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Abstract

Background: Runs of Homozygosity (ROH) are genomic regions where identical haplotypes are inherited from
each parent. Since their first detection due to technological advances in the late 1990s, ROHs have been shedding
light on human population history and deciphering the genetic basis of monogenic and complex traits and diseases.
ROH studies have predominantly exploited SNP array data, but are gradually moving to whole genome sequence
(WGS) data as it becomes available. WGS data, covering more genetic variability, can add value to ROH studies, but
require additional considerations during analysis.

Results: Using SNP array and low coverage WGS data from 1885 individuals from 20 world populations, our aims were
to compare ROH from the two datasets and to establish software conditions to get comparable results, thus providing
guidelines for combining disparate datasets in joint ROH analyses. By allowing heterozygous SNPs per window, using
the PLINK homozygosity function and non-parametric analysis, we were able to obtain non-significant differences in
number ROH, mean ROH size and total sum of ROH between data sets using the different technologies for almost all
populations.

Conclusions: By allowing 3 heterozygous SNPs per ROH when dealing with WGS low coverage data, it is possible to
establish meaningful comparisons between data using SNP array and WGS low coverage technologies.
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Background
Runs of Homozygosity (ROH) are contiguous regions of
the genome where an individual is homozygous across all
sites. ROH arise when two copies of an ancestral haplo-
type are brought together in an individual. Consequently,
that haplotype would be autozygous, i.e. homozygous by
descent. ROH were first discovered using genome-wide
microsatellite scans in the mid 1990s [1]. Members of two
families recruited to construct the first human genetic
maps carried 4–16 ROH typically 2–40 cM in length; the
most extreme individuals had a total of 253 cM in ROH,
consistent with close inbreeding. Henceforth, ROH were
found to be ubiquitous even in outbred populations; in-
deed, we are all inbred to some degree and ROH captures
this aspect of our individual demographic histories [2–5].

Soon after the first ROH study using short tandem re-
peat polymorphisms (STRPs) was released, the first SNP
arrays started to become available. During those first
years, using arrays with densities of 40 K and 120 K
SNPs, ROH were discovered to be ubiquitous across all
human populations [5]. However, it was not until the
first arrays with more than 300 K SNPs were used that
the analysis of ROH started to shed light on the under-
standing of human demographic history and in deci-
phering the genetic structure of traits and complex
diseases [6–8]. Currently array-based genotyping covers
around 1.9 to 2.2 million SNPs, allowing meaningful de-
tection of ROH longer than 1 Mb, and even though this
is an important improvement over previous arrays, it
covers only ~ 2% of the total common SNPs present in
the human genome [9, 10]. This prevents the use of
array data for detecting shorter ROH, an essential com-
ponent contributing to the understanding of human
genetics. WGS will soon allow shorter ROH to be more
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reliably called; permitting the effect of very short ROH
on diseases risk to be quantified. Thus, analyzing the ef-
fect of different lengths of ROH may reveal the relative
contributions of multiple rare and common variants to
the demographic history of human populations and to
explore and test new approaches to understand complex
traits [11].
ROH have been a subject of study for understand-

ing human population structures and disease genetics
[11–13]. The number and length of ROH reflect indi-
vidual and population history while the homozygosity
burden can be used to investigate the genetic archi-
tecture of complex disease. They contributed to stud-
ies for different diseases and risk factors, from cancer
to cognition, and have been tested for association
with either the burden of ROH (total sum of ROH),
their abundance (number of ROH), or for association
of individual ROH with a phenotype. To date, ROH
have been found to be associated with an increased risk of
schizophrenia [14, 15], Alzheimer’s disease [16, 17], autism
[18, 19], intellectual disabilities [20], lung [21], breast [22]
and thyroid cancer [23], and coronary artery disease [24].
In addition, ROH were found to have an effect, in terms
of inbreeding depression, on bone mineral density [25],
height [12], cognitive ability [26] and education [27]. The
application and usefulness of ROH is not limited to
humans; ROH have been used to study conservation of
endangered species, such as the great apes [28, 29], and to
studying inbreeding depression and genomic features in
livestock [30, 31]. In view of their usefulness the number
of articles published using ROH as a central methodology
has recently increased significantly (162 in 2005, 322 in
2010 and 620 in 2016, PubMed search using R package
RISmed) and have used predominantly DNA SNP array
genotypes. It is expected that, with the current availability
of full genome sequences, ROH will be used extensively as
an augmentative approach to study population structure,
demographic history and in deciphering the genetic struc-
ture of complex diseases [13].
The first aim of this article is, therefore, to compare

