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Abstract

Stochastic gradient descent (SGD) is one of the most popular numerical algorithms used in 

machine learning and other domains. Since this is likely to continue for the foreseeable future, it is 

important to study techniques that can make it run fast on parallel hardware. In this paper, we 

provide the first analysis of a technique called Buckwild! that uses both asynchronous execution 

and low-precision computation. We introduce the DMGC model, the first conceptualization of the 

parameter space that exists when implementing low-precision SGD, and show that it provides a 

way to both classify these algorithms and model their performance. We leverage this insight to 

propose and analyze techniques to improve the speed of low-precision SGD. First, we propose 

software optimizations that can increase throughput on existing CPUs by up to 11×. Second, we 

propose architectural changes, including a new cache technique we call an obstinate cache, that 

increase throughput beyond the limits of current-generation hardware. We also implement and 

analyze low-precision SGD on the FPGA, which is a promising alternative to the CPU for future 

SGD systems.
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1 INTRODUCTION

Stochastic gradient descent (SGD) is a ubiquitous optimization algorithm used in a wide 

variety of applications, notably as part of the famous backpropagation algorithm for training 

neural networks [4, 6, 42]. SGD and its variants form a critical component of enterprise 

machine learning systems, such as MLbase [47], Project Adam [7], and Google Brain [24]. 

Additionally, it is used in finance [13] and other analytics domains, in systems such as 

GraphLab [30], MadLib [17], which is used by Cloudera Impala and Pivotal, and Vowpal 

Wabbit [2], which is developed at Microsoft. Since these billion-dollar industries depend on 

dataflows which rely in part on, and are often bottlenecked [5, 56] by, SGD, it is important 

for systems designers to study techniques to make SGD run efficiently.
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Algorithm 1

Stochastic gradient descent

Require: Initial model w ∈ ℝn, input dataset x ∈ ℝn×m loss function f, and step size η ∈ ℝ.

1: for k = 1 to NumPassesdo

2:  for i = 1 to m do

3:   Compute a gradient estimate: g = ∇f(w; xi)

4:   Update the model: w ←w − η · g

5:  end for

6: end for

7: return w

Concretely, SGD is used for solving optimization problems, wherein the goal is to find a 

model vector w that minimizes a given loss function. As shown in Algorithm 11, it operates 

by updating the model vector w repeatedly in a sequential loop based on vectors xi from an 

input dataset.

In order to enhance the performance of SGD, it is important to consider both the current 

properties and the design trajectory of hardware systems. Over the past decade, due to the 

breakdown of Dennard scaling, computer hardware has been trending towards more parallel, 

specialized architectures [49]. Unfortunately, despite the simplicity of its update rule, 

Algorithm 1 is a sequential algorithm, so it is unlikely to perform well on this parallel 

hardware— and generic compiler and architectural techniques cannot fix this problem 

because they cannot alter the semantics of the algorithm. To address this, it is common to 

consider variants of SGD which are modified to run in parallel [36].

In this paper, we analyze the performance of a new SGD variant that combines parallel 

asynchronous execution with low-precision computation, a technique called Buckwild! [11]. 

In Buckwild!, multiple worker threads execute the inner loop of Algorithm 1 (lines 2–5) 

asynchronously without locking; this exploits multi-core parallelism. Also, the real numbers 

in Algorithm 1 are represented by low-precision fixed point numbers2, which enables higher 

memory throughput and better utilization of SIMD parallelism.

Despite Buckwild!’s promising benefits in terms of improving the parallelism and memory 

throughput of SGD, both these techniques cannot be used naively, since they change the 

semantics of the original algorithm. In order to apply them, we need to be confident that the 

modified algorithm will still produce a useful answer. There are reasons to think that the 

modified algorithm will be error-prone: the low-precision computation introduces round-off 

error and the asynchronous execution may produce race conditions. Fortunately, several 

recent papers that analyze asynchronous SGD [31, 36] and low-precision SGD [9, 11, 14] 

show, both empirically and theoretically, that this extra round-off error often does not 

significantly impact the quality of the output.

1Practical SGD applications differ from Algorithm 1 in that the step size η typically decreases over time. Since this and other minor 
changes do not significantly affect the hardware behavior of SGD, we will not discuss them further in this paper.
2Rather than by 32- or 64-bit floating point numbers as is standard.
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Unfortunately, just knowing that low-precision SGD is a valid strategy is not enough. There 

are many choices that must be made when implementing this algorithm and when designing 

hardware for it. These decisions include setting the precision of the variables, distributing 

work across parallel resources, and choosing how to perform the rounding when we lower 

the precision of a number. Changing these implementation details for a Buckwild! SGD 

algorithm effects a trade-off between the speed at which the hardware can execute an update 

step and the quality of the resulting solution. We call these metrics hardware efficiency and 

statistical efficiency, respectively. 3 While there has been significant theoretical analysis of 

the statistical efficiency of asynchronous low-precision algorithms, their hardware efficiency 

has not been explored in depth—this is particularly true for low-precision computation, 

which has received less attention from SGD researchers and practitioners than asynchronous 

execution. As we will show, the decisions made when implementing a Buckwild! algorithm 

can have a significant effect (up to 11×) on its hardware efficiency, and the optimal choices 

can depend on the structure of the input dataset—for example, the sparsity of the input can 

affect the optimal design. There has been no principled way of reasoning about these 

decisions, and past analyses have focused on a particular problem or hardware target in ad 

hoc ways.

