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Abstract

We introduce a simplified computational algorithm for computing isotope distributions (relative 

abundances and masses) of biomolecules. The algorithm is based on Poisson approximation to 

binomial and multinomial distributions. It leads to a small number of arithmetic operations to 

compute isotope distributions of molecules. The approach uses three embedded loops to compute 

the isotope distributions, as compared with the eight embedded loops in exact calculations. The 

speed improvement is about 3-fold compared to the fast Fourier transformation-based isotope 

calculations, often termed as ultrafast isotope calculation. The approach naturally incorporates the 

determination of the masses of each molecular isotopomer. It is applicable to high mass accuracy 

and resolution mass spectrometry data. The application to tryptic peptides in a UniProt protein 

database revealed that the mass accuracy of the computed isotopomers is better than 1 ppm. Even 

better mass accuracy (below 1 ppm) is achievable when the method is paired with the exact 

calculations, which we term a hybrid approach. The algorithms have been implemented in a freely 

available C/C++ code.
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INTRODUCTION

Calculations of isotope distributions of biomolecules are important in diverse areas where 

biomedical mass spectrometry is used.1,2 Mass spectrometry-based metabolomics and 

proteomics employ isotope distributions of biomolecules routinely. Recently, stable isotope 

labeling has been a major element for static and as well as dynamic proteome or 

metabolome studies. Atom-based labeling approaches, such as 2H,3–6 13C,7 or 15N,8–10 for 

example, or residue-based labeling, such as SILAC, are popular techniques in quantitative 

proteomics.11–15 The studies use isotopomer distributions of natural peptides and 

isotopically labeled peptides16 to determine the relative expression of labeled proteins. 

Therefore, generating isotope distributions of biomolecules from their elemental 

composition has been a focus of research for some time.16–20 Two main approaches may be 

classified. The first approach uses binomial and multinomial distributions to compute the 

isotope distribution of atoms and then uses their convolution to determine the isotope 

distribution of a biomolecule.21 The approach can be computationally costly when a 

molecule is large. Its computational complexity scales with the number of atoms 

polynomially, and techniques have been developed to speed up the calculations.17,22 The 

second approach uses fast Fourier transform (FFT)-based convolution to compute the 

isotope distributions of atoms and then of a molecule.19,20 This approach can be faster, but 

in general, there are advantages to each approach depending on the molecular weight, 

number of isotopomers, and desired mass resolution.16 The FFT-based approach has large 

memory requirements for large molecules and high mass resolution data. Due to the 

computational speed requirements, some bioinformatics applications needing isotope 

distributions preprocessed the sequences first and store their distributions.21
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In this work, we describe a computationally efficient and conceptually simple approach to 

calculate isotope distributions of biomolecules using a Poisson approximation of binomial 

and multinomial distributions. We show that, in most of the cases, a single Poisson formula 

is enough to compute the isotope distribution. The mass distribution of isotopes can be 

computed from the same Poisson distribution as an expectation value of a distribution. The 

paper is organized as follows. First, we introduce the notion of isotope distributions of 

atoms. Then we show how Poisson distribution approximates the combined isotope 

distributions of hydrogen (H), carbon (C), and nitrogen (N) atoms. Next, we approximate the 

multinomial isotope distributions of oxygen (O) and sulfur (S) with multiple Poisson 

distributions. Single isotope distributions from the O and S atoms are naturally incorporated 

into the combined Poisson distribution of H, C, and N. The final isotope distribution of a 

molecule is a convolution of relevant isotope distributions of its atoms. The computations 

use a number of arithmetic operations which are linear in the sum of the O and S atoms. The 

mass distributions of isotopes of a biomolecule are obtained as expectation values from 

Poisson distributions.