the outcomes and general conclusions drawn for array-
based data and low coverage (3-6×) whole genome
sequence data from the same groups of individuals. The
second is to obtain appropriate parameters of ROH call-
ing that allow meaningful comparison between ROH
obtained from both technologies.
There are two major methods for identifying ROH:

observational genotype-counting algorithms [32] and
model based algorithms [33]. Observational approaches
use algorithms that scan each chromosome by moving a
fixed size window along the whole length of the genome
in search of stretches of consecutive homozygous SNPs
[32]. This approach is implemented in PLINK v1.9 where
a given SNP is considered to potentially be in an ROH

by calculating the proportion of completely homozygous
windows that encompass that SNP. If this proportion is
higher than a defined threshold, the SNP is designated
as being in a ROH. In the algorithm, a variable number
of heterozygote positions or missing SNPs can be speci-
fied per window in order to tolerate genotyping errors
and failures. An ROH is called if the number of consecu-
tive SNPs in a homozygous segment exceeds a prede-
fined threshold in terms of SNP number and/or covered
chromosomal length. The simplicity of the approach
used by PLINK allows efficient execution on data from
large consortia [12]. On the other hand, haplotype-
matching algorithms (e.g. Germline) [34] for calculation
of identity-by-descent (IBD) can also be used to identify
ROH, as a special case of IBD within an individual.
Model-based approaches use Hidden Markov Models
(HMM) to account for background levels of LD, like the
one implemented in Beagle (Browning and Browning
[35]). Tests on simulated and real data showed that the
approach using PLINK outperformed Germline and Bea-
gle in detecting ROH [36]. This study simulated data by
mimicking LD properties in European data, allowing the
sequence to resemble expected autozygosity in an out-
bred European population as well as provide information
about true runs of homozygosity. SNP data was obtained
from the sequence by sampling common polymorphisms
that simulated the allele frequency distribution and SNP
density found in modern dense SNP chips.
PLINK, Germline and Beagle software have been used

to find ROH in array and WGS data; yet, the HMM
model approach is also used with Whole Exome Se-
quence (WES) data as an alternative to discover SNP
variants and small to medium length ROH [37, 38].
However, with the sparse nature of the WES target
design, long ROH detection is not possible. Specific soft-
ware, like “homozygosity heterogeneous hidden Markov
model (HMM)” or H3M2, was designed to deal with this
type of data [39].
Accurate ROH calling requires high density SNP

genome-wide scan data. A number of factors influence
the quality of ROH calling, including the marker density,
their distribution across the genome, the quality of the
genotype calling/error rates and minor allele frequency.
Currently ROH studies have been carried out using
genome-wide scan data overwhelmingly from SNP arrays
[7, 12, 40], both because of the availability of this data
and the fact that array data is considered the gold stand-
ard with very low genotyping calling error rates (typically
< 0.001). However SNP arrays usually include ~ 1–2.5
million SNP typically with allele frequencies > 0.05,
chosen to best represent haplotype structure in target
populations. Arrays with more than 300 k SNP genome-
wide coverage have been shown to be good enough to
successfully detect ROH longer than 1 Mb, which
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correspond to true ROH arisen by autozygosity [41].
Indeed, it is expected that long ROH will keep their
homozygous status independently of the SNP coverage.
However, the relative sparsity of SNPs on an array may
mean that true heterozygous SNPs between the markers
on the array may be missed, thereby making two close-
by ROHs appear as one, longer ROH. ROH boundaries
will be fuzzier in comparison with WGS and because
arrays have fewer SNP they will systematically present
and underestimate of ROH shorter than 1 Mb.
A WGS approach, on the other hand, assays every