To address this issue, we introduce a principled way of relaxing precision in SGD, called the 

DMGC model. Specifically, “DMGC” is an acronym that identifies four different ways in 

which arithmetic precision can be reduced: by quantizing the input dataset (xi), the model 

(w), the intermediate gradient values, or the interworker communications. These ways can 

be combined arbitrarily in a particular implementation of SGD, and the best-performing 

system often uses different levels of precision for the different categories. The DMGC model 

serves as both a taxonomy of existing low-precision implementations, and a way of 

reasoning about the trade-off space that exists when designing new systems. Additionally, it 

gives us predictive power, as with a roofline model [53], to estimate the performance of an 

algorithm by classifying it as being either bandwidth-bound or communication-bound.

Leveraging insight from the DMGC model, we analyze four software techniques that can be 

used to produce highly efficient Buckwild! implementations on modern CPUs: (1) hand-

optimizing the SIMD code, (2) using fast random number generation, (3) disabling 

prefetching, and (4) combining multiple iterations into a single mini-batch update. To 

improve the performance of this algorithm beyond what is possible in software, we also 

suggest two hardware enhancements: introducing new compute instructions, and relaxing 

cache coherence by randomly ignoring invalidate requests, a strategy we call an obstinate 
cache. To further study how architecture relates to SGD performance, we test Buckwild! on 

the FPGA, which is a promising alternative to the CPU for next-generation SGD 

implementations.

In this paper, we study asynchronous, low-precision SGD, making the following 

contributions:

3This nomenclature follows previous work [15, 56] which examined this trade-off in a different setting.
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• We introduce the DMGC model, and show how it can be used to estimate the 

throughput of a Buckwild! implementation with a roofline-like model.

• We describe four software optimizations that can be used to improve the 

performance of Buckwild! SGD on current-generation CPUs by up to 11×.

• We suggest two hardware enhancements, including a new strategy for cache 

coherency we call an obstinate cache, that can improve the performance of this 

algorithm beyond what is possible in software. We also illustrate the benefits of 

low-precision computation on the FPGA, and present useful design techniques.

• We evaluate our methods in several real settings, including deep learning. We 

show that, with our suggested optimizations, using low-precision can produce 

near-linear speedups (up to 4×) over full-precision.

2 BACKGROUND AND RELATED WORK

In this section, we will describe asynchronous low-precision SGD in detail, and discuss prior 

work related to this algorithm. SGD is used for minimizing a function that can be written as 

a sum of many components, specifically

(1)

To simplify our analysis throughout this paper, we will focus on a particular version of this 

problem, logistic regression [52]: given data examples (xi,yi) ∈ ℝn × {−1, 1}, we want to 

solve

For this problem, the SGD updates are of the form

From a hardware perspective, the cost of this step will be dominated by the two vector 

operations, a dot product and an AXPY (a-x-plus-y operation); the remainder of the work is 

in negligible scalar computations. Many other problems can be solved using SGD with a 

single dot-and-AXPY pair (in addition to negligible scalar computation), including linear 

regression and support vector machines (SVM). Because of this, SGD on logistic regression 

has a hardware efficiency that is representative of SGD on any problem in this class. Even 
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problems with more complicated updates will typically have performance similar to logistic 

regression, since more complicated SGD steps typically consist of similar linear algebra 

operations (such as matrix multiply).

The computational structure of SGD can also vary based on whether the input dataset is 

dense or sparse. Dense datasets have examples xi that are represented simply as a array of n 
numbers, while sparse datasets have examples xi with mostly zero entries, so it is cheaper to 

instead store a list of only the nonzero entries. Since dot and AXPY algorithms on dense and 

sparse vectors differ substantially in terms of their memory access patterns, it is natural that 

the overall performance of SGD for these two cases will also differ. Throughout this paper 

we will consider dense and sparse datasets separately.

Next, we will describe asynchronous execution and low-precision computation individually, 

using a simple implementation of SGD. For dense logistic regression, sequential, full-

precision SGD might be implemented as in Figure 1.

