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Abstract

Neural networks that span the medial temporal lobe (MTL), prefrontal cortex, and posterior 

cortical regions are essential to episodic memory function in humans. Encoding and retrieval are 

supported by the engagement of both distinct neural pathways across the cortex and common 

structures within the medial temporal lobes. However, the degree to which memory performance 

can be determined by neural processing that is common to encoding and retrieval remains to be 

determined. To identify neural signatures of successful memory function, we administered a 

delayed free-recall task to 187 neurosurgical patients implanted with subdural or intraparenchymal 

depth electrodes. We developed multivariate classifiers to identify patterns of spectral power 

across the brain that independently predicted successful episodic encoding and retrieval. During 

encoding and retrieval, patterns of increased high frequency activity in prefrontal, MTL, and 
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inferior parietal cortices, accompanied by widespread decreases in low frequency power across the 

brain predicted successful memory function. Using a cross-decoding approach, we demonstrate 

the ability to predict memory function across distinct phases of the free-recall task. Furthermore, 

we demonstrate that classifiers that combine information from both encoding and retrieval states 

can outperform task-independent models. These findings suggest that the engagement of a core 

memory network during either encoding or retrieval shapes the ability to remember the past, 

despite distinct neural interactions that facilitate encoding and retrieval.
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Introduction

Episodic memory requires both encoding operations that translate experiences into durable 

memories and retrieval operations that reactivate memories when prompted by a retrieval 

cue (Polyn and Kahana, 2008). Many neurocognitive models of episodic memory account 

for these processes using similar architectures, with distinct neural systems facilitating 

memory encoding and retrieval (Nyberg et al., 1996; Lepage et al., 1998; Kim, 2015). 

Neuroimaging studies provide evidence for these models, revealing dissociations between 

the neural correlates of episodic encoding and retrieval within the hippocampus (Zeineh et 

al., 2003; Eldridge et al., 2005), as well as functional networks spanning prefrontal, medial 

temporal, lateral temporal, and parietal cortical regions (Daselaar et al., 2009; Kim et al., 

2010). In contrast to neural substrates that are specific to encoding and retrieval, structures 

within the hippocampal formation (Small et al., 2001; Stark and Okado, 2003; Prince et al., 

2005) in addition to widespread cortical regions (Sederberg et al., 2007) contribute to both 

episodic encoding and retrieval. Understanding the relative contributions of neural processes 

engaged during encoding and retrieval is critical to understanding the mechanisms that 

ultimately determine whether information can be successfully retrieved at a later point in 

time. The goal of the present work is to determine whether memory performance is best 

predicted by distinct neural processes that occur during the encoding and retrieval of 

episodic information, or common electrophysiological states that may reflect the 

engagement of core mnemonic processes.

Theoretical models of episodic memory propose that successful memory retrieval involves 

the reinstatement of representations that were present during the initial experience of an 

event (McClelland et al., 1995; O’Reilly and Rudy, 2001). Using multivariate pattern 

analysis, it has been repeatedly demonstrated that patterns of cortical activation that are 

present during the encoding of an event are recapitulated during retrieval (Staresina et al., 

2012; Ritchey et al., 2013; Wing et al., 2014). While considerable progress has been made 

linking the reinstatement of neural activity to the contents of retrieval (for a review, see 

Danker and Anderson (2010)), the neural states that facilitate the encoding and reactivation 

of this content may differ. Multivariate classification techniques allow for the estimation of 

latent cognitive states, such as attentive states that improve task performance (Rosenberg et 

al., 2015), and incorporate information from neural populations across the brain. By training 
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a multivariate classifier to identify neural signals that predict successful memory function, 

we can determine the relationship between the processes that mediate episodic encoding and 

retrieval.

If the success of episodic memory is determined by the recapitulation of the same processes 

that were engaged during encoding (Kolers, 1973; Tulving and Thompson, 1973; Kolers and 

Roediger, 1984), one would predict that engagement of neural systems that are generally 

predictive of memory success (e.g., the hippocampus; Prince et al. (2005)) should be able to 

identify when either successful encoding or retrieval operations occur. In contrast, if the 

function of neural systems that are specific to encoding or retrieval determine the fate of 

studied information, then classifiers trained to predict the success of memory formation 

should fail to identify when successful retrieval occurs. Recent electrophysiological 

investigations of human memory have demonstrated that shifts in the power spectrum, 

specifically increased high frequency activity (HFA) with concomitant decreases in low 

frequency activity (LFA) provide informative features for predicting successful memory 

formation (Burke et al., 2014a; Long et al., 2014; Greenberg et al., 2015) and retrieval 

(Burke et al., 2014b). These measures reflect a combination of oscillatory dynamics and 

broadband changes in HFA indexing the firing rate of local neuronal populations (Manning 

et al., 2009; Miller et al., 2014; Burke et al., 2015). Incorporating these measures of neural 

activity into multivariate classifiers enables the development of biomarkers of successful 

memory function, based on the dynamics of distributed neuronal populations.

To determine whether the same neural mechanisms support the encoding and retrieval of 

episodic memories and to determine the degree to which these measures predict memory 

performance, we examined intracranial electroencephalographic (iEEG) data from 187 

patients who performed a free-recall task while they were undergoing clinical monitoring for 

the surgical treatment of their drug-resistant epilepsy. To classify successful encoding and 

retrieval states, we fit L2-penalized regression models to spectral activity recorded during 

the encoding of verbal stimuli, or in the moments preceding successful recall. Using a cross-

classification approach, we tested whether the same changes in spectral power predict 

successful memory formation and retrieval. Finally, we estimated general models of episodic 

memory function by constructing a joint classifier that incorporated information from both 

encoding and retrieval phases of the task. These analyses aimed to uncover the degree to 

which latent mnemonic states can be measured from brain activity, and the degree to which 

variation in patterns of spectral power common to both encoding and retrieval can predict 

memory function.

Methods

Participants

187 patients with medication-resistant epilepsy underwent neurosurgical procedures to 

implant intracranial electrodes (subdural, depth, or both) to determine epileptogenic regions. 

Data reported were collected at Dartmouth Medical Center (Hanover, NH), Emory 

University Hospital (Atlanta, Georgia), Hospital of the University of Pennsylvania 

(Philadelphia, PA), Mayo Clinic (Rochester, MN), Thomas Jefferson University Hospital 

(Philadelphia, PA), Columbia University Medial Center (New York, NY), and University of 
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Texas Southwestern Medical Center (Dallas, TX). Prior to data collection, the research 

protocol was approved by the institutional review board at each hospital. Informed consent 

was obtained from either the participant or their guardians. Hemisphere dominance was 

determined by assessing handedness, Wada test (Wada and Rasmussen, 1960), or fMRI data 

collected during a verb generation task. Previous publications utilizing a subset of these data 

(88 patients) have characterized the electrophysiological signatures of successful memory 

encoding and retrieval (Burke et al., 2014a, 2014b; Long et al., 2014); however, the present 

analyses describing the relationship of successful encoding and retrieval are novel. 

Deidentified raw data and analysis code used in the present analyses is available at http://

memory.psych.upenn.edu/Electrophysiological_Data.

Free-recall task

Each subject performed a variant of the delayed free-recall task in which they studied a list 

of words with the intention to commit the items to memory. The task was performed at the 

bedside on a laptop, using PyEPL software (Geller et al., 2007). Analog pulses were sent to 

available recording channels to enable alignment of experimental events (e.g., stimulus 

presentation) with the recorded iEEG signal.

The recall task consisted of three distinct phases: encoding, delay, and retrieval. During 

encoding, lists of 12 words were presented in the native language (either English or Spanish) 

of the subject. Words were selected at random, without replacement, from a pool of nouns 

(http://memory.psych.upenn.edu/WordPools). Word presentation lasted for a duration of 

1600 ms, followed by a blank inter-stimulus interval (ISI) of 750 to 1000 ms (see Fig 1a). 