variant so all accessible bases can now be genotyped and
more than several million variants, from the most com-
mon to the most private can be obtained for each indi-
vidual [42, 43]. For cost reasons, low coverage
sequencing is often employed to maximize the number
of participants in a study and strengthen its power. In
this case rare SNPs are called significantly less often,
with higher error rates, than common SNPs. Whole gen-
ome sequence with low-coverage (e.g. 4× average) has a
high probability that only one of the two chromosomes
of a diploid individual has been sampled at a specific site
[42, 43]. Error rates of low coverage WGS can get up to
15% or higher. Of course, reducing and quantifying the
uncertainty associated with SNP calling may be accom-
plished using sophisticated algorithms, and this
approach has been subject to extensive research [43].
However, the error rate for low coverage WGS is signifi-
cantly higher than for array data, which will lead to in-
accuracy in ROH calling. This is particularly important,
as the cost of WGS becomes more affordable and data
more available [44], opening up new possibilities to
study ROH in greater detail, replicate results from SNP
array data studies, or to the study the relationship of
ROH, especially shorter ones, with new populations or
traits. Hence, parameters of ROH calling algorithms
require tuning to the characteristics of the underlying
data in order to obtain meaningful comparable results
between studies using different technologies. While in
the long run, high coverage data (> 30×) will become
more affordable, for the medium-term at least, low-
coverage WGS data will be an important source for
many analyses.

Results
Comparing variant calling between technologies
In order to have a meaningful comparison of ROH
obtained from array and WGS low coverage data it is
important to first analyze the differences in presence of
heterozygous SNPs and variant calling between both
technologies. To assess the error rate in heterozygote
calling in the WGS, the percentage of concordance in
the variant calling between the array and the WGS data,
is shown for every population studied (Table 1). As

expected, WGS included more heterozygotes SNPs since
the SNP array captured only data from ~ 2.5 M nucleo-
tide positions in the autosomal genome, whereas the
WGS provided data for the entire length of the genome
(~ 2.8 × 109 nucleotide positions). On average, for all the
populations analyzed, the WGS low coverage data had
6.3 times more heterozygous SNPs (2,558,000 ± 71,700)
compared to the array (404,700 ± 7717) (Table 1). In
WGS data there is 1 heterozygous SNP per 1.1 Kb vs 1
in 7.1 Kb in array data. On average the concordance in
variant calling by array and WGS is 99.6% (±0.05%). Of
the 0.4% (±0.05) discordant calling, on average, 0.1%
(±0.03) of the SNPs was called heterozygous by the array
and homozygous by WGS and 0.3% (±0.02) of the SNPs
was called heterozygous by WGS, but homozygous by
array. Considering that array genotyping is the gold
standard, WGS data, on average, led to erroneous calling
of 0.3% (±0.02) of heterozygous SNP, which would incor-
rectly be reported as a break in a given ROH. On aver-
age, for all the populations, there will be 6500 SNPs
(±714) per individual wrongly called as heterozygous,
and that is roughly 2.4 SNP (±0.3) per Mb. This error
rate is however different across the studied populations,
with the JPT having the higher error rate (13,000
wrongly called heterozygotes; 4.5 SNPs per Mb) and the
ZUL having the lowest (740 wrongly called heterozy-
gotes; 0.3 SNPs per Mb).