Asynchronous execution—Asynchronous execution is a widely-used technique also 

known as Hogwild! [36] (on which the Buckwild! name was based). Hogwild! SGD could 

use the same code as in Figure 1; it differs from sequential SGD in that multiple threads 

each run sgd_workerin parallel, sharing a single copy of the model vector w. Because the 

model is accessed without locking, race conditions can occur if one thread writes the model 

wwhile another thread is computing its own update. On well-behaved problems, Hogwild! is 

known to both “achieve a nearly optimal rate of convergence” (statistical efficiency) and run 

“an order of magnitude” faster than methods that use locking (hardware efficiency) [11, 31, 

36]. This impressive speedup has inspired a flurry of research into asynchronous SGD across 

problem domains, including deep learning [37], PageRank approximations [34], and 

recommender systems [54]. Fast asynchronous variants of other algorithms have also been 

proposed, such as coordinate descent [27, 28] and Gibbs sampling [10, 19]. Hogwild! has 

been successfully applied in industry, such as in Microsoft’s Project Adam [7].

Low-precision computation—Reduced-precision SGD can be implemented using the 

code in Figure 1 by simply changing each red float data type to a low-precision, fixed-

point type, such as int8_t. Additionally, casts would need to be added to lines 6 and 10 to 

convert the low-precision numbers safely to and from float. Because the conversion in the 

AXPY operation decreases the number of bits used to represent the numbers, it introduces 

round-off error, which is especially significant when the precision of the model is small. 

Additional round-off error can occur implicitly at the start of the algorithm, when the dataset 

is rounded to a low-precision type. While low-precision SGD has received somewhat less 

research attention than asynchronous SGD, basic results that characterize its statistical 

efficiency are still known [11]. Additionally, several systems have been suggested for using 

low-precision arithmetic for deep learning and other problems [9, 14, 45, 46, 48]. Later, we 

will examine these systems in more detail in terms of our DMGC model.

Other settings—While we focus here on the performance of SGD on a single CPU or 

FPGA, much previous work exists that analyzes (full-precision) SGD in other settings. For 

example, Zhang and Ré [56] analyzed the trade-offs that exist when running asynchronous 
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SGD on non-uniform memory access (NUMA) machines. Similar work exists for algorithms 

running on clusters [15] and on GPUs [20, 57]. When designing a system that uses SGD, it 

is important to understand both how the large-scale structure of the available compute 

resources affect the performance, as well as how optimizations can improve the performance 

of individual chips. For this reason, we believe that our contributions in this paper, especially 

when combined with previous work, will be useful to system designers.

3 THE DMGC MODEL

In this section, we describe our main conceptual contribution, the DMGC model, and 

describe how low-precision systems described in previous work can be classified thereby. 

The main idea behind the DMGC model is that the real numbers4 used by a parallel SGD 

algorithm can be separated into four distinct groups: numbers used to store the dataset, 
numbers used to represent the model, numbers used as intermediate values while computing 

the gradients, and numbers used to communicate among the several worker threads. This 

categorization is natural because these numbers are both used differently by the algorithm 

and stored differently within the memory system, and so making them low-precision will 

have different effects on performance.

Dataset numbers—Dataset numbers are those used to store the input dataset, the xi in (1) 

or the examples exfrom Figure 1. As inputs to the algorithm, they are constant, and they 

compose the vast majority of data in the process’s live data at any given time. Since there are 

so many of them and they are reused only infrequently, dataset numbers are typically stored 

in DRAM, and we focus our analysis on problems for which this is the case5—such as those 

targeted by popular in-memory ML frameworks, including SciKit Learn [39]. Because 

dataset numbers are constant inputs, to make them low-precision we need to quantize them 

only once: either at the beginning of the algorithm, if the input is stored on disk as full-

precision floats; or before the algorithm runs, if we are given a low-precision version of the 

input dataset to load. For some applications, such as recommender systems and compressed 

sensing where the input dataset is naturally quantized, this can be done without any loss of 

fidelity; however, in general quantizing the dataset can affect the statistical efficiency of the 

algorithm. We call the precision of the dataset numbers, measured in bits, the dataset 
precision.

When solving a dense problem, the input dataset consists only of dataset numbers; however, 

when solving a sparse problem, the dataset also contains values that encode the indexes of 

the nonzero entries of the example vectors. These integer values also can be made low-

precision6, and since this does not change the semantics of the input dataset, doing so incurs 

no loss of statistical efficiency. We call the precision of these values the index precision.

4Throughout this section, we use the word “numbers” to refer specifically to values that represent real numbers in the algorithm, and 
not to values that represent indexes or counters.
5For very small problems, the dataset could be stored in the last-level cache, and for very large problems it would not fit in DRAM 
and so need to be stored on disk, but since the trade-off space is very different in these rare cases we do not address them here.
6For model sizes too large to be indexed by the low-precision type, this can be achieved by storing the difference between successive 
nonzero entries. Since this part of the implementation did not significantly impact throughput in our experiments, we do not discuss it 
further in this paper.
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Using low-precision for the dataset is advantageous from a hardware efficiency perspective. 