Presentation of word lists was followed by a 20 s post-encoding delay. Subjects performed 

an arithmetic task during the delay in order to disrupt memory for end-of-list items. Math 

problems of the form A+B+C=?? were presented to the participant, with values of A, B, and 

C were set to random single digit integers. Responses were made on a keypad, with 

presentation of additional math problems following each response (i.e., a self-paced task). 

After the delay, a row of asterisks, accompanied by an 800 Hz auditory tone, was presented 

for a duration of 300 ms to signal the start of the recall period. Subjects were instructed to 

recall as many words as possible from the most recent list, in any order during the 30 s recall 

period. Vocal responses were digitally recorded and parsed offline using Penn TotalRecall 

(http://memory.psych.upenn.edu/TotalRecall). Subjects performed up to 25 recall trials in a 

single recall session. Across sessions, subjects performed an average of 38 trials in total 

(range 7–150).

A subset of patients (n=88) performed a variant (hereafter Experiment 2) of the previously 

described task. List presentation consisted of a total of 15 items. In addition, a green fixation 

cross served as a list-cue to signal an upcoming list of words. The list-cue was presented for 

a duration of 1600 ms, followed by the presentation of a blank screen for 800 to 1200 ms. 

The ISI in this variant of the task lasted from 800 to 1200 ms in duration. The recall period 

for this version of the task was 45 s in length.
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Electrophysiological recordings and data processing

iEEG signal was recorded using subdural grids and strips (contacts spaced 10 mm apart) or 

depth electrodes (contacts spaced 5–10 mm apart) using recording systems at each clinical 

site. iEEG systems included DeltaMed & XlTek (Natus), Grass Telefactor, and Nihon-

Kohden EEG systems. Signals were sampled at 500, 512, 1000, 1024, or 2000 Hz, 

depending on hardware restrictions and considerations of clinical application. Signals 

recorded at individual electrodes were converted to a bipolar montage by computing the 

difference in signal between adjacent electrode pairs on each strip, grid, and depth electrode 

(Burke et al., 2013). Bipolar signal was notch filtered at 60 Hz with a fourth order 2 Hz stop-

band butterworth notch filter in order to remove the effects of line noise on the iEEG signal. 

Electrodes determined to be within the epileptogenic zone were excluded from analysis.

Anatomical localization

Anatomical localization of electrode placement was accomplished using independent 

processing pipelines for depth and surface electrodes. For data collected as a part of 

Experiment 1, post-implant CT images were coregistered with presurgical T1 and T2 

weighted structural scans with Advanced Normalization Tools (Avants et al., 2008). For 

patients with MTL depth electrodes, hippocampal subfields and MTL cortices were 

automatically labeled in a pre-implant, T2-weighted MRI using the automatic segmentation 

of hippocampal subfields (ASHS) multi-atlas segmentation method (Yushkevich et al., 

2015). Subdural electrodes were localized by reconstructing whole-brain cortical surfaces 

from pre-implant T1-weighted MRIs using Freesurfer (Fischl et al., 2004), and snapping 

electrode centroids to the cortical surface using an energy minimization algorithm (Dykstra 

et al., 2012). The localization for data collected in Experiment 2 differed by using FMRIB’s 

linear image registration tool (Jenkinson et al., 2002) for coregistration of CT and structural 

scans. In addition, MTL depth electrodes that were visible on CT scans were localized to 

either the hippocampus or PHG by neuroradiologists with expertise in MTL anatomy.

Each subject’s T1-weighted MRI was additionally registered to an average T1 constructed 

from a sample of 101 patients, facilitating group-level comparisons of subdural electrodes on 

the cortical surface. Registration to MNI space further enabled group analysis of subdural 

and depth electrodes near MTL structures. Using this approach, we achieved extensive 

coverage across the cortical surface (Fig. 1b, left), and the MTL (Fig. 1b, right).

In order to rule out the possibility that classification of successful recall, which involves the 

vocalization of a verbal response, was being informed by neural processing in cortical 

regions involved in the planning and production of a vocal response, we constructed 

classifiers using an anatomically restricted set of neural features (Fig. 1b), by excluding 

electrodes localized within inferior frontal gyrus (IFG) pars triangularis, IFG pars orbitalis, 

precentral gyrus, postcentral gyrus, paracentral gyrus, superior temporal gyrus, the bank of 

the superior temporal sulcus, transverse temporal gyrus, and supramarginal gyrus as defined 

in the Desikan-Kiliany atlas (Desikan et al., 2006).
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Spectral power

To compute spectral power during word encoding, we applied the Morlet wavelet transform 

(wave number 5) to all bipolar electrode EEG signals from the onset to the offset of stimulus 

presentation, across 50 logarithmically spaced frequencies from 3 to 180 Hz. Spectral power 

during recall was estimated from 500 ms preceding the onset of response vocalization, for 

correct recalls and recall errors alike. We also computed spectral power during unsuccessful 

periods of memory search, defined as 500 ms epochs in which the onset of any vocalization 

did not occur in the following 2000 ms. All events within the recall period (i.e., correct 

recalls and unsuccessful search) were required to be free of vocalization onsets in the 

preceding 2000 ms, to account for potential differences in response production across event 

types. Power estimates were log transformed and down sampled to 50 Hz. To avoid edge 

artifacts, we included buffers of 1000 ms surrounding events of interest during the 

computation of spectral power. For multivariate decoding analyses, features (i.e., log-

transformed power from a specific electrode and frequency band) were standardized using 

the mean and standard deviation estimated from all training samples, for each individual 

session. Test data were normalized using session means and standard deviations estimated 

from the training data.

By focusing on patterns of neural activity in the moments preceding individual retrieval 

events, we excluded recalls that were preceded by the onset of any additional vocalization or 

the recall period within 2000 ms. This duration was determined in order to allow estimation 

of low frequency power without contamination of signal from response production earlier in 

the recall period. While this approach decreased power in the analysis of retrieval data, it 

allowed for low frequency features, which have been previously demonstrated to predict 

successful recall (Burke et al., 2014b), to inform classification of memory states. This 

procedure resulted in the removal of an average of 53.8% of recall events per subject (range 

6.3% to 92.7%), which had an inter-response time of 1198 ± 15.4 ms (mean±SEM). As a 

result, some subjects (21 from Experiment 1, and 19 from Experiment 2) did not have a 

sufficient number of recall events to perform classification. For a given analysis, each 

subject was required to have at least 20 observations per condition. For the purposes of 

classification analyses, we treated unique montages (resulting from reimplants, or changes in 

recording electrodes) of individual patients as a single subject. This approach resulted in 202 

subjects for analysis of encoding period data, and 162 subjects for analysis of retrieval 

period data.

Pattern classification

To identify neural features that were associated with latent memory states during the task, 

we trained L2-penalized logistic regression classifiers to distinguish between spectral power 

associated with memory success and failure. During encoding, power patterns were averaged 

across the 1600 ms stimulus duration at each bipolar electrode, resulting in a set of features 

to train the encoding classifier. For retrieval analysis, features were constructed from the 

average spectral power in the 500 ms preceding response vocalization of either correct 

recalls or periods of unsuccessful memory search. While we sought to identify neural 

markers of successful retrieval by comparing successful and unsuccessful memory search 

epochs, these events are confounded by when they occur in the recall period. As a result, 
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changes in neural processing that distinguish between these two periods (e.g., an indicator of 

decreased attention at the end of the recall period) may limit our ability to detect memory-

related signals. To overcome this issue, we selected unsuccessful memory search events that 

were matched to the onset of individual recall events in separate lists. This resulted in an 

average of 69.2 ± 4.6 successful, and 169.9 ± 8.8 unsuccessful search events, per subject.