Assessing the impact PLINK tolerating heterozygous SNPs
in the search for ROH
Due to its better performance in comparison to other soft-
ware available, its efficiency execution on data from large
consortia and the fact that is the software most used when
searching for ROH we use PLINK 1.9 to develop this study.
PLINK, by allowing a flexible number of heterozygous
SNPs per window (the default value being 1 heterozygous
SNP per window), already takes into account possible call-
ing errors that may wrongly break a long ROH. By allowing
this heterozygous SNP, the software produces an error that
depends on the number of SNP (in homozygous state) per
ROH. Figure 1 shows the ep(P,h) as a measurement of the
empirically observed number of heterozygous SNPs found
in ROHs in population P when allow h heterozygous SNPs
per window (1 heterozygous SNP in the array data and 1 to
5 in WGS data, see Materials and methods). This figure
shows that for most of the populations the ep(P,h) produced
by allowing a single heterozygous SNP per window in array
data is equivalent to allowing 4 to 5 heterozygous SNPs in
WGS data. A few populations deviated from this observa-
tion: TSI (0.27% for the array data vs 0.17% after allowing
for 5 heterozygous in WGS data), ASW (0.185 vs 0.122),
ACB (0.185 vs 0.138), YRI (0.13 vs 0.114), BAG (0.161 vs
0.133) and ZUL (0.136 vs 0.105). These differences are pro-
voked by differences in the mean number of SNPs per
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ROH as it can be seen in Additional file 1. For example, the
TSI population has, on average, 368 SNPs in the homozy-
gous state per ROH in the array data, less than half of the
average SNP per ROH in array data across all populations
(714.7).

Obtaining equivalent ROH estimates using data from
both technologies
According to both Table 1 and Fig. 1 it seems appropri-
ate to compare ROH from both technologies allowing 1
to 5 heterozygote SNPs in WGS data in order to obtain

Table 1 Mean number of heterozygote SNPs (per called SNP) in array and WGS low coverage data for 20 world populations

VARIANT CALLING

Ave N of Het. WGS Ave N of Het. Array Concor. Discor. He A − Ho W Ho A − He W ROH error

FIN 2,432,921.7 398,280.1 99.6929 0.3071 0.0402 0.2669 0.227

GBR 2,463,526.4 405,223.1 99.6898 0.3102 0.0430 0.2672 0.224

IBS 2,440,125.2 399,870.1 99.6547 0.3453 0.0412 0.3041 0.263

TSI 2,445,524.4 401,124.4 99.6015 0.3985 0.0424 0.3562 0.314

CEU 2,479,523.5 417,837.2 99.6365 0.3635 0.0402 0.3232 0.283

ACB 3,283,726.5 454,173.7 99.6723 0.3277 0.0403 0.2874 0.247

ASW 3,262,716.1 462,107.3 99.6526 0.3474 0.0448 0.3026 0.258

MXL 2,524,698.2 385,362.1 99.7197 0.2803 0.0433 0.2370 0.194

CLM 2,317,649.7 377,844.5 99.6716 0.3284 0.0460 0.2825 0.236

PEL 2,100,245.2 352,485.3 99.6987 0.3013 0.0411 0.2601 0.219

PUR 2,421,174.0 381,603.3 99.4125 0.5875 0.0448 0.5427 0.498

CDX 2,313,375.1 371,361.9 99.7197 0.2803 0.0351 0.2452 0.210

CHB 2,330,226.6 377,553.5 99.7197 0.2803 0.0366 0.2437 0.207

CHS 2,317,649.7 377,844.5 99.6991 0.3009 0.0451 0.2558 0.211

JPT 2,320,417.1 375,586.6 99.3659 0.6341 0.0354 0.5988 0.563

KHV 2,350,584.8 368,521.5 99.8549 0.1451 0.0343 0.1109 0.077

YRI 2,840,113.4 463,890.4 99.5746 0.4254 0.0383 0.3871 0.349

LWK 2,840,253.9 441,435.7 99.5545 0.4455 0.0457 0.3998 0.354

ZUL 2,840,578.1 441,536.6 98.7062 1.2938 0.6338 0.6600 0.026

BAG 2,840,658.6 441,412.3 99.2791 0.7209 0.3157 0.4052 0.090

Concor. Concordant, Discor. Discordant
He A – Ho W SNP called heterozygote by array and homozygote by WGS
Ho A – He W SNP called homozygote by array and heterozygote by WGS
ROH error % of SNPs that being wrongly called can break a ROH
Mean variant calling concordance (in %) is shown. Discordance is discomposed in SNP called heterozygous by array but homozygous by WGS and
vice versa. Finally a ROH error is defined as the % of SNP that according to variant calling discordance would break ROH in WGS low coverage data