Since most numbers read from DRAM are dataset numbers, representing them in low-

precision both decreases the amount of DRAM bandwidth needed to execute the algorithm, 

and decreases the amount of pressure on the entire cache hierarchy. This will improve 

performance when SGD is memory bound.

Model numbers—Model numbers are those used to store the model, the w in (1) and 

Figure 1. In general, model numbers include any mutable state that persists across iterations. 

Unlike dataset numbers, model numbers are modified continuously throughout the 

algorithm, and while they make up only a small fraction of the process’s live data, they 

represent a significant part of its working set since every model number is frequently reused. 

Because of this, being able to effectively cache the model is important for achieving fast 

execution, and the model numbers are typically all stored in the last-level cache; we focus on 

problems for which this is possible. We call the precision of the model numbers the model 
precision.

In order to make the model numbers low-precision, it is necessary to quantize by rounding 

every time the model is written, i.e., every time the AXPY on line 4 of Algorithm 1 is 

executed. There are two different ways we can do this rounding. The first is standard 

rounding, also known as nearest-neighbor or biased rounding, which rounds to the closest 

number that is representable in the low-precision model type. The second, unbiased 
rounding, randomly rounds up or down in such a way that the expected value of the 

quantized output is equal to the input. Unbiased rounding, which has been used in some [14] 

previous work on low-precision SGD, must be implemented using a pseudorandom number 

generator (PRNG), which decreases its hardware efficiency; however, it typically yields 

more accurate solutions (higher statistical efficiency) than biased rounding. Later, in Section 

5.2, we will show how by using an extremely fast PRNG we can make the hardware 

efficiency cost of unbiased rounding negligible for many applications.

Using a low-precision model has similar advantages to using a low-precision dataset. Having 

smaller model numbers puts less pressure on the cache hierarchy, and may allow a model to 

fit in cache when it otherwise would not. Additionally, computing the gradient updates on 

the CPU can be cheaper with a lower-precision model, since more SIMD parallelism can be 

extracted for operations producing 8-bit or 16-bit numbers.

Gradient numbers—Gradient numbers are those used as intermediate values while 

computing the update step, such as xi_dot_wand scale_ain Figure 1. Unlike with the 

dataset or the model, which typically have a single precision, it often makes sense to use 

different precisions for different gradient numbers in an algorithm. Depending on how they 

are used, making these numbers low-precision may or may not have an effect on statistical 

efficiency, and their effect on hardware efficiency is similarly context-dependent.

Communication numbers—Communication numbers are those used to communicate 

among worker threads in a parallel algorithm. Sometimes, this communication is done 

explicitly, in which case we call its precision the communication precision. However, in 

many implementations, such as in Figure 1 and in standard Hogwild!, communication is not 
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explicit; instead, the coherence protocol of the CPU cache hierarchy is employed to 

communicate asynchronously between cores. In this case, there are no communication 

numbers— and inasmuch as they exist, they will have the same precision as the model, since 

they are just model numbers communicated by the cache coherence protocol.

DMGC signatures—Using the four classes of numbers outlined above, we can classify a 

particular implementation of SGD in terms of the precision of its numbers within each class. 

This classification, which we call a simplified DMGC signature, is written as

The i term is included only if the problem is sparse, and the [i] notation means the problem 

could possibly be sparse. For example, a dense implementation that uses an 8-bit dataset, a 

16-bit model, and explicitly computes and communicates with 32-bit floats would have 

signature D8M16G32C32.

The information in a DMGC signature is enough to model the statistical efficiency of an 

algorithm from first principles by using techniques from previous work like De Sa et al. 

[11]. However, as it is a simplified model, this type of signature does not encode everything 

we want to represent about an algorithm from a hardware perspective. To address this, we 

augment the simplified signature with rules that capture more information about precision:

• Since floating-point and fixed-point numbers differ, we suffix an f to the size of 

floating-point numbers.

• When any explicit synchronization is done among workers, we add a s subscript 

to the C; absence of an s implies asynchronous execution. We can omit the C 
entirely if, as in Hogwild!, the algorithm relies entirely on the cache hierarchy 

for implicit communication.

• For simplicity, we omit the G term entirely if the gradient computation is 

equivalent to using full-precision numbers (i.e. no fidelity is lost in intermediate 

values). Similarly, we can leave out the D and M terms when the algorithm uses 

full-precision arithmetic for those numbers.

Using these rules, we can assign any implementation a DMGC signature. For example, 

standard sparse Hogwild! has signature D32f i32M32f and a dense Buckwild! implementation 

using 8-bits for the dataset and the model and unbiased rounding has signature D8M8.