Classifier performance was evaluated using a cross-validation procedure. We implemented 

an n-fold cross-validation scheme, where n was equal to the number of completed lists. Data 

from one list was held out from training to test the ability of the classifier to generalize to 

novel data, and held out lists were matched across encoding and retrieval classifiers. The 

remaining n−1 lists were used to train the parameters of the classifier. We chose the value of 

the cost parameter, C, from one of 22 values, spaced from 10−4 to 106. For each subject, C 
was determined by the selecting the value that maximized the performance of the classifier 

as assessed by computing the area under the receiver operating characteristic curve using 

list-based cross validation in the remaining sample of subjects. This approach enabled 

optimization of the cost parameter on an independent set of data. We trained the classifier 

weights by minimizing a loss function over w for a set of n training events:

(1)

where xi is a set of features (i.e., the pattern of spectral power across all electrodes during 

encoding or retrieval), and yi is the corresponding class label for each event. Class labels 

during encoding were defined as 1 for recalled items, and −1 for forgotten items. During 

retrieval, correct recalls were labeled 1 and unsuccessful search periods were labeled −1. A 

bias term was included by appending a feature that was fixed to 1 for each observation. The 

loss function was weighted for each observation proportionally to the number of 

observations in each class, to prevent class imbalance from influencing classification results. 

We performed L2-logistic regression as implemented by the liblinear package (Fan et al., 

2008).

In addition to constructing separate classifiers to identify successful memory states during 

either the encoding or retrieval periods of the task, we developed joint classifiers that were 

trained on observations from both encoding and retrieval phases of the task. The loss 

function was weighted by an additional scaling parameter, wenc/wrec which controlled the 

relative contribution of encoding and retrieval observations to training of the classifier. We 

examined generalization of this classifier to both encoding and recall periods of the task over 

a range of 15 log-spaced values from 10−1.4 to 101.4. This range of parameter values allowed 

us to parametrically modulate the influence of different task phases on memory 

performance.

To determine whether individual classifiers performed above chance, we first constructed the 

receiver operating characteristic and computed the area under the curve (AUC) across left-

out samples (i.e., across the test set). We implemented a permutation test by constructing a 

null distribution of classifier performance by permuting the class labels within the training 
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data. Subjects with an observed AUC in the top 95% of the null distribution were considered 

significant, corresponding to a one-tailed test. To assess group performance, we used a 

binomial test to determine whether the proportion of subjects with significant classification 

would exceed the false positive rate of 0.05.

In order to rule out confounding effects of serial position and output position, we used linear 

mixed effects models to determine whether classifier output varied as a function of memory 

success (i.e., subsequent memory status or recall success). During encoding, we constructed 

a model with subject treated as a random effect, and memory status, list position, and the 

interaction between the two treated as fixed effects. Significance was determined by 

constructing nested models with a fixed effect term constrained to zero. After fitting the 

restricted model, a parametric bootstrap (n=1000) was performed to determine whether the 

variance explained by the additional parameter was greater than fitting residual error with an 

additional parameter. We utilized a similar procedure to evaluate potential confounds in 

retrieval classifiers, with the fixed effects of memory status and output position.

Identifying neural features predictive of memory success

In order to determine which spectral features (i.e., which frequencies and regions) facilitated 

discrimination between successful and unsuccessful memory states, we constructed a 

forward model of these latent states from our linear classifiers (Haufe et al., 2014). For each 

subject, we computed a set of activations, A, based on the learned coefficients in w:

(2)

where Σx is the covariance matrix of the full set of features, with each feature standardized 

within each experimental session, and  is the covariance matrix of the output of the 

classifier for each predicted class. For each subject and frequency, we computed an estimate 

of the activation at each electrode. Features were aggregated into LFA (<10 Hz) and HFA 

(>60 Hz) by averaging estimated activity across the frequency dimension. As a 

preprocessing step to the estimation of forward models, individual events were scanned for 

spikes and discarded if the kurtosis value for any feature exceeded a threshold of 2.5.

We projected the associated activations of each subdural electrode to all vertices on the 

cortical surface within 10 mm of the midpoint of electrode centroids in each bipolar pair. For 

electrodes localized within the MTL, statistical maps were constructed for each subject by 

assigning voxels within a 3 mm radius of each bipolar midpoint a value equal to its 

corresponding activation (overlapping regions were assigned the average of all activation 

values within 3 mm). Each subject’s activation map was smoothed with a 4 mm gaussian 

filter before subsequent analysis.

Group inference was performed by nonparametric statistical testing (Maris and Oostenveld, 

2007). For each test, we performed a one-sample t-test on estimated levels of activation 

across subjects. Resultant statistical maps were thresholded for statistical significance by 

constructing a null distribution obtained by random sign flipping (n=1000), and identifying 
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positive and negative thresholds at 2.5th and 97.5th percentiles of the null distribution, 

ensuring a false discovery rate of 0.05.

Results

Behavioral results

To validate patient performance, we examined characteristic behavior on the free-recall task. 

Subjects recalled an average of 3.26 ± 0.10 (mean ± SEM) items per list, yielding an overall 

24.27 ± 0.008% of items recalled. By interleaving encoding and recall with a distracting 

arithmetic task, we observed primacy effects in both recall initiation and overall recall rates 

(Fig. 2a,b). These findings are consistent with typical performance on the delayed- free 

recall task(Glanzer and Cunitz, 1966), and suggest that the neural mechanisms associated 

with memory performance reflect the encoding and retrieval of long-term memories (Strange 

et al., 2002). An additional behavioral marker of episodic memory function is the temporal 

contiguity effect (Kahana, 1996; Sederberg et al., 2010), in which subjects recall items in 

clusters based on their temporal proximity in the study list. Subjects recalled items with 

temporal organization (Fig. 2c), indicated by an average temporal factor score of 0.66 

± 0.01, which reflects significantly greater temporal clustering than chance levels of 0.5 (t191 

= 22.46, p < 10−10; see Polyn et al. (2009)). These findings indicate normal task 

performance, despite relatively low levels of overall recall, consistent with impaired memory 

performance in epilepsy (Hermann et al., 2008).

Multiple factors contribute to performance on the recall task, including the ability to target 

and retrieve individual items from the previous list. When memory fails due to the inability 

to retrieve task-relevant information, studied items are omitted from recall. As shown in Fig. 

2d, the time to first recall was inversely related to the number of items yet to be recalled, and 

the amount of time between successive recalls increased exponentially in the recall 

sequences, consistent with search dynamics commonly observed in single-trial free recall 

(Murdock and Okada, 1970; Rohrer and Wixted, 1994). Of relevance for analysis of neural 

activity during memory search, inter-response times greater than 2 seconds were distributed 

throughout the majority of recall sequences, except early on in the recall sequence for 

subjects with a high rate of recall.

Memory failure during retrieval can also occur when items not studied on the previous list 

can be endorsed as targets, resulting in false recall. We observed false memories in the form 

of extra-list intrusions (ELIs), prior list intrusions (PLIs) and repetitions of previously 

recalled items. Recall errors were primarily ELIs, with an average rate of 0.88 ± 0.10 ELIs 

per list. PLIs were observed with less frequency, with an average rate of 0.57 ± 0.03 

intrusions per list. The remaining errors were repetitions, which we rarely observed, with an 

average of 0.17 ± 0.03 of these errors made per list.

Multivariate classification results

In order to determine whether the same neural mechanisms support episodic memory 

encoding and retrieval, we constructed subject-specific classifiers that were capable of 

predicting latent cognitive states from patterns of spectral power across multiple electrodes 
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and frequencies. First, we developed independent classifiers of memory success during 

either the encoding or retrieval of individual items. We tested the degree to which these 

models generalized across different phases of the task, allowing us to determine whether 

common neural features predict successful encoding and retrieval. Finally, we constructed 

classification models that incorporated information from both the encoding and retrieval 

phases of the task, allowing us to determine which electrophysiological features were 

specific to either encoding or retrieval, or are common indicators of episodic memory 

function.

Decoding of successful memory formation and retrieval

We first constructed a classifier to identify patterns of spectral power associated with 

successful encoding. This classifier provides an item level estimate of the probability that 

subsequent remembering will occur. To relate the output of this classifier to trial-level 

variability in recall performance, we separated each subject’s encoding events into terciles 

based on classifier output. By computing the probability of recall for items encoded in each 

of these terciles, we translated the output of the classifier to a measure of actual memory 

performance. We observed an 80.53±2.97% difference in the proportion of items recalled in 

the upper, relative to the lower tercile of classifier output (Fig. 3c). The difference in recall 

performance was evident across all list positions, although smaller in magnitude for items 

encoded at the beginning of the list (Fig. 3a). We observed significant classification (p < 

0.05, permutation test) in 168 out of 202 subjects (treating changes in electrode coverage as 

independent subjects), with an average AUC of 0.64 ± 0.005. The number of subjects with 

significant classification performance was more than one would expect by chance (p < 

10−10, binomial test).