Fig. 1 Effect of allowing heterozygous SNPs per window evaluated by ep(P,h) as a measure of the empirically observed actually number of heterozygous
SNPs found in population P when we allow h heterozygous SNP. (See Materials and methods for the definition)
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equivalent results. Violin plots show the distribution
of mean number of ROH (Fig. 2), mean ROH size
(Fig. 3) and mean total sum of ROH (Fig. 4) per
population and using array data, compare to WGS
data with 1, 2 or 3 tolerated heterozygotes. Without
exception, the distribution between array and WGS
data is most similar when 3 heterozygous SNPs in the
WGS data are allowed per window. Mean values and
standard deviations for up to 5 heterozygous SNPs
allowed per window are shown in Additional file 2.
Figure 5a–c show the correlations with the array data
as heat-maps between number of ROH (5a), mean
ROH size (5b), and total sum of ROH (5c) for each
population and a different number of allowed hetero-
zygous SNPs in the WGS data (values and probabil-
ities shown in Additional file 3). The correlations, as
expected, increase with more heterozygous SNPs be-
ing allowed in the WGS data. Correlations are not
homogeneous, south and East Asian populations show

lower correlations in comparison with other popula-
tions. An alternative representation by line charts is
shown in Additional file 4, where differences between
populations are perceived more easily. In addition, non-
parametrical statistical analysis was used. Results of the
statistical comparison between ROH obtained from array
and WGS (with a different number of heterozygous SNPs
allowed) by the Mann-Whitney-Wilcoxon (MWW) test
are shown as a heat-map of significance (p values; blue =
not significant) in Figs. 5d–f. P-values are presented in
Additional file 3. These figures show heterogeneous re-
sults across populations. In general, by allowing 3 hetero-
zygotes SNPs per window in WGS the statistical
outcomes in the number of ROH, mean ROH size and
total sun of ROH are similar between array and WGS
data. However, Fig. 5d–f also show that for the Asian pop-
ulations, especially the JPT, for the number of ROH and
total sum of ROH differences between array and WGS
data are significant for every heterozygous SNP allowed.

Fig. 2 Violin plots of the mean number of ROH longer than 1 Mb. Populations are colored by 5 biogeographical groups by admixture analysis. Admixed
(Hispanic-American: CLM, MXL; African-American: ACB, ASW) – blue, Native Americans (PEL) – green, East (CHS, CDX, JPT) and South (KHV)
Asia – tan, North (FIN, GBR, CEU) and South (IBS, TSI) Europe – violet, South (ZUL), East (BAG, LWK) and West (YRI) Africa – red. Four
distributions per population are shown, array data with 1 heterozygous SNP allowed per window and WGS with 1 to 3 heterozygous
SNPs allowed
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Comparing ROH with different lengths
Once we established that the best PLINK condition
to obtain comparable results is to allow 3 heterozy-
gous SNPs per window when dealing with WGS low
coverage, we compared the mean sum of ROH in
both technologies for different ROH length categor-
ies (Fig. 6). This is relevant because the study of dif-
ferent ROH lengths has different applications, as
indicated in Table 2. Figure 6 shows that for ROH
longer than 1 Mb, the array and WGS mean total
lengths are very similar, with some exceptions like
the JPT, in the case of ROH longer than 8 Mb.
However, WGS data systematically detected more
short ROH (0.3 – 1 Mb) than array data. This out-
come is expected and is caused by the lower SNP
coverage of array data, since PLINK considered just
ROH containing at least 50 SNPs. This gap between
array and WGS data can be corrected for small
ROH by changing PLINK parameters and relaxing
the number of SNPs needed to call a ROH (−-homo-
zyg-snp 30, data not shown).