3.1 Classifying previous implementations

In this subsection, we will briefly discuss some low-precision systems implemented in 

previous work, and how they can be understood under the DMGC model. First, we analyze 

Seide et al. [46], in which the gradients are “quantized...to but one bit per value” and these 

gradient values, rather than model values, are used to communicate synchronously among 

the workers. Since it maintains a full-precision dataset and model, which includes a full-

precision representation of the quantization error that is carried forward across iterations, 
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this algorithm has DMGC signature . Note that this signature gives us a clearer 

understanding of the precision used in this algorithm than the title of the paper, which only 

calls it “1-Bit” SGD—but does not specify which numbers are so quantized.

Another implementation from previous work is SGD using low-precision multiplications, 

suggested in Courbariaux et al. [9]. The most successful implementation analyzed by the 

authors uses 10-bit multipliers, but full-precision accumulators; since the inputs and outputs 

to the multipliers are intermediate numbers, its DMGC signature is just G10.

In Table 1, we list the DMGC signatures of several algorithms from previous work. While 

most of these papers considered several ways to set the precision, none highlight the full 

trade-off space described by the DMGC model.

4 MODELING PERFORMANCE

In this section, we describe how the DMGC model can be used to approximate the 

performance of well-optimized SGD on parallel hardware. Throughout the rest of this paper, 

we will represent hardware efficiency in terms of the dataset throughput, the rate at which 

data numbers are processed by the algorithm, measured in giga-numbers-per-second 

(GNPS). For logistic regression where the sizes of the dataset vectors and the model vector 

are the same, the dataset throughput is equal to the rate at which iterations can be performed 

multiplied by the model size.

In order to explore the trade-offs generated by varying the precision of SGD, we tested our 

best general implementations7, using the precisions listed in Table 2, for both dense and 

sparse (3% density8) artificially-generated datasets9 of model sizes n (i.e. w ∈ ℝn) ranging 

from 28 to 226.

Changing the model size has a non-uniform effect on throughput, which we have illustrated 

in Figure 2. For large models (roughly those larger than 256K in our experiments) changing 

the model size has little effect on performance. In this regime, the throughput is bandwidth-
bound, since its performance is limited by the memory bandwidth of the individual cores. 

On the other hand, for small models, decreasing the model size causes a degradation in 

performance. In this regime, the throughput is communication-bound; its performance is 

limited by the latency at which updates, which happen more frequently for smaller model 

sizes, can be sent between the cores.

We can use this intuition to model the throughput of Buckwild! as parameters are changed. 

Our performance model has the following properties: (1) varying the thread count results in 

a throughput that follows Amdahl’s law [3],

7From the optimizations we will discuss in Section 5, we used only hand-optimized SIMD and XORSHIFT rounding; these are the 
optimizations that are generally applicable, regardless of the problem or model size.
8Our choice of density is arbitrary, and similar effects would be observed across a range of densities.
9We generated the datasets by sampling from the generative model [35] for logistic regression, using a true model vector w* and 
example vectors xi all sampled uniformly from [−1, 1]n.
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(2)

where T denotes the throughput, t is the number of threads, and p is the parallelizable 
fraction of the task; (2) the base throughput T1 is solely a function of the DMGC signature; 

and (3) the parallelizable fraction p is solely a function of the model size. For the hardware 

we used, a Xeon® E7-8890 v3 with 18 physical cores running at 2.50 GHz, we found that a 

good approximation for p was

(3)

The first term here describes the fixed bandwidth bound, which is independent of the model 

size. The second term describes the communication bound, which manifests as a decrease in 

the parallelizable fraction of the algorithm because increasing the thread count makes 

communication more frequent. This assignment of p, together with the base throughputs T1 

listed as a function of the DMGC signature in Table 2, seems to yield valid predictions for 

both dense and sparse problems, across all well-optimized SIMD implementations we tried.

Figure 3 compares the measured throughputs of our Buckwild! implementations with the 

predictions of the performance model, for a selection of thread counts. More broadly, for 

both dense and sparse datasets, for 90% of the tested algorithm parameters, the prediction 

was within 50% of the observed throughput. It is perhaps surprising that a model with so 

fewparameters manages to track the measured performance reasonably accurately. However, 

this makes sense when we consider that lowering the precision is done with the goal of 

extracting SIMD parallelism—that is, parallelism within a single core—and so effects that 

operate across many cores, such as the thread count and the model size (which affects 

performance primarily through cache coherence effects), should not interact strongly with 

the precision.

Because of this, we can roughly evaluate the effect of changing the precision, even across a 

variety of model sizes and thread counts, by just looking at the base throughput number in 

Table 2. In particular, we can gauge the performance against the best-case theoretical 

speedup, wherein the throughput is inversely proportional to the number of bits; we call this 

linear speedup. The data in Table 2 show that linear speedup is achieved for dense 

Buckwild!, and that while sparse SGD shows less than linear speedup as the precision is 

decreased, D8i8M8 Buckwild! is still the fastest scheme. Since these base throughputs are 

directly proportional to the throughputs predicted by (2), the illustrated speedups are valid 

across all model sizes.
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5 SOFTWARE OPTIMIZATIONS

While there are known techniques for writing efficient Hogwild! implementations [56], there 

are additional non-obvious optimizations that increase throughput in the low-precision case. 