As the probability of recalling an item decreased across the encoding interval, we conducted 

a control analysis to rule out the possibility that processes that varied as a function of list 

position, but not memory specific processing, were primarily informing the classifier. We 

constructed a linear mixed effects model, predicting the evidence of each item being 

subsequently remembered (i.e., the exponential term in Eq. (1)) from both subsequent 

memory status and the serial position of each item. We tested whether unique variance in 

predicted memory states (i.e., classifier output) was associated with each factor by 

comparing fitness of the full model to models in which the effect of each factor was 

restricted to zero. We observed a significant effect of list position ( , p < 0.001 

bootstrap test) and subsequent memory status ( , p < 0.001 bootstrap test). These 

findings confirm that the ability to identify encoding periods with a high probability of 

encoding success was independent of simple serial position effects that influence recall 

behavior.

Next, we developed classifiers to discriminate between patterns of neural activity during 

epochs of memory search associated with successful and unsuccessful retrieval (i.e., periods 

of memory search that did produce any form of recall response). The relationship between 

successful retrieval and changes in spectral power was observed across different periods of 

memory search (Fig. 3b), with the biggest difference observed later in the recall period. Of 

the 162 classifiers constructed to predict retrieval success for individual subjects, we 
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observed above chance classification (p < 0.05, permutation test) in 155, indicative of 

significant group-level performance (p < 10−10, binomial test). Classifier performance for 

held out lists of items was evaluated using AUC, with average of 0.83 ± 0.01, indicating 

robust performance. We tested whether variability in memory states estimated by the 

retrieval success classifier could be predicted from the period in which an event occurred 

(early, middle, or late epochs defined by terciles of event onsets within the search period) 

and whether retrieval was successful or not. We observed significant effects for both search 

period ( , p < 0.001 bootstrap test) and retrieval status ( , p < 0.001 

bootstrap test). These findings establish that retrieval success classifiers are informative 

across the duration of the search period, and are more sensitive as the retrieval period 

progresses. When sorting memory search epochs into terciles by classifier output (Fig. 3c), 

subjects were 189.3 ± 5.0% more likely to recall an item when in the upper, compared to the 

lower tercile of classifier output.

These results suggest that memory-related processing across cortical and subcortical sites 

can be used to reliably classify when retrieval will occur during memory search; however, 

such classification may be informed by neural features predictive of processes that occur 

subsequent to retrieval itself, including phonological retrieval and the planning of a vocal 

response. In order to rule out the possibility that the ability to decode successful retrieval 

was not primarily driven by difference in response-related activity, we constructed additional 

classifiers that excluded ROIs associated with vocal response production and planning 

(Hermes et al., 2014). Performance of classifiers constructed from this restricted feature 

space was observed to be significantly above chance (p < 0.05, permutation test) in 151 out 

of 162 subjects. Furthermore, we observed an average AUC of 0.79 ± 0.01, demonstrating a 

significant reduction from models with an unrestricted feature space (t161 = − 10.3, p < 

10−18). These findings suggest that classification of retrieval states is not driven by response 

related features alone.

Identifying general neural signatures of successful memory function

Having constructed independent classifiers that were capable of estimating the probability of 

memory success during either encoding or retrieval, we next sought to determine the degree 

to which these models reflect common or distinct processes during each phase of the free-

recall task. We evaluated the degree to which the previously trained classifiers generalized 

across different phases of the free-recall task by evaluating classifier AUC on held out lists. 

As shown in Fig. 4a, while decoding of memory states was less reliable when performed 

across phases of the task, we observed above chance classifier performance using this cross-

decoding approach, providing evidence that common neural features predict successful 

memory function during both encoding and retrieval phases of the task. When we tested the 

encoding success classifier on periods of memory search associated with successful and 

unsuccessful retrieval in held out lists of data, we observed an average AUC of 0.68 ± 0.01. 

Application of the retrieval success classifier to average patterns of activity during encoding 

yielded an average AUC of 0.59 ± 0.01.

While at first glance our cross-decoding results may suggest that the retrieval success model 

has greater specificity than the encoding success model, differences in classifier 
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generalization may result from a higher degree of separability in underlying neural states in 

different phases of the task. We assessed the degree to which model generalization varied as 

a function of classifier (i.e., encoding or retrieval success) and the phase of the task on which 

the classifier was tested using a linear mixed effects model. We observed significant effects 

of classifier type ( , p < 0.001 bootstrap test), task phase ( , p < 0.001 

bootstrap test), and a significant interaction between the two ( , p < 0.001 

bootstrap test). A post-hoc test confirmed that the decrease in classifier performance when 

decoding memory states across phases of the task was greater during the retrieval period 

(t161 = 11.71, p < 10−22).

These findings suggest the presence of common neural predictors of mnemonic success 

during both encoding and retrieval, in addition to neural features that are specific to each 

phase of the task. In order to distinguish between these two types of neural activity, we 

implemented classifiers that were trained on both encoding and retrieval events, and 

weighted the relative contribution of each phase of the task to learning. As shown in Fig. 4b, 

identification of successful encoding states, as determined by subsequent memory, was 

modulated by the incorporation of neural activity associated with successful retrieval. When 

learning was biased towards retrieval processing (i.e., wenc/wret < 1), we observed significant 

(p < 0.05, FDR corrected) decreases in prediction of subsequent memory, consistent with 

our cross-decoding results. Remarkably, performance of joint classifiers were significantly 

better than the encoding classifier alone at identifying optimal encoding states (Fig. 4b, red 

line). We next examined the ability of joint classifiers to distinguish between successful and 

unsuccessful memory search. We observed a significant (p < 0.05, FDR corrected) decrease 

in classifier performance compared to our retrieval classifier (Fig. 4c, blue line) when 

learning was biased towards patterns of neural activity present during the encoding period. 

These results demonstrate that the profiles of neural activation that indicate successful 

retrieval can be leveraged to build a more accurate description of memory states during 

learning, based on common changes in the local field potential.

Common and distinct neural signatures of encoding and retrieval success

In order to identify which regions of the brain exhibit changes in activity that are generally 

predictive of successful memory function, we reconstructed patterns of activity that covaried 

with memory outcomes from joint models with the most extreme weightings (i.e., wenc/wrec 

= 0.04 and wenc/wrec = 25.12), and performed conjunction analyses to identify neural 

features common and specific to the encoding and retrieval models (p < 0.05 FDR corrected, 

permutation procedure for each independent contrast). Increases in HFA and concomitant 

decreases in low frequency activity (LFA) have been previously identified as neural 

signatures of successful memory formation using both iEEG in epileptic patients and scalp 

EEG in healthy individuals (Long et al., 2014). As a result, we focused on these frequency 

bands when identifying neural features common or specific to episodic encoding and 

retrieval.

As shown in Fig. 5a, we observed common increases in HFA within inferior prefrontal, 

temporal, hippocampal, and parietal cortices. In addition to these common features, the 

observed differences in classification performance across phases of the task suggest the 
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existence of features that are specific to the encoding and retrieval of list items. We observed 

significantly increased HFA within lateral occipital regions that was specific to successful 

encoding (Fig. 5b). In contrast to the typical marker of increased HFA supporting memory 

outcomes, decreased HFA within the right anterior PFC was additionally found to be a 

marker of successful encoding. Specific to retrieval, bilateral regions of the anterior 

hippocampus exhibited increased HFA, in addition to bilateral dorsolateral prefrontal cortex, 

and pre- and postcentral gyri (Fig. 5c). Activation of motor cortex likely reflects movement 

of the throat and mouth prior to vocalization, as well as potential smearing of signal from the 

beginning of vocalization.