METHODS

Isotope Distribution of a Peptide

We will consider isotope distributions of biomolecules made of five types of atoms, H, C, N, 

O, and S. The first three atoms have two naturally occurring isotopes. Isotope distributions 

of any of these atoms can be computed using a binomial distribution formula:23

(1)

where NA is the number of atoms of type A (any of H, C, and N) and pA is the naturally 

occurring frequency of the isotope of A. Formula 1 is the probability that there are kA 

isotopes of NA atoms of A.

In the case of O and S atoms, there are more than two (three for O and five for S) naturally 

occurring isotopes. The corresponding exact probabilities of isotope distributions for these 

atoms are calculated using a multinomial distribution. For example, for a sulfur atom with 

four isotopes the distribution is

(2)

where NS is the number of S atoms and k0, k1, k2, and k3 are the number of monoisotopic, 

first, second, and third isotope atoms of S, with the corresponding probabilities of p0, p1, p2, 

and p3. The general relationships of multinomial distributions hold:
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Computation of the isotope distributions using eq 2 is somewhat computationally expensive, 

and an approach has been developed to do the computations “recursively”.17 We note that 

another often occurring in a biomolecular atom, phosphorus, has only one naturally 

occurring isotope and does not contribute to the isotopic complexity of biomolecules and 

will not be considered here.

The isotope distribution of a biomolecule comprising H, C, N, O, and S atoms can be 

thought of as the distribution of a random variable, X, which is the sum of the random 

variables corresponding to each atomic isotope:

(3)

where XH, XC, and XN are the binomial random variables distributed according to eq 1 and 

XO and XS are distributed according to the multinomial distribution (eq 2). While it is 

possible to compute the isotope distributions of each atom using eqs 1 and 2, there is no 

exact (or approximate) closed formula for the isotope distribution of a molecule composed 

of several different atoms (each with a different isotope distribution). The probability 

distribution of a sum of random variables is a convolution (in the case of the isotope 

distributions, a discrete convolution) of probability distributions of each random variable and 

is formally expressed as

(4)

Due to the absence of a closed form formula, it is computationally costly to compute the 

isotope distributions using eq 4, as the number of atoms in biomolecules is large and the 

number of possible configurations grows polynomially (different combinations of atomic 

isotopes may contribute to the same molecular isotope). In addition, in a typical proteomics 

application, tens of thousands of peptides are analyzed in a single workflow. Each of the 

peptides may need isotope distributions computed. Equation 4 provides a way to compute 

the relative abundances of the peaks of the isotope patterns. The sum of all isotope 

abundances is normalized to be equal to 1. The peaks of the isotope pattern are denoted with 

integers (0, 1, …, n), counting the mass offset from the light (i = 0) isotope (for the atoms 

that we consider here, it is termed the monoisotope). The monoisotopic peak is made of the 

atomic isotopes with highest natural abundance, and it corresponds to the lowest mass-to-

charge ratio (m/z) in an isotope pattern. To denote the isotopes of a molecule, we use the 

following nomenclature: (mi, Mi), where the index i is the mass shift from the monoisotope 

(i = 0). mi and Mi denote the mass of the ith isotope (also referred here to as isotopomer) and 

its relative abundance, respectively.
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In mass spectrometric applications, in addition to the isotope distribution, it is also important 

to accurately compute the (averaged) mass of each isotope. High mass accuracy and 

resolution mass spectrometers allow mass accuracy in few parts per million (ppm) or better. 

Therefore, it becomes necessary to compute the isotope masses with high mass accuracy to 

take advantage of the capabilities of modern mass spectrometers and compare the computed 

isotope masses to the experimentally measured values. The mass of a certain isotopomer, mi, 

is determined as an expectation value of masses of atomic isotopes whose configuration 

leads to this mass:

(5)

where m0 is the mass of the monoisotope, P(kH,kC,kN,kO,kS) is the probability of the 

numbers of H, C, N, O, and S atoms that results in the mass mi, mH is the mass difference 

between the deuterium and hydrogen atoms, and k⃗S*m⃗S denotes the fact that there multiple 

isotopes of a sulfur atom (the vector m⃗S consists of mass differences for each of its heavy 

isotopes). In eq 5, the sum is taken over all configurations of number of atoms that lead to 

the ith isotope of a biomolecule. In Figure 1, we show implementation of eq 5 to compute 

the relative isotope abundances and the corresponding isotope masses. We termed this 

approach an exact algorithm.