In this section, we present two low-precision-specific optimizations that are generally 

applicable, and which were necessary to achieve the performance described in Section 4. 

First, we will show that care is needed when vectorizing low-precision SGD, and that hand-

vectorized code can be significantly faster than what a compiler would generate. Second, we 

describe how unbiased rounding can be done with minimal effect on hardware efficiency by 

using very high-throughput pseudorandom number generators. We also introduce two 

additional techniques that can further improve the performance when the model size is small 

(and performance is dominated by cache effects).

5.1 Efficient SIMD computations

A major goal of using low-precision computation is to leverage the ever-widening SIMD 

capabilities of modern CPUs. In this subsection, we discuss optimizations that improve 

performance on CPUs that use the AVX2 SIMD instruction set extensions, the newest SIMD 

extension available on Xeon processors. Unfortunately, on AVX2, a straightforward C++ 

implementation doesn’t fully utilize the capabilities of the processor for lower precisions 

even when compiled by gcc with -Ofast, the highest optimization level. Worse, other 

compilers (we tested icc and clang) and frameworks (we tested OpenMP) do not seem to 

significantly improve the quality of the generated code. A hand-optimized implementation 

that implements the dot and AXPY operations using AVX2 intrinsics—effectively 

programming in assembly—is necessary to achieve the performance reported in Section 4.

Figure 4a compares the performance of our hand-optimized implementation with GCC’s 

compilation of generic code. As can be seen, GCC consistently underperforms by an 

significant factor. Since the AVX2 optimizations used in the hand-optimized version don’t 

change the semantics of the algorithm, its speedup is essentially free: it doesn’t involve any 

trade-off with statistical efficiency. The DMGC signatures for which it was effective to 

hand-optimize the implementation are listed in Figure 4c, along with the average (across 

models and thread counts) speedups that resulted.

To understand this performance gap, we will analyze how the dot operation is implemented 

in both the GCC and the hand-optimized versions of 8-bit Buckwild! In the hand-optimized 

version, the numerical computations are done using a fused multiply-add, instruction, 

vpmaddubsw. This instruction multiplies two pairs of 8-bit numbers, and accumulates the 

results—with no loss of precision— into a single 16-bit number. The GCC version does not 

use a fused multiply-add; instead, to dot two 8-bit SIMD vectors, it: (1) converts the 8-bit 

numbers into 32-bit floats, in the process quadrupling the size of each input and thus 

expanding it into four vector registers, (2) multiplies the floating point vectors, and (3) sums 

the resulting floating point numbers. Since each of these steps requires multiple instructions, 

the GCC version takes almost a dozen instructions to accomplish what the hand-optimized 

version does in a single instruction. Similar differences in instruction usage occur 

throughout the code emitted by GCC, which explains the nearly 10× speedup achieved by 

hand-optimizing the SIMD instructions.
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This difference in performance is not simply incidental to the implementation of GCC, but 

rather can be attributed to the language semantics of C++. This is because in C++, directly 

multiplying two 8-bit integers (for example) can lead to a loss in fidelity, since it produces 

an 8-bit result that could possibly overflow. To prevent this, it is necessary to first cast the 8-

bit numbers to 16-bit numbers, and then do the multiply. This makes it impossible to write a 

fused multiply-add with basic C++ constructs. Furthermore, GCC does not optimize 

aggressively enough to transform the code to use the vpmaddubsw instruction. It would be 

unreasonable to expect GCC, or a similar general-purpose compiler, to perform this 

transformation, since sometimes (for example, the small-model-size sparse problems in 

Figure 4b) it can actually lower the performance of the code. Because of the above concerns, 

we recommend handwriting the SIMD code of the core operations of any Buckwild! 

implementation.

5.2 Fast random number generation

In Section 3, we described how choosing between biased and unbiased rounding can trade-

off between statistical and hardware efficiency. While biased rounding always maximizes 

hardware efficiency with no regard for statistical efficiency, unbiased rounding offers 

additional design decisions that determine how the randomness used for rounding is 

generated. In this subsection, we discuss these decisions, which allow for finer-grained 

trade-offs between statistical and hardware efficiency. The simplest way of implementing 

unbiased rounding is by using the formula

(4)

where x is the full-precision number to round, Q(x) is the low-precision output, floor(z) 

returns the largest integer smaller than z, and rand() returns an independent random variable 

uniformly distributed on [0, 1].10

The hardware efficiency of an implementation of (4) depends primarily on how the rand 

function is implemented. The easiest way to implement this in C++ is to use a 

pseudorandom number generator (PRNG) available in the popular Boost library [1]. In this 

implementation, a fresh random number is generated by a call to Boost’s default PRNG 

(Mersenne twister [33]) every time we write a model number: n times per iteration, where n 
is the model size. Even though Mersenne twister is a fast PRNG, if it runs once every write, 

it dominates the computation cost of the algorithm. Worse, there is no obvious way to 

transform the Boost implementation of the PRNG into a hand-optimized AVX2 

implementation, and, as described in Subsection 5.1, the C++ compiler is unlikely to do it 

efficiently.