Decreases in low frequency activity commonly predictive of successful encoding and 

retrieval were observed across multiple cortical regions, including bilateral prefrontal, 

temporal, and inferior parietal regions (Fig. 6a). Within the MTL, robust decreases in LFA 

were associated with goodness of memory in left lateralized hippocampus, and bilateral 

PHG. Changes in LFA specific to encoding were primarily observed in lateral and medial 

temporal cortices, as well as in additional hippocampal regions (Fig. 6b). LFA effects 

specific to retrieval were found across widespread cortical sites, including lateral prefrontal, 

inferior parietal, and visual cortices (Fig. 6c).

These findings replicate previous studies that show increased HFA, concurrent with 

decreased low frequency power across prefrontal, temporal, and hippocampal sites predicts 

the formation of episodic memories (Burke et al., 2014a; Long et al., 2014). By 

incorporating these signals into multivariate classifiers, we demonstrate the ability to predict 

trial-to-trial variability in encoding and retrieval processes based on global brain dynamics.

Discussion

Through the multivariate classification of iEEG recorded neural activity, we identified neural 

states that predicted changes in memory encoding and retrieval. By implementing a cross-

decoding approach, we tested the correspondence between the processes that occur during 

encoding and retrieval, and were able to determine a high degree of overlap between neural 

predictors of successful encoding and recall. At a broad level, our findings suggest that 

successful encoding and retrieval rely upon the function of common neural substrates, a 

putative core episodic memory network, and that variability in the activation of this network 

predicts the mnemonic fate of processed information.

Correspondence between neural processes engaged during encoding and retrieval

Recent approaches to understanding memory function in the human brain have used 

multivariate classification techniques to characterize neural mechanisms involved in the 

formation and retrieval of episodic memories (e.g., Kuhl et al., 2012; Kuhl and Chun, 2014). 

While there is theoretical consensus regarding how the contents of memories are represented 

in the brain (Rissman and Wagner, 2012), it remains an outstanding question whether 

activation of common neural pathways can facilitate both episodic encoding and retrieval. 

Consistent with multiple neuroimaging studies that have compared the formation and 

retrieval of episodic memories (Zeineh et al., 2003; Eldridge et al., 2005), we observed 

activation in neural systems that were specific to either the encoding or recall of verbal 
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information. By using a multivariate approach to estimating successful memory processing, 

we demonstrate that in spite of these dissociations, the same patterns of neural activity 

observed across multiple recording sites and frequencies were generally predictive of 

memory function. In doing so, we have identified a putative general memory network 

spanning the lateral prefrontal cortex, lateral temporal cortex, and MTL whose activation is 

associated with enhanced memory performance.

The common increases in HFA within this network may reflect the engagement of similar 

cognitive operations across different phases of the recall task, utilizing HFA as a localizer of 

neuronal activity (Burke et al., 2015). One potential cognitive process that may account for 

variability in memory performance is goal-direction attention (Corbetta and Shulman, 2002), 

which would modulate processing of relevant information during the memory task, 

including the selection of contextually valid information during recall (Cabeza et al., 2008). 

As an alternative to an attention-based account, common changes in spectral power may 

reflect cognitive operations supporting the maintenance and integration of episodic content 

(Polyn and Kahana, 2008). Recent work examining the electrophysiological correlates of 

episodic encoding (Long and Kahana, 2015) argues that increased neural activity within left 

prefrontal, lateral temporal, and MTL sites reflects processing that supports the formation of 

episodic memories (i.e., the association of information within a spatiotemporal context), as it 

predicts subsequent temporal organization of learned information. Our findings build upon 

this work, and suggest that the operations supported by this network are not specific to the 

encoding of memories, as they facilitate the retrieval of previously learned content.

The features identified by our multivariate models to be predictive of successful memory 

function match univariate studies of the electrophysiological correlates of episodic encoding 

(Burke et al., 2014a; Greenberg et al., 2015) and retrieval (Sederberg et al., 2007; Burke et 

al., 2014b). These studies identified increases in HFA with concomitant decreases in low 

frequency power across the brain, including recordings from prefrontal and temporal lobe 

sites, that were indicative of successful memory function. Our results also reveal differences 

between the neural underpinnings of encoding and retrieval, supporting theoretical models 

of brain function that emphasize a division of neural resources during each operation. 

Specific to retrieval, we observed increased HFA within right prefrontal cortex and the MTL, 

consistent with longstanding neuroimaging findings of asymmetric hemispheric activation 

during episodic encoding and retrieval (Nyberg et al., 1996). While neural processing may 

facilitate memory function on a specific phase of the task, such as the observed activation of 

ventral visual regions during encoding (see also, Burke et al., 2014a), our cross-

classification findings demonstrate that similar neural states give rise to successful memory 

encoding and retrieval. One caveat to this correspondence results from our choice to restrict 

our analysis to changes in spectral power, leveraging its utility to serve as a marker of local 

neuronal firing. In addition to changes in levels of local neural activity, functional 

connectivity between neuronal populations has been shown to predict the formation 

(Ranganath et al., 2005; Fell et al., 2008) and retrieval (Watrous et al., 2013; Kragel and 

Polyn, 2015) of episodic memories. This raises the possibility that while changes in spectral 

activity are conserved across encoding and retrieval, connectivity states that predict 

performance during encoding and retrieval may differ (Huijbers et al., 2011; Duncan et al., 

2014).
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The models of latent memory states that we have developed can inform the development of 

closed-loop systems for memory enhancement. Applications of real-time classification have 

demonstrated the utility in the real-time detection of attentional lapses to enhance learning 

by manipulating task difficulty (deBettencourt et al., 2015). Attempts to enhance memory 

through invasive and noninvasive modulation of neural activity (for a review, see Kim et al., 

2016) may prove more efficacious by accounting for the state of the brain when stimulation 

is applied. Recent work has demonstrated that the ability to enhance memory performance 

via direct brain stimulation during encoding is dependent upon the state of the brain (Ezzyat 

et al., in press). Given the correspondence between electrophysiological states and proper 

memory function, our findings suggest that perturbation of this network during retrieval, in 

addition to encoding, is likely to modulate memory function.

Decoding memory states from patterns of neural activity

A challenge to the study of human memory is to determine the processes that are responsible 

for both the transformation of experience into lasting memories as well as the processes 

involved in retrieving encoded information. Neuroscientific endeavors to better elucidate 

these processes often rely on contrasting markers of neural function based upon the success 

of an attempt to remember. For example, the subsequent memory paradigm (Paller and 

Wagner, 2002) has been utilized to reveal the contributions of prefrontal, MTL, and parietal 

cortex to the process of memory formation in fMRI (Wagner et al., 1998; Davachi et al., 

2001; Kim, 2011) and electrophysiological studies of human memory (Sederberg et al., 

2007; Long et al., 2014). While these approaches have established a foundation with which 

to understand the neural processes that underpin human memory, the correspondence 

between neural states and general memory performance is often overlooked (cf., Hariri et al., 

2003). In contrast, our classification models provide estimates of the probability of memory 

succeeding or failing based on the observed electrophysiologic state of the brain, effectively 

providing an estimate of latent cognitive states related to memory processing. This approach 

enabled us to determine the contributions of processing during encoding and retrieval 

periods to memory performance.