Poisson Approximation for Isotope Distributions of Multiatomic Molecules

Poisson distribution has a well-known approximation to the binomial distribution24 when the 

probability at each trial is small (as is the case with the heavy atom isotopes). For example, 

the probability to observe kA heavy isotopes in an isotope distribution of the H, C, and N 

atoms is

(6)

where λA is the average number of successes, λA = NA × pA. Note the difference between 

the capital, PA (probability of a Poisson distribution), and lower case, pA (the probability of 

success in each trial – Bernoulli distribution). The subscript “A” can be any of H, C, and N. 

For example, λH for 200 H atoms willbe λH = 200 × 0.000115 = 0.023. To compute 

probability that among 200 randomly chosen hydrogen atoms there will be (for example) 15 

deuteriums, we will set kA = 15 and λA = 0.023 in the eq 6. The probability will be the 

relative intensity of the 16th isotope in the isotopic distribution of 200 H atoms.
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Next, we use the simplifications that are provided in the sum of Poisson random variables. 

The sum of independent Poisson random variables is also a Poisson variable, with the mean 

equal to the sum of means of original Poisson variables. This is shown in many different 

ways, and a simple way to show this is to use the moment generating function of each 

Poisson random variable and the fact that the moment generating function of a sum of 

independent random variables is the product of their moment generating functions. The 

random variables corresponding to H, C, and N atoms are independent. We replace the first 

three terms in the eq 3 with a single Poisson random variable, XHCN, with the mean, λHCN = 

λH + λC + λN.

Note that the Poisson distribution, unlike the binomial distribution, does not place a limit on 

the number successes (mini-isotopes, e.g., 2H, 13C, 15N occurrences). In the latter, there 

cannot be more success than the number of trials. There is no such limit in Poisson 

distribution. So potentially an artificial outcome where the number of isotopes is larger than 

the number of atoms seems to be allowed. However, in practice, when the number of 

successes is more than the actual number of atoms of a given type, the probability is 

practically zero (long before reaching the limit). In addition, it is possible to limit the 

contribution to any isotope from any of the H, C, and N atoms by the corresponding number 

of atoms.

Multinomial distributions also allow a Poisson approximation.25,26 For example, the 

distribution of minor (heavy) isotopes of oxygen (17O and 18O isotopes) is approximated 

with

(7)

The above approximation uses the fact the major isotope of oxygen has large abundance 

(probability) compared to the other two, minor isotope abundances. In eq 7, λ17O = p17ONO 

is the mean of the Poisson distribution for the 17O isotope, p17O is the frequency of this 

isotope in the nature, and NO is the number of oxygen atoms in a molecule. Probability 

properties of the 18O isotope are determined similarly.

Similar approach is extended to the isotope distribution resulting from sulfur atoms. The 

error of approximations, Δn, between the original multinomial distribution and its 

approximate Poisson distribution is proportional to the sum of the probabilities of minor 

isotopes:26,27

where n is the number of atoms, O is a “big O”, e is the Euler’s constant, and the summation 

is over the elemental isotope probabilities that do not include the main isotope. Thus, for this 
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approximation to work well, the sum of minor isotope relative abundances has to be small. 

In the case of the sulfur atom, the abundance of the second heavy isotope is relatively large, 

0.0421, and the sum becomes relatively large and the accuracy of the approximation reduces. 