Discussion
Runs of homozygosity are an excellent tool to delve into
the exploration of different aspects of human genetics.
Large genomic datasets, using array and whole genome
sequence data, are now becoming available and offer the
researcher a unique opportunity to better understand
the influence of ROH on complex diseases architecture
and demographic history.
Ideally, WGS deep coverage would be the best option

to study ROH, since genotype calling will be robust for
low MAFs and ROH of virtually any size would be
detected. However, two major issues prevent the use this
technology. First, the lack of WGS deep coverage data
for population studies and secondly, the extreme com-
putational expense of analyzing this type of data using
current software. Unlike deep coverage, low coverage
WGS data is more abundant and affordable, and the
computational effort of obtaining ROH is less computa-
tionally intensive. The only drawback of using this data
is the calling error associated with it. By comparing
ROH obtained from array data, we demonstrate in this

Fig. 3 Violin plots of mean ROH size longer than 1 Mb (in Mb). Different biogeographical groups have different x-axis scales in an attempt to
maximize the difference between distributions within populations. See Fig. 2 legend for population codes

Ceballos et al. BMC Genomics  (2018) 19:106 Page 6 of 12



article that this problem can be mitigated by allowing 3
heterozygous SNPs per window using PLINK software
to obtain ROH longer than 1 Mb. In all populations, the
highest correlation was achieved when allowing 3 to 4
heterozygous SNPs per window (Fig. 5a–c). Regarding
MWW tests (Fig. 5d–f ), unlike mean number and total
sum of ROH, for most of the populations, mean ROH
size remains equivalent between technologies when
allowing 3 or more heterozygous SNPs per window. As
expected, we get more ROH by allowing more heterozy-
gous SNPs, but the mean size remains constant. As a
consequence, the mean total sum of ROH increases with
more heterozygous SNP allowed.
Interestingly, four populations from East and South

Asia did not conform to the patterns observed in the
other populations; in fact for the Dai and Han popula-
tions from China (CDX, CHS), Kinh population from
Vietnam (KHV) and the Japanese population (JPT), it
was not possible to obtain the same mean number and
total sum of ROH between array and WGS data. This
may be explained by population structure, but perhaps
the inferior performance of the Infinium Omni 2.5–8

Bead chip in Asian populations [45] is the more plaus-
ible explanation. This could also explain why it was not
possible to obtain same number of ROH in the Baganda
population from Uganda (BAG) or the same mean ROH
size in the Zulu population from South Africa (ZUL).
WGS data present the ability to identify shorter ROH

(Fig. 6), however it would be important to compare the
short ROH detected using low coverage, compared to
high coverage data to establish a comparative analysis
guideline. In Table 2 we present a comparison in per-
formance of the application of three different technolo-
gies (SNP array, WGS low coverage and WES data) to
detect short, medium and long ROH.

Conclusions
This study provides evidence-based guidelines for the
combined analysis of array and low coverage WGS data
when studying ROH to investigate population history
and to detect associations with complex diseases and
traits.
We demonstrate that, even though there are differ-

ences between populations around the world, is possible

Fig. 4 Violin plots of mean total sum of ROH longer than 1 Mb (in Gb). See fig. 2 legend for population codes
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to get equivalent results between WGS low coverage
and SNP array technologies by allowing 3 heterozy-
gous SNP per window when dealing with WGS low
coverage data.