We observed the greatest correspondence between patterns of neural activity and behavior 

during successful retrieval, as compared to successful encoding. While it is tempting to 

interpret these results as indicating that neural processing during retrieval, rather than 

encoding, plays a greater role in determining the ability to remember (for a theoretical 

perspective on the role of retrieval processes in remembering, see Tulving (1974)), we do not 

believe this to be the case. If one assumes our classifiers are influenced by the engagement 

of multiple cognitive operations (e.g., the maintenance of memory representations during 

encoding and retrieval), then classifier performance will be determined by the degree to 

which these processes are differentially engaged during successful or unsuccessful memory 

function. In this light, improved classification of successful retrieval results from a greater 

correspondence between the outcome of memory search (i.e., successful recall or failure) 

and the processes that generate changes in spectral activity during recall. The inability to 

achieve comparable classifier performance during encoding, as well as the relatively limited 

cortical regions found to be specific to episodic encoding, results from items that were 

forgotten despite sufficient processing at the time of encoding. During the free-recall task, 
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wherein subjects are free to determine which cues they use to probe memory, memory can 

fail due to ineffective self-generated retrieval cues. As it is challenging to determine the 

retrieval cues used by a subject during a specific recall period (cf., Polyn et al., 2005), future 

work should examine the relative contributions of encoding processes when retrieval cues 

are under experimental control. This could rule out variability in memory performance due 

to inefficient use of retrieval cues during recall, a phenomenon observed in patients with 

prefrontal damage (Stuss et al., 1994).

An alternative interpretation of our findings is that additional episodic encoding occurs in 

the moments leading up to recall. Indeed, the act of retrieval is known to enhance learning, 

with activation of inferior prefrontal and inferior temporal regions (Buckner et al., 2001) as 

well as structures within the MTL (Stark and Okado, 2003) predicting the degree to which 

novel recognition probes are learned during retrieval tasks. We believe it is unlikely that the 

present results solely reflect incidental encoding processes engaged during free recall. It has 

been demonstrated that processing within the prefrontal cortex and MTL that predicts 

subsequent remembering is sensitive to the novelty of learned information (Kirchhoff et al., 

2000), with MTL activation attenuating in response to the repetition of well encoded stimuli 

(Turk-Browne et al., 2006). As retrieval of encoded information results from the reactivation 

of previously formed item representations, processes associated with the encoding of novel 

stimuli into long-term memory are unlikely to be engaged during memory search (Kragel 

and Polyn, 2016).

Conclusion

The processes involved in encoding an event into a lasting memory and remembering that 

event at a later point in time rely upon inherently distinct neural mechanisms. We 

demonstrated that multivariate models of memory success can generalize across the 

encoding and recall of verbal information. These findings suggest that in the presence of 

neural processes that are specific to the encoding and recall of episodic memories, 

engagement of a putative core memory system generally shapes the ability to remember the 

past. Determining the contribution of this system to experimental paradigms that involve 

different aspects of episodic memory (e.g., the spatial and autobiographical nature of 

remembering) is a critical next step in identifying neural systems that are generally 

predictive of the ability to remember.

Acknowledgments

We thank Blackrock Microsystems for providing neural recording equipment. This work was supported by the 
DARPA Restoring Active Memory (RAM) program (Cooperative Agreement N66001-14-2-4032), as well as 
National Institutes of Health Grant MH55687. We are indebted to all patients who have selflessly volunteered their 
time to participate in our study. The views, opinions, and/or findings contained in this material are those of the 
authors and should not be interpreted as representing the official views or policies of the Department of Defense or 
the U.S. Government.

References

Avants BB, Epstein CL, Grossman M, Gee JC. Symmetric diffeomorphic image registration with 
cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Med Image 
Anal. 2008; 12:26–41. [PubMed: 17659998] 

Kragel et al. Page 16

Neuroimage. Author manuscript; available in PMC 2018 July 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Buckner R, Wheeler M, Sheridan M. Encoding processes during retrieval tasks. J Cogn Neurosci. 
2001; 13:406–415. [PubMed: 11371316] 

Burke JF, Long NM, Zaghloul KA, Sharan AD, Sperling MR, Kahana MJ. Human intracranial high-
frequency activity maps episodic memory formation in space and time. NeuroImage. 2014a; 
85:834–843. [PubMed: 23827329] 

Burke JF, Ramayya AG, Kahana MJ. Human intracranial high-frequency activity during memory 
processing: neural oscillations or stochastic volatility? Curr Opin Neurobiol. 2015; 31:104–110. 
[PubMed: 25279772] 

Burke JF, Sharan AD, Sperling MR, Ramayya AG, Evans JJ, Healey MK, Beck EN, Davis KA, Lucas 
TH, Kahana MJ. Theta and high-frequency activity mark spontaneous recall of episodic memories. J 
Neurosci. 2014b; 34:11355–11365. [PubMed: 25143616] 

Burke JF, Zaghloul KA, Jacobs J, Williams RB, Sperling MR, Sharan AD, Kahana MJ. Synchronous 
and asynchronous theta and gamma activity during episodic memory formation. J Neurosci. 2013; 
33:292–304. [PubMed: 23283342] 

Cabeza R, Ciaramelli E, Olson IR, Moscovitch M. The parietal cortex and episodic memory: an 
attentional account. Nat Rev Neurosci. 2008; 9:613–625. [PubMed: 18641668] 

Corbetta M, Shulman GL. Control of goal-directed and stimulus-driven attention in the brain. Nat Rev 
Neurosci. 2002; 3:201–215. [PubMed: 11994752] 

Danker JF, Anderson JR. The ghosts of brain states past: remembering reactivates the brain regions 
engaged during encoding. Psychol Bull. 2010; 136:87–102. [PubMed: 20063927] 

Daselaar SM, Prince SE, Dennis NA, Hayes SM, Kim H, Cabeza R. Posterior midline and ventral 
parietal activity is associated with retrieval success and encoding failure. Front Human Neurosci. 
2009; 3:13.

Davachi L, Maril A, Wagner AD. When keeping in mind supports later bringing to mind: neural 
markers of phonological rehearsal predict subsequent remembering. J Cogn Neurosci. 2001; 
13:1059–1070. [PubMed: 11784444] 

deBettencourt MT, Cohen JD, Lee RF, Norman KA, Turk-Browne NB. Closed-loop training of 
attention with real-time brain imaging. Nat Neurosci. 2015; 18:470–475. [PubMed: 25664913] 

Desikan R, Segonne B, Fischl B, Quinn B, Dickerson B, Blacker D, Buckner RL, Dale A, Maguire A, 
Hyman B, Albert M, Killiany N. An automated labeling system for subdividing the human 
cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage. 2006; 31:968–980. 
[PubMed: 16530430] 

Duncan K, Tompary A, Davachi L. Associative encoding and retrieval are predicted by functional 
connectivity in distinct hippocampal area CA1 pathways. J Neurosci. 2014; 34:11188–11198. 
[PubMed: 25143600] 

Dykstra AR, Chan AM, Quinn BT, Zepeda R, Keller CJ, Cormier J, Madsen JR, Eskandar EN, Cash 
SS. Individualized localization and cortical surface-based registration of intracranial electrodes. 
NeuroImage. 2012; 59:3563–3570. [PubMed: 22155045] 

Eldridge L, Engel S, Zeineh M, Bookheimer S, Knowlton B. A dissociation of encoding and retrieval 
processes in the human hippocampus. J Neurosci. 2005; 25:3280–3286. [PubMed: 15800182] 

Ezzyat Y, Kragel JE, Burke JF, Levy DF, Lyalenko A, Wanda P, O’Sullivan L, Hurley K, Busygin S, 
Pedisich I, Sperling MR, Worrell GA, Kucewicz MT, Davis KA, Lucas TH, Inman CS, Lega BC, 
Jobst BC, Sheth S, Zaghloul K, Jutras M, Stein JM, Das S, Gorniak R, Rizzuto DS, Kahana MJ. 
Direct brain stimulation modulates encoding states and memory performance in humans. Current 
Biology. In press. 

Fan RE, Chang KW, Hsieh CJ, Wang XR, Lin CJ. Liblinear: a library for large linear classification. J 
Mach Learn Res. 2008; 9:1871–1874.

Fell J, Ludowig E, Rosburg T, Axmacher N, Elger C. Phase-locking within human mediotemporal lobe 
predicts memory formation. NeuroImage. 2008; 43:410–419. [PubMed: 18703147] 

Fischl B, van der Kouwe A, Destrieux C, Halgren E, Ségonne F, Salat DH, Busa E, Seidman LJ, 
Goldstein J, Kennedy D, et al. Automatically parcellating the human cerebral cortex. Cereb 
Cortex. 2004; 14:11–22. [PubMed: 14654453] 

Geller AS, Schleifer IK, Sederberg PB, Jacobs J, Kahana MJ. PyEPL: a cross-platform experiment-
programming library. Behav Res Methods. 2007; 39:950–958. [PubMed: 18183912] 

Kragel et al. Page 17

Neuroimage. Author manuscript; available in PMC 2018 July 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Glanzer M, Cunitz AR. Two storage mechanisms in free recall. J Verbal Learn Verbal Behav. 1966; 
5:351–360.