Note that the difference with the exact multinomial distribution is less than 1% (as computed 

using the probabilities of the heavy isotopes of S, and setting n = 1). For the sake of 

accuracy, it may be preferable to compute the sulfur isotope distribution separately using the 

multinomial probabilities. In the freely available C/C++ code (https://ispace.utmb.edu/users/

rgsadygo/Proteomics/IsotopeDistributions), we have implemented both options. In this 

work, we have termed this approach as a hybrid (between exact for S atoms and Poisson 

approximation for H, C, N, and O atoms) approach.

In practical applications, the masses and relative abundances of the monoisotope (i = 0) and 

of the first heavy isotope (i = 1) require few numerical operations, and they can be computed 

exactly. The complexity of the isotope calculations arise for the isotopes with indices i ≥ 2.

Once the Poisson approximations for H, C, N, O, and S atoms are used, we can further 

simplify the computations by recognizing that the first heavy isotopes from both O (17O) 

and S (33S) atoms have a common property with the H, C, and N isotopes. They all shift the 

mass value approximately by 1 Da. Therefore, both of these distributions are integrated into 

the common distribution with H, C, and N atoms. In addition, the second heavy isotopes of 

O (18O) and S (34S) can be combined to create a single Poisson distribution. At this point, eq 

3 is transformed into the following equation:

where XA is a Poisson random variable which integrates the distribution of 2H, 13C, 15N, 
17O, and 33S isotopes, X18O34S is a Poisson random variable of joint O (18O) and S (34S) 

isotopes, and X36S is a Poisson random variable describing the distributions of 36S isotope. 

No further simplifications are applicable as each term in eq 7 carries a unique mass shift.

The expected mass of an isotopomer, mi, is calculated using features of the Poisson 

distribution:

The indices have the same meaning as in eq 7. In Figure 2, we provide an algorithm that 

implements the relative abundance and mass calculations of isotopes using Poisson 

approximation.

FFT-Based Computation of Isotope Distributions

In one application of an FFT-based isotope distribution computation, the isotope envelope of 

a basic unit (such as an atom’s isotopes) is coded by an array, X. If isotope fine structure is 

not a purpose, the arrays of all elements are one-dimensional. Each of the distributions is 

fast Fourier transformed to obtain the FFT of the elemental isotopes. Each one of the FFTs 
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of elemental isotope distribution is raised to the corresponding power (the number of atoms 

of the particular type in the molecule). The product of all FFTs is obtained. The product is 

inverse Fourier transformed for the isotope distribution of a molecule. The equivalence 

between the convolution of two vectors and the inverse FFT of a product of forward FFTs of 

each vector is used. The FFT-based algorithms scale as O(K log(K)), where K is the length 

of a vector (in this case, the number of isotopes to be computed). The FFT approach to the 

isotope calculations has been described previously.20 Recent publications have provided 

codes of applications of this algorithm in R (ecipex algorithm28) and in Matlab (a Matlab 

version29 of the Taverna workflow in R). These applications are particularly suitable for 

calculations of isotope fine structure. The mass accuracy and resolution of the modern mass 

spectrometers continuous to improve. At high mass resolution, it is possible to discern 

isotope fine structure–isotope distributions of particular isotopologues (molecules that have 

the same chemical and isotope compositions and differ only on the position of the isotopes). 

It should be noted the mass resolution requirement to resolve isotope fine structure is higher 

for resolution of higher isotopologues (isotopologues having more than two or more 

nonabundant atomic isotopes). In the Supporting Information’s Figure S1, we provide an 

algorithm and its C/C++ and R implementations.

