuron and τH the time constant of homeostatic synaptic scaling.

Synaptic turnover was simulated via the removal of synapses which have not
been potentiated beyond their initial weight (0.2) in each neuron and the addition
of an equal number of synapses from random presynaptic inputs which contact
random postsynaptic dendritic subunits in the same neuron. The rate of synaptic
turnover for each dendritic subunit can have two levels, a low turnover rate (0.1) or
a high turnover rate (1.0). In the simulations shown in Fig. 4, the number of
dendritic subunits with high turnover rate was increased from 0 to 20. Synapses
were removed stochastically with probability (turnover rate)×Θremoval.

In the first set of simulations a memory was encoded in the neuronal population
via encoding episodes which occur in 4 consecutive days and consist of activation
of the memory-encoding presynaptic inputs for 4 s. After encoding, the positions of
potentiated synapses only (synapses with weight> 0.8) on their respective subunits
were used to identify the pairs of synapses which were clustered (were less than 10
μm from each other). The ratio (number of clustered potentiated synapse pairs)/
(total number of synapse pairs) was used to assess the degree of clustering shown in
Fig. 4a. Synapses which were added after the first simulated day of encoding were
considered as “new” synapses and the ratio (number of pairs of clustered new
synapses)/(total number of synapse pairs) was used to assess the clustering level of
new synapses (Fig. 4b). The complete distributions of the distances of potentiated
synapse pairs for increasing numbers of high turnover dendritic subunits is shown
in Supplementary Fig. 17.

In a second set of simulations, 10 different memories were encoded in the same
population with 1 day inter-stimulus interval. Each memory was represented by a
different set of presynaptic inputs. After encoding, the memories were re-activated
and the firing rates of the excitatory population were used to assess the sparsity of
the response to each memory using the Treves-Rolls sparsity metric67 shown in
Fig. 4c. For additional details of the model, please see reference38. The parameters
of the computational model are listed in Supplementary Table 4. Simulation code
was written in C++ and is available through the ModelDB database.

Data availability. The spine images and data that support the findings of this study
are available from the corresponding author upon request. Spine resampling and
randomization simulation codes were written in R 3.2.0 and can be accessed from
corresponding author upon request. The computational model is available in
ModelDB with accession number 227087.
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