To improve the performance of the quantizer, we used a hand-written AXV2 implementation 

of XORSHIFT [32], a very fast, but not very statistically reliable [38] PRNG. This very 

10For simplicity, we are here assuming that we are quantizing to integer precision; rounding to fixed-point numbers with different 
quanta is a straightforward extension.

De Sa et al. Page 12

Proc Int Symp Comput Archit. Author manuscript; available in PMC 2018 January 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



lightweight generator has similar statistical efficiency to the Mersenne twister, as shown in 

Figure 5a, while significantly improving upon its hardware efficiency, as shown in Figure 

5b. Unfortunately, since the rest of the computations required by low-precision SGD are so 

cheap, running even a very lightweight generator like XORSHIFT on every write still makes 

up a significant fraction of the compute instructions of the algorithm. This means that this 

strategy still has much lower hardware efficiency than biased rounding.

A third strategy that further improves the performance of the quantizer is to share 
randomness among multiple rounded numbers. In this design, the calls to the rand function 

in (4) are no longer independent; rather, it will return the same number some number of 

times before eventually running the XORSHIFT PRNG to generate a fresh number.11 

Despite the lack of independence, the quantized output for each element remains unbiased, 

and the method has surprisingly good statistical efficiency; as shown in Figure 5a it can be 

close to the other two strategies. Furthermore, since the PRNG is no longer called at each 

write, its cost is amortized, allowing us to match the hardware efficiency of the unbiased 

version in some cases, as shown in Figure 5b. This strategy is used to achieve the 

performance numbers reported in Section 4. One benefit of this approach is that we can 

expose a smooth trade-off between statistical and hardware efficiency by changing the 

frequency at which the PRNG is run.

5.3 Turning off prefetching

So far, the optimizations we have discussed in this section have been focused on improving 

the memory bandwidth and SIMD parallelism, and thereby the base throughput, of the 

algorithm. However, as Figure 3 illustrates, when the program is communication-bound, the 

throughput is almost an order of magnitude less than when the model is large. This decrease 

in performance is attributable to cache effects: when the model is small, lines in the L2 

caches that store model numbers are more frequently invalidated, leading to processor stalls 

as the cores must wait for data from the shared L3. For the remainder of this section, we will 

discuss two techniques that can improve the throughput when the algorithm is 

communication-bound.

One way to improve throughput that requires minimal programmer effort is to simply turn 
off the hardware prefetcher. For processors using recent Intel microarchitectures, this can be 

achieved by setting bits in the model specific register (MSR) 0x1A4[50].12 While this effect 

may seem surprising, it has been known to happen for some applications [26]. Since the 

hardware prefetcher typically increases the throughput of the memory subsystem, it is 

understandable when we consider the facts that: (1) the additional memory operations 

inserted by the prefetcher consume a significant amount of bandwidth; and (2) the cache 

lines loaded by the prefetcher are often invalidated before they can be used.

Figures 6a and 6b report the throughput that can be achieved by turning off hardware 

prefetching for dense and sparse problems, respectively. As can be seen, significant 

11In our tests, we ran the vectorized XORSHIFT PRNG once every iteration to produce 256 fresh bits of randomness, which we 
shared for rounding throughout the AXPY operation.
12Note that while this MSR provides more fine-grained control of which features of the prefetcher to turn on and off, for all model 
sizes we tried it was optimal to either turn all the features off (no prefetching at all) or keep them all on (the default setting).
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speedups of up to 150% can occur. Furthermore, our experiments showed that turning off the 

prefetcher does not have a significant effect on statistical efficiency—in fact, the 

distributions of the quality of the output were indistinguishable from one another. Note that 

we did not need to change any of our code to do this: they were measured using the same 
executable and differing only in the assigned value of the prefetch control MSR. This means 

that this technique improves hardware efficiency essentially for free (requiring no 

programmer effort), and so we recommend that SGD implementers always try disabling the 

prefetcher when model sizes are small.

5.4 Increase the mini-batch size

Mini-batch stochastic gradient descent is a straightforward variant of SGD in which 

gradients from multiple dataset examples are summed, resulting in an update rule like

Here, B, the mini-batch size, is a hyperparameter that determines how many examples will 

be used to compute each model update (for standard SGD, the mini-batch size is just B = 1). 