Recursive Computation of Isotope Distributions

Another approach for generating isotope fine structures computes isotopologue distributions 

recursively.30,31 This approach uses the fact that the binomial and multinomial probability 

mass functions can be computed recursively. For example, if two isotopologues (x and y) of 

an atom differ in exchange of one atomic isotope (assumed natural abundance, p1) to another 

(assumed natural abundance, p2), then the probability of new isotopologue, Py, resulting 

from this transition is the same (in terms of Px) for both binomial and multinomial 

distributions and is equal to

(8)

where  is the number of first isotope types in the isotopologue x,  is the number of the 

second isotope types in isotopologue y. enviPat uses eq 8 to first estimate the highest 

probability atomic isotopes, then applies a user-adjustable filter to filter out low probability 

isotopologues.30 An indexing scheme is used to avoid redundant transitions. The 

isotopologue probabilities of each atom type computed using eq 8 are combined via the 

Cartesian product to compute the isotopologue probabilities of molecules.

Note that the recursive calculations based on eq 8 use five arithmetic operations to determine 

probability of each isotopologues resulting from a single exchange of two different atomic 

isotopes. The analogous formula for Poisson distribution will have only three arithmetic 

operations in the case of atoms with only two isotopes (C, H, N):
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In the case of the three or more atomic isotopes (O and S), the transition probability formula 

is similar to the one in eq 8, with p2 and p1 replaced with λy and λx, respectively. Thus, in 

applications to recursive algorithms, there are computational gains in computing 

probabilities of isotopologues of atoms with two isotopes. For each atom the total number of 

isotopologues is computed using a binomial coefficient, , where n is the number 

of atoms of a given type and i is the number of its isotopes.32 The formula is obtained as a 

sampling from a set (isotopes of an atom) with replacement and without ordering. The 

number of isotopologues can become large, and pruning techniques are used filter out low 

probability isotopologues.30,33

RESULTS AND DISCUSSION

For our calculations, we used atomic isotope distributions recently published in the report of 

the Institute of Pure and Applied Chemistry.34 In the report, there are two possible isotope 

distribution choices for each atomic element. One presents the range of values for each 

isotope, the second is the most accurately determined isotope ratios. We used the most 

accurately determined isotope ratio values. The natural isotope distributions used in this 

study are provided in the Supporting Information, Table S1.

To compare the computational speed, we applied Poisson-based and FFT-based isotope 

distribution to compute isotope distributions of all tryptic peptides in the UniProt database35 

downloaded in May of 2015. Three missed cleavages were allowed, and peptides ranging in 

length between 7 and 41 amino acids were considered. Only 16 isotopes for each tryptic 

peptide were calculated to exclude the possible effects of memory requirements in the FFT-

based method. Theoretical isotope distributions were generated for more than 46 million 

peptide sequences from 548 454 protein entries. It took the Poisson-based method about 4.8 

min to compute isotope distributions of all peptides. The FFT-based method took 14.1 min 

for the same task (on the same computer). In Figure 3, we show the density of the ratios of 

relative abundances of the first heavy isotopes as computed by FFT- and Poisson-based 

methods. As it is seen from this Figure, Poisson-based method accurately predicts the 

isotope distributions (median and mean of the deviations were the same and equal to 2%; the 

range of the accuracy was between 0.05 and 7%, and the mean and standard deviation were 

0.15 and 0.09%, respectively).

In a separate comparison, we compared the time it took to compute isotope distributions of 

each peptide sequence by the FFT- and Poisson-based algorithms. Figure 4 shows the 

detailed comparison of isotope generation times by the FFT-and Poisson-based algorithms. It 

is a scatter plot of the times for all peptides with each methods. The red line is the line of 

unity. For less than 0.1% of peptides, the FFT-based algorithm was faster. For the rest of the 

peptides Poisson-based algorithm performed faster. The time comparison was done 
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sequentially—for each peptide sequence, isotope distribution was first generated by one 

method and then the other one. We changed the ordering of methods to make sure that there 

was no dependence on the order in which a method was called. The general features of time 

distribution for the methods agreed with the overall time comparisons mentioned about (4.8 

min versus 14.1 min). Thus, the median of isotope calculation time with the Poisson method 

was 0.0053 ms, and the FFT was 0.018 ms.