Greenberg JA, Burke JF, Haque R, Kahana MJ, Zaghloul KA. Decreases in theta and increases in high 
frequency activity underlie associative memory encoding. NeuroImage. 2015; 114:257–263. 
[PubMed: 25862266] 

Hariri AR, Goldberg TE, Mattay VS, Kolachana BS, Callicott JH, Egan MF, Weinberger DR. Brain-
derived neurotrophic factor val66met polymorphism affects human memory-related hippocampal 
activity and predicts memory performance. J Neurosci. 2003; 23:6690–6694. [PubMed: 12890761] 

Haufe S, Meinecke F, Görgen K, Dähne S, Haynes JD, Blankertz B, Bießmann F. On the interpretation 
of weight vectors of linear models in multivariate neuroimaging. NeuroImage. 2014; 87:96–110. 
[PubMed: 24239590] 

Hermann B, Seidenberg M, Jones J. The neurobehavioural comorbidities of epilepsy: can a natural 
history be developed? Lancet Neurol. 2008; 7:151–160. [PubMed: 18207113] 

Hermes D, Miller KJ, Vansteensel MJ, Edwards E, Ferrier CH, Bleichner MG, van Rijen PC, 
Aarnoutse EJ, Ramsey NF. Cortical theta wanes for language. NeuroImage. 2014; 85:738–748. 
[PubMed: 23891904] 

Huijbers W, Pennartz CM, Cabeza R, Daselaar SM. The hippocampus is coupled with the default 
network during memory retrieval but not during memory encoding. PLoS One. 2011; 6:e17463. 
[PubMed: 21494597] 

Jenkinson M, Bannister P, Brady M, Smith S. Improved optimisation for the robust and accurate linear 
registration and motion correction of brain images. NeuroImage. 2002; 17:825–841. [PubMed: 
12377157] 

Kahana MJ. Associative retrieval processes in free recall. Mem Cogn. 1996; 24:103–109.

Kim H. Neural activity that predicts subsequent memory and forgetting: a meta-analysis of 74 fMRI 
studies. NeuroImage. 2011; 54:2446–2461. [PubMed: 20869446] 

Kim H. Encoding and retrieval along the long axis of the hippocampus and their relationships with 
dorsal attention and default mode networks: the HERNET model. Hippocampus. 2015; 25:500–
510. [PubMed: 25367784] 

Kim H, Daselaar SM, Cabeza R. Overlapping brain activity between episodic memory encoding and 
retrieval: roles of the task-positive and task-negative networks. NeuroImage. 2010; 49:1045–1054. 
[PubMed: 19647800] 

Kim K, Ekstrom AD, Tandon N. A network approach for modulating memory processes via direct and 
indirect brain stimulation: Toward a causal approach for the neural basis of memory. Neurobiology 
of Learning and Memory. 2016

Kirchhoff BA, Wagner AD, Maril A, Stern CE. Prefrontal-temporal circuitry for episodic encoding and 
subsequent memory. J Neurosci. 2000; 20:6173–6180. [PubMed: 10934267] 

Kolers PA. Remembering operations. Mem Cogn. 1973; 1:347–355.

Kolers PA, Roediger HL. Procedures of mind. J Verbal Learn Verbal Behav. 1984; 23:425–449.

Kragel JE, Polyn SM. Functional interactions between large-scale networks during memory search. 
Cereb Cortex. 2015; 25:667–679. [PubMed: 24084128] 

Kragel JE, Polyn SM. Decoding episodic retrieval processes: frontoparietal and medial temporal lobe 
contributions to free recall. J Cogn Neurosci. 2016; 28:125–139. [PubMed: 26401811] 

Kuhl BA, Bainbridge W, Chun M. Neural reactivation reveals mechanisms for updating memory. J 
Neurosci. 2012; 32:3453–3461. [PubMed: 22399768] 

Kuhl BA, Chun MM. Successful remembering elicits event-specific activity patterns in lateral parietal 
cortex. J Neurosci. 2014; 34:8051–8060. [PubMed: 24899726] 

Lepage M, Habib R, Tulving E. Hippocampal PET activations of memory encoding and retrieval: the 
HIPER model. Hippocampus. 1998; 8:313–322. [PubMed: 9744418] 

Long NM, Burke JF, Kahana MJ. Subsequent memory effect in intracranial and scalp EEG. 
NeuroImage. 2014; 84:488–494. [PubMed: 24012858] 

Long NM, Kahana MJ. Successful memory formation is driven by contextual encoding in the core 
memory network. NeuroImage. 2015; 119:332–337. [PubMed: 26143209] 

Kragel et al. Page 18

Neuroimage. Author manuscript; available in PMC 2018 July 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Manning JR, Jacobs J, Fried I, Kahana MJ. Broadband shifts in local field potential power spectra are 
correlated with single-neuron spiking in humans. J Neurosci. 2009; 29:13613–13620. [PubMed: 
19864573] 

Maris E, Oostenveld R. Nonparametric statistical testing of EEG- and MEG-data. J Neurosci Methods. 
2007; 164:177–190. [PubMed: 17517438] 

McClelland JL, McNaughton BL, O’Reilly RC. Why there are complementary learning systems in the 
hippocampus and neocortex: insights from the successes and failures of connectionist models of 
learning and memory. Psychol Rev. 1995; 102:419–457. [PubMed: 7624455] 

Miller KJ, Honey CJ, Hermes D, Rao RP, den Nijs M, Ojemann JG. Broadband changes in the cortical 
surface potential track activation of functionally diverse neuronal populations. NeuroImage. 2014; 
85:711–720. [PubMed: 24018305] 

Murdock BB, Okada R. Interresponse times in single- trial free recall. J Verbal Learn Verbal Behav. 
1970; 86:263–267.

Nyberg L, Cabeza R, Tulving E. Pet studies of encoding and retrieval: the hera model. Psychon Bull 
Rev. 1996; 3:135–148. [PubMed: 24213861] 

O’Reilly RC, Rudy JW. Conjunctive representations in learning and memory: principles of cortical and 
hippocampal function. Psychol Rev. 2001; 108:311–345. [PubMed: 11381832] 

Paller KA, Wagner AD. Observing the transformation of experience into memory. Trends Cogn Sci. 
2002; 6:93–102. [PubMed: 15866193] 

Polyn SM, Kahana MJ. Memory search and the neural representation of context. Trends Cogn Sci. 
2008; 12:24–30. [PubMed: 18069046] 

Polyn SM, Natu VS, Cohen JD, Norman KA. Category-specific cortical activity precedes retrieval 
during memory search. Science. 2005; 310:1963–1966. [PubMed: 16373577] 

Polyn SM, Norman KA, Kahana MJ. A context maintenance and retrieval model of organizational 
processes in free recall. Psychol Rev. 2009; 116:129–156. [PubMed: 19159151] 

Prince S, Daselaar S, Cabeza R. Neural correlates of relational memory: successful encoding and 
retrieval of semantic and perceptual associations. J Neurosci. 2005; 25:1203–1210. [PubMed: 
15689557] 

Ranganath C, Cohen MX, Brozinsky CJ. Working memory maintenance contributes to long-term 
memory formation: neural and behavioral evidence. J Cogn Neurosci. 2005; 17:994–1010. 
[PubMed: 16102232] 

Rissman J, Wagner AD. Distributed representations in memory: insights from functional brain 
imaging. Annu Rev Psychol. 2012; 63:101–128. [PubMed: 21943171] 

Ritchey M, Wing EA, LaBar KS, Cabeza R. Neural similarity between encoding and retrieval is related 
to memory via hippocampal interactions. Cereb Cortex. 2013; 23:2818–2828. [PubMed: 
22967731] 

Rohrer D, Wixted JT. An analysis of latency and interresponse time in free recall. Mem Cogn. 1994; 
22:511–524.