Since more compute work is done for each time the model is written, increasing the mini-

batch size will amortize the cache effects caused by writing to a small model. Specifically, 

the model is written less frequently, and so L2 cache lines will be invalidated 

correspondingly less frequently.

Figure 6d illustrates the speedups that can result from using a larger mini-batch size. For 

very large mini-batch sizes, the throughput for smaller models approaches that of larger 

models; this scheme effectively increases the parallelizable fraction p of the algorithm.

Unlike some other optimizations, increasing the mini-batch size can effect the statistical 

efficiency. This relationship is often problem dependent and difficult to capture. For logistic 

regression, Figure 6e shows the measured statistical efficiency as the mini-batch size is 

changed. These results suggest that an empirical or theoretical analysis of the accuracy is 

needed to decide how large the minibatch size can be set before statistical efficiency 

degrades.

6 HARDWARE OPTIMIZATIONS

In this section, we show how we can improve throughput with two hardware changes that 

can be used in combination with the software optimization techniques presented in Section 

5. The first proposed change affects compute by adding new ALU instructions, while the 

second affects memory by proposing a new way of relaxing the cache coherence protocol. In 

contrast to previous work on new ISAs for neural network accelerators [29] and relaxed 

consistency shared memory [51], our changes are simple and could be added to any existing 

architecture. It is our hope that these or similar hardware changes may actually be 

implemented in future CPU generations.
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6.1 New vector ALU instructions

The performance improvements from hand-optimized SIMD code depend on the existence 

of efficient instructions like the fused-multiply add described in Section 5.1. Were this and 

similar instructions not to exist in AVX2, it would be impossible to improve over the code 

generated by GCC, which means that fully optimized Buckwild! systems would run 

significantly slower. In this subsection, we ask the opposite question: can we add compute 

instructions that will improve the throughput of low-precision SGD?

The most obvious new ALU instructions to add would be ones that allow the inner loops of 

the dot and AXPY operations to be computed using fewer instructions. Here, we focus on 

the D8M8 case—the one for which instructions are most lacking on current architectures—

and propose two specific instructions to do this: one, for dot, which vertically multiplies 

signed 8-bit integer vectors, producing 16-bit intermediate values, which it then horizontally 

adds in groups of four to produce 32-bit floating point numbers; and another, for AXPY, 

which multiplies an 8-bit vector by an 8-bit scalar, producing 16-bit intermediate values, 

which it then adds to a hardware-generated pseudorandom 8-bit vector, before truncating to 

produce an 8-bit output. These instructions are sufficient to compute the inner loop bodies of 

dot and AXPY with one and two instructions, respectively, so they represent an upper bound 

on the speedup that can result from new ALU instructions.

In order to evaluate these instructions, we ran test programs on our Xeon processor by using 

an existing ALU instruction ( vpmaddwdfor the new dot instruction, vpmullwfor the AXPY 

instruction) as a proxy in place of the new instruction in our code. By doing so, we are 

supposing that our new ALU instruction will have the same latency as the chosen proxy. If 

this is the case, then since the proxied instruction only operates on numbers, and does not 

affect the control flow of the program, the runtime of the proxy program will be exactly the 

same as the runtime of the program with the new instruction. Thus, while the proxy program 

produces invalid output, it lets us accurately measure the runtime. In our experiments, these 

new instructions consistently improved throughput by 5% − 15%.

We can also consider another type of new ALU instruction: those which enable us to run at 

different precisions than we could otherwise use. Specifically, we are interested in running 

4-bit SGD, that is, D4M4. This choice is infeasible on current-generation CPUs because 

AVX2 does not support any kind of 4-bit arithmetic. We used the same methodology as 

before to test the performance of a hypothetical 4-bit Buckwild! implementation, assuming 

the existence of 4-bit multiply, add, and fused-multiply-add instructions, all of which have 

the same latency characteristics as their 8-bit equivalents (which we used as proxies for our 

experiments). Figure 5c compares the throughput of this dense D4M4 implementation to 

D8M8; across most settings, it is about 2× faster (although it often affects statistical 

efficiency).

6.2 Relaxing coherence: the obstinate cache

In Sections 5.3 and 5.4, we explored software techniques that can address the deleterious 

cache effects that occur when the algorithm is communication-bound. It is natural to 

consider hardware changes that can further ameliorate these harmful cache effects. Here, we 
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propose a simple change that relaxes the coherence of the cache hierarchy—for only those 

cache lines used to store model numbers13—by just randomly ignoring some fraction of 
invalidates. Under this strategy, which we call an obstinate cache because it obstinately 

refuses to respond to invalidate requests, whenever a cache receives a signal that would 

normally cause it to change a model cache line to the invalid (I) state, with some probability 

q (the obstinacy parameter), using a hardware PRNG, it instead retains that cache line in the 

shared (S) state. While this technique