We have also compared the running times of our code with those of enviPat. enviPat is 

available as an R code. R is an interpretable environment, and normally codes take longer to 

run in this environment. For the comparison, we only recorded the time it takes to run the 

“isopattern” function in enviPat for atomic composition of each peptide. It took considerably 

longer to compute the isotope distributions in enviPat (Supporting Information, Figure S2). 

We believe that the fact the enviPat runs in R environment has contributed to the execution 

time difference. In addition, enviPat provide fine isotope structure, while our code provided 

only isotopomer distributions.

Breen et al.36 have used Poisson distribution to predict the isotope distributions of peptides 

based on the peptide mass. For this purpose, they used the concept of averagine37 amino 

acid, generated 15 peptides composed of one through 15 averagine amino acids, used a 

fitting to these data (15 data points) to determine the mean of the Poisson distribution. The 

mean was a linear function of peptide mass and this information can be used to predict 

isotope distribution of a peptide based only on peptide mass. Valkenborg et al.38 extended 

this approach to include sulfur atom, as well. These Poisson model-based approaches predict 

the isotope distribution of a peptide species based on its mass only. They are important in 

different applications, for example, for peak picking or deconvolving overlapping isotope 

profiles36 where the amino acid sequence of a peptide is unknown. Our approach will 

facilitate the computations of theoretical isotopes in high-throughput data processing of 

stable isotope labeling proteomics experiments such as experiments with metabolic labeling. 

As described above our approach has no restrictions in terms of the sulfur atoms.

Patterns of relative isotope abundances are regularly used in interrogation of mass 

spectrometric data, e.g., for relative quantification or proteome turnover studies.39,40 Some 

of the application tools use information on both relative isotope abundances and isotope 

masses.41 The calculations of the masses of isotopes are computationally the most 

challenging element of isotope generation. The algorithms for relative isotope abundance 

calculations (such as FFT-based algorithm) implicitly uses the fact that occupational 

numbers of isotopes are integer values. On the other hand, the masses of isotopes are not 

integers and therefore may need to be explicitly calculated. In general, there are eight, (3*1 

+ 2 + 3), embedded loops for computing isotope masses. This makes the computational 

problem of polynomial complexity. The fully Poisson approach described above avoids most 

of the embedded loops, and has only three embedded loops. However, the technique did not 

produce highly accurate masses for all isotopes of peptides. While for the peptides that did 

not contain sulfur atoms, the largest error in an isotope distribution (of all isotopes with 

relative abundance large than 0.001 of the tallest isotope peak in the isotope envelope) was 

less than 1 ppm for peptides that contained sulfur atoms, the mass accuracy was low as 10 

ppm (for high mass isotopes). To address this problem, we tested a hybrid approach to 

Sadygov Page 10

J Proteome Res. Author manuscript; available in PMC 2019 January 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



simplify the isotope mass calculation and increase the mass accuracy of the calculations by 

including exact calculations for S atoms. In this approach, we, at first, compute the isotope 

masses of joint distribution of hydrogen, carbon, and nitrogen atoms using Poisson 

approximation for these atoms. At the second stage, we compute the isotope masses of joint 

distribution from the first stage and that of oxygen atoms also computed using Poisson 

approximation. At the third, final stage, we incorporate the mass shifts due to the isotopes of 

the sulfur atoms using an exact approach. In this approach, we have three embedded loops 

(one for each: combined isotope distributions of hydrogen, carbon, and nitrogen atoms; and 

the isotopes of sulfur atoms). As a result of this “decomposition” of isotope mass 

calculations into simplified calculations with smaller number of embedded loops, we obtain 

improved speed of computations. The mass accuracy from this approach was very high—

better than 1 ppm for sulfur-containing peptides (the mean of difference was 0.06 ppm and 

standard deviation 0.012 ppm) and better than 1 part per billion (ppb) for peptides that do 

not contain a sulfur atom (the mean of difference was 0.4 ppb and standard deviation 0.02 

ppb). The hybrid algorithm is shown in Figure 5. The results of its application and the scatter 

plot of mass accuracy (the worst accuracy for all isotopes that have relative abundance larger 

than 0.1% of the maximum abundance isotope) against the relative isotope abundance is 

illustrated in Figure 6.