Rosenberg MD, Finn ES, Constable RT, Chun MM. Predicting moment-to-moment attentional state. 
NeuroImage. 2015; 114:249–256. [PubMed: 25800207] 

Sederberg PB, Miller JF, Howard WH, Kahana MJ. The temporal contiguity effect predicts episodic 
memory performance. Mem Cogn. 2010; 38:689–699.

Sederberg PB, Schulze-Bonhage A, Madsen JR, Bromfield EB, McCarthy DC, Brandt A, Tully MS, 
Kahana MJ. Hippocampal and neocortical gamma oscillations predict memory formation in 
humans. Cereb Cortex. 2007; 17:1190–1196. [PubMed: 16831858] 

Small S, Nava A, Perera G, DeLaPaz R, Mayeux R, Stern Y. Circuit mechanisms underlying memory 
encoding and retrieval in the long axis of the hippocampal formation. Nat Neurosci. 2001; 4:442–
449. [PubMed: 11276237] 

Staresina BP, Henson RN, Kriegeskorte N, Alink A. Episodic reinstatement in the medial temporal 
lobe. J Neurosci. 2012; 32:18150–18156. [PubMed: 23238729] 

Stark CE, Okado Y. Making memories without trying: medial temporal lobe activity associated with 
incidental memory formation during recognition. J Neurosci. 2003; 23:6748–6753. [PubMed: 
12890767] 

Kragel et al. Page 19

Neuroimage. Author manuscript; available in PMC 2018 July 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Strange BA, Otten LJ, Josephs O, Rugg MD, Dolan RJ. Dissociable human perirhinal, hippocampal, 
and parahippocampal roles during verbal encoding. J Neurosci. 2002; 22:523–528. [PubMed: 
11784798] 

Stuss DT, Alexander MP, Palumbo CL, Buckle L, Sayer L, Pogue J. Organizational strategies of 
patients with unilateral or bilateral frontal lobe injury in word list learning tasks. 
Neuropsychology. 1994; 8:355.

Tulving E. Cue-dependent forgetting. Am Sci. 1974; 62:74–82.

Tulving E, Thompson DM. Encoding specificity and retrieval processes in episodic memory. Psychol 
Rev. 1973; 80:352–373.

Turk-Browne NB, Yi DJ, Chun MM. Linking implicit and explicit memory: common encoding factors 
and shared representations. Neuron. 2006; 49:917–927. [PubMed: 16543138] 

Wada J, Rasmussen T. Intracarotid injection of sodium amytal for the lateralization of cerebral speech 
dominance. J Neurosurg. 1960; 17:266–282.

Wagner AD, Schacter DL, Rotte M, Koutstaal W, Maril A, Dale AM, Rosen BR, Buckner RL. 
Building memories: remembering and forgetting of verbal experiences as predicted by brain 
activity. Science. 1998; 281:1188–1191. [PubMed: 9712582] 

Watrous AJ, Tandon N, Conner CR, Pieters T, Ekstrom AD. Frequency-specific network connectivity 
increases underlie accurate spatiotemporal memory retrieval. Nat Neurosci. 2013; 16:349–356. 
[PubMed: 23354333] 

Wing EA, Ritchey M, Cabeza R. Reinstatement of individual past events revealed by the similarity of 
distributed activation patterns during encoding and retrieval. J Cogn Neurosci. 2014; 27:679–691. 
[PubMed: 25313659] 

Yushkevich PA, Pluta JB, Wang H, Xie L, Ding SL, Gertje EC, Mancuso L, Kliot D, Das SR, Wolk 
DA. Automated volumetry and regional thickness analysis of hippocampal subfields and medial 
temporal cortical structures in mild cognitive impairment. Human Brain Mapp. 2015; 36:258–287.

Zeineh M, Engel S, Thompson P, Bookheimer S. Dynamics of the hippocampus during encoding and 
retrieval of face-name pairs. Science. 2003; 299:577. [PubMed: 12543980] 

Kragel et al. Page 20

Neuroimage. Author manuscript; available in PMC 2018 July 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
Recall task and electrode coverage. a. Experimental paradigm. On each trial, patients studied 

a list of words, performed a self paced arithmetic task, and finally recalled the items studied 

on the most recent list in any order. b. Electrode coverage. Left, the number of subjects with 

bipolar electrode centers within 10 mm of each vertex of the average cortical surface. Right, 

cross sections along the longitudinal axis of the MTL showing the number of subjects with 

bipolar electrode coverage localized within hippocampus (Hipp) or parahippocampal gyrus 

(PHG), extending 3 mm from electrode centroids. A priori anatomical regions of interest 

excluded from a subset of analyses are depicted in yellow. The depicted coverage discounts 

electrodes within the epileptogenic zone. L, left; R, right.
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Fig. 2. 
Behavioral results. a. The overall probability that items from each list position were recalled. 

b. The probability that an item from a given list position was the first item recalled, as a 

function of serial position. c. The probability that a recall transition will come from a 

temporally proximal list position, given it is available for recall. d. Inter-response time 

(measured from onset to onset of response vocalization) as a function of recall sequence 

length. Error bars represent standard error of the mean.
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Fig. 3. 
Decoding successful memory formation and retrieval. a. Probability of encoding success as a 

function of list position. The top panel depicts the probability of recalling an item as a 

function of serial position, for each tercile of classifier output. Below, the difference in 

percent recall change (relative to average percent recall) between the upper and lower tercile 

of classifier output. b. Probability of retrieval success increases across the memory search 

period. The top panel shows the average proportion of recalls made in epochs decoded 

across the recall period, sorted into terciles based upon classifier output. Below, the 

difference in the proportion of recalls made relative to the mean between upper and lower 

terciles of classifier output. c. Overall change in memory performance during encoding 

(ENC) and retrieval (RET) between high and low classifier terciles. Error bars represent 

standard error of the mean.
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Fig. 4. 
Common neural signatures of successful memory function. a. Classifier performance as a 

function of task phase. Average area under the curve (AUC) for classifiers trained to detect 

successful encoding and retrieval processing. Error bars reflect standard error of the mean, 

across subjects. b. Predicting successful encoding using a joint classifier. AUC for joint 

classifiers applied to encoding period data, with significant (p < 0.05, FDR corrected) 

increases and decreases in performance, compared to the encoding classifier (dashed line) 

are shown in red and blue, respectively. Shaded area depicts standard error of the mean. c. 

Predicting successful retrieval using a joint classifier. AUC for joint classifiers applied to 

retrieval period observations, with significant decreases in performance compared to the 

retrieval classifier alone (dashed line) are depicted in blue (p < 0.05, FDR corrected).
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Fig. 5. 
High frequency activity (HFA) common and specific to successful episodic encoding and 

retrieval. a. Regions common to successful encoding and retrieval. b. Regions with HFA that 

significantly differs between subsequently remembered and forgotten items, exclusively 

masking out any regions that exhibit retrieval related effects. c. Regions showing significant 

differences in HFA, specific to episodic retrieval. Significant (p < 0.05, FDR corrected) 

increases and decreases in HFA depicted on the cortical surface (left) and MTL subregions 

(right) are shown in red and blue, respectively.
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Fig. 6. 
Low frequency activity (LFA) features common and specific to successful episodic encoding 

and retrieval. a. Regions exhibiting significant differences in LFA during successful memory 

processing common to successful encoding and retrieval. b. Regions with changes in LFA 

that significantly differs between subsequently remembered and forgotten items, exclusively 

masking out any regions that exhibit retrieval related effects are shown. c. Regions showing 

significant differences in LFA with memory success, specific to episodic retrieval. 

Significant (p < 0.05, FDR corrected) increases and decreases in LFA are depicted on the 

cortical surface (left) and MTL subregions (right) are shown in red and blue, respectively.
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