Methods
Description of data
Individuals with both genome-wide SNP genotypic data
and WGS low coverage data from the 1000 Genomes
Project – Phase 3 (KGP) [46, 47] and the African Gen-
ome Variation Project (AGVP) [48] were used. For both
datasets the Infinium Omni 2.5–8 Bead chip from Illu-
mina was used. The KGP includes a total of 1685 indi-
viduals from 18 populations with genotypic data
available from array and WGS low coverage (4×). From
Europe: FIN (Finish in Finland, n = 99), GBR (British in
England and Scotland, n = 91), IBS (Iberian populations
in Spain, n = 105), TSI (Tuscany in Italy, n = 102) and
CEU (Utah residents with European ancestry = 99). From
America: ASW (Americans of African ancestry in Hus-
ton, n = 61), ACB (African Caribbean in Barbados, n =
96), PUR (Puerto Rican in Puerto Rico with admix an-
cestry, n = 104), PEL (Peruvian in Lima, Peru with
Amerindian ancestry, n = 85), CLM (Colombian in
Medellin, Colombia with admix ancestry, n = 95) and
MXL (Mexican with admix ancestry in Los Angles,
USA, n = 100). From Asia: CDX (Chinese Han in
Xishuangbanna, China, n = 98), CHB (Chinese Han in

Beijing, China, n = 100), CHS (Southern Han Chinese, n
= 105), JPT (Japanese in Tokio, Japan, n = 100) and KHV
(Kinh in Ho Chi Minh city, Vietnam n = 99). From Af-
rica: YRI (Yoruba in Ibadan, Nigeria, n = 108) and LWK
(Luhya in Webuye, Kenya, n = 99). The AVGP includes
2185 samples from 16 African populations; we use WGS
data for two: 100 Zulu from South Africa and 100
Baganda from Uganda, where genotype data from the
Omni 2.5–8 SNP array and WGS data at 4× coverage
are available. Only SNPs of the 22 autosomes were in-
cluded in this analysis. For each population, data from
both array genotyping and WGS were filtered to remove
SNP with minor allele frequencies lower than 0.05 and
those that divert from H-W proportions with p < 0.001.
This filtering limits the effects of ascertainment bias
caused by the small number of individuals in the SNP
discovery panel, in the case of the array, and the calling
errors associated with a low depth coverage of whole
genome sequence data.
Identification and Characterization of ROH:
We used PLINK v1.9 to identify ROH. The following

conditions were used:

– homozyg-snp 50. Minimum number of SNPs that a
ROH is required to have

– homozyg-kb 300. Length in Kb of the sliding window
– hmozyg-density 50. Required minimum density to

consider a ROH (1 SNP in 50Kb)

Fig. 5 Heatmaps of correlations and MWW tests of mean number of ROH, mean ROH size and mean total sum of ROH between array data allowing 1
heterozygous SNP per window and WGS data allowing 1 to 5 heterozygous SNPs per window (y-axis). a to c Pearson correlations. d to f P-values of
Mann-Whitney-Wilcoxon non-parametrical test (MWW), red shows significant difference between array and WGS while blue shows distributions that
cannot be considered different. See Fig. 2 legend for population codes
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– homozyg-gap 1000. Length in Kb between two SNPs
in order to be considered in two different segments.

– homozyg-window-snp 50. Number of SNPs that the
sliding window must have

– homozyg-window-het (1 to 5). Number of
heterozygous SNP allowed in a window

– homozyg-window-missing 5. Number of missing calls
allowed in a window

– homozyg-window-threshold 0.05. Proportion of
overlapping windows that must be called
homozygous to define a given SNP as in a
“homozygous” segment.

The minimum length of a ROH was set to 300 kb.
PLINK allows the setting of different variable number of
heterozygous SNPs per window, with a default value of 1
heterozygous genotype per window, in order to tolerate
genotyping calling errors (−-homozyg-window-het 1).
This is especially relevant in dealing with WGS low
coverage data and therefore we were testing the equiva-
lence between ROH obtained from array genotyping and
WGS data.

Assessing the impact tolerating heterozygous SNPs while
using PLINK in the search for ROH
Our goal is to determine under which conditions detect-
ing ROHs using low coverage sequence data results in
comparable results as using SNP array data. There are
several characteristics of ROHs we can measure. To be
in a position to combine datasets generated by different
technologies, we need to identify characteristics to allow
their joint assessment, no matter the technology used.

The effect of allowing different numbers of heterozy-
gous SNPs per ROH can be evaluated in different ways.
We define ep(P,h) as a measure of the empirically ob-
served actual number of heterozygous SNPs found in
population P when we allow h heterozygous SNPs.