In the case of Poisson approximation, as with many computational approaches, various 

combinations of approximations may be beneficial dependent on specific needs of an 

application. Here, we have tested a fully Poisson approximated and hybrid approach to 

generate isotope distributions of peptides from their amino acid compositions. If only 

relative abundances are needed, then the fully Poisson approximation is very fast and 

accurate. If masses of isotopes are also required, then (in particular, for high mass isotopes) 

a combination of Poisson approximations with exact convolution is a preferable approach.

CONCLUSIONS

We have developed an approximation to accurately generate isotope distributions of 

biomolecules. Our approach is based on the Poisson approximations to multinomial and 

binomial distributions. It uses a closed formula and has no requirements for memory storage. 

We show that the relative isotope abundances are calculated with a high accuracy (Figure 3). 

The relative isotope calculations are 3-fold faster than the ultrafast isotope calculations using 

FFT, which are also provided in the freely available code.

The mass accuracy of the masses of isotopomers is in low parts per million. To improve this 

accuracy, we have proposed and validated a hybrid approach which uses the Poisson 

approximation for H, C, N, and O atoms and exact calculations for the S atom. In the hybrid 

approach, we obtain mass accuracy better that 1 ppm.

We conclude that for peptides that do not contain a sulfur atom, the Poisson approximation 

provides very accurate computation of masses and relative abundances of isotopomers. For 

peptides containing sulfur atoms, a hybrid approach is suggested, where we use Poisson 

approximations for all atoms but the sulfur atom. The hybrid approach results in mass 
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accuracy better than 1 ppm for all isotopes with abundance more than 1000th of the 

maximum abundance isotope (tallest isotope peak in an isotope envelope).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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ABBREVIATIONS

Binom binomial distribution

FFT fast Fourier transform

invFFT inverse Fourier transform

LC-MS liquid chromatography–mass spectrometry

Multinom multinomial distribution

MS mass spectrometry

ppm parts per million

ppb parts per billion
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Figure 1. 
Pseudocode of algorithm to compute exact isotope distributions. The inputs are the relevant 

characteristics of each atom. For example, nO is the number of O atoms, Δ17O and Δ18O are 

the mass shifts of 17O and 18O isotopes (relative to 16O isotope), respectively, and p17O and 

p18O are the corresponding (normalized) abundances. M0 is the monoisotopic mass. Binom 

and Multinom stand for binomial and multinomial distributions, respectively.
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Figure 2. 
Pseudocode of algorithm to compute isotope distributions using Poisson approximations. 

Poisson denotes a Poisson probability with the specified parameters. The rest of the 

nomenclature is the same as that in Figure 1.
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Figure 3. 
Ratios of M1 intensities as calculated by Poisson to FFT.
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Figure 4. 
Scatter plot of computation times of isotope generation using FFT-based (y-axis) and 

Poisson-based (x-axis) methods. The red line is the line of unity.
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Figure 5. 
Pseudocode of a “hybrid” algorithm to compute isotope distributions using Poisson 

approximation and exact distributions. The nomenclature is the same as that in Figures 1 and 

2. For brevity, we did not show the computations for S atoms (they are similar to the O atom 

calculations).
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Figure 6. 
Scatter plot of mass accuracy. Shown are the worst accuracy in each peptide’s isotope 

cluster. The only filtering used was the requirement that an isotopomer abundance needed to 

be larger than 0.1% of the maximum abundance isotope for the particular peptide under 

consideration. Data for 1000 randomly chosen peptides are shown. The x axis shows the 

absolute values of the relative abundances. The sum of all isotope abundances is normalized 

to equal 1.
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