� Let R(P,h,x,y) be the set of ROHs with length in the
range [x,y) in population P when allowing h
heterozygous SNP.

� Let |R(P,h,x,y)| be the number of ROHs of length in
the range [x,y) in population P when allowing h
heterozygote

� Let epxy(P,h) = arithmetic mean of the actual number
of heterozygous found in all ROHs in R(P,h,x,y)
found in the population under study

� Finally,

ep P; hð Þ ¼
P

xy RðP; h; x; yj jepxy P; hð Þ
P

xy RðP; h; x; yj j x 100

We sum over (x,y) є {[1,1.5),[1.5,5),[5,10),[10,∞)}.
This observed number of heterozygous SNPs differs

from the parameter used for detecting ROHs depending
on the population and technology platform characteristics.

Statistical analysis
For comparison purposes three variables per population
were defined. Mean number of ROH as the mean num-
ber of ROH longer than 1 Mb. Mean ROH size as the
mean size of ROH longer than 1 Mb. Total sum of ROH
as the mean total sum of ROH longer than 1 Mb.

Fig. 6 Mean sum of ROH in different length categories. The light colored lines represent WGS with 3 heterozygous SNP allowed per window and
dark colored lines represent array data with 1 heterozygous SNP allowed per ROH. See Fig. 2 legend for population codes
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Considering just ROH longer than 1 Mb allows the selec-
tion of only the ROH arising from identity by descent and
to remove any LD effects. Data distributions were illus-
trated using violin plots. This plot combines a box plot with
a kernel density plot, where the interval width is obtained
by the rule of thumb. The violin shows a colored kernel
density trace with the interquartile range as a black line and
median as a white dot. This representation is especially
relevant when dealing with data or variables that show
skewed distributions and is a good means of comparison
between populations, when dealing with asymmetric distri-
butions where the median is more informative than the
mean. Statistical comparisons between mean number of
ROH, mean ROH size and mean total sum of ROH for dif-
ferent populations, technologies and PLINK conditions
were performed by Pearson’s correlation and Mann-
Whitney-Wilcoxon non-parametric test (MWW). All the
exploratory and statistical analyses were performed using R.
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Table 2 Performance of different technologies (array, WGS low coverage and WES) with different ROH size classes (Short < 1 Mb,
Medium 1 – 8 Mb and Long > 8 Mb)

ROH size
Class

SNP Array WGS low coverage WES Applications

Short
< 1 Mb

Poor performance due to low
SNP coverage. Can be adjusted
to detect ROH by modifying
the number of SNPs required
in a ROH.

Able to detect but need to build
adjustment for genotype calling
errors.

Able to detect but only in
selected genomic regions.
Software like H3M2 allows
meaningful regional analysis
[39].

Detection of rare variants involved
in deleterious recessive alleles and
directional dominance [11, 12].
Analysis of LD patterns and
extreme bottle necks [33].

Medium
1-8 Mb

Able to detect if the array has
at least 300 K SNPs. ROH
boundaries will be fuzzier in
comparison with WGS low
coverage data.

Good performance but need to
build adjustment for genotype
calling errors. Allowing 3
heterozygous SNPs per ROH
would grant meaningful
outcomes.

Able to detect, but only in
selected genomic regions and
boundaries of ROH could be
fuzzy if they reach into non-
exonic regions [49].

Detection of rare variants involved
in diseases. Analysis of inbreeding
depression. Genome architecture
and ROH island detection [50].
Population history, bottle necks,
remote consanguinity and genetic
drift [51].

Long
> 8 Mb

Good performance if the array
has at least 300 K SNPs.

Good performance but need to
build adjustment for genotype
calling errors. Allowing 3
heterozygous SNPs per ROH
would grant meaningful
outcomes.

Poor performance due to short
size of most exons and their
sparsity across the genome.

Analysis of inbreeding depression.
Validation of GWAS findings.
Population history and cultural
practices, close consanguinity
[6, 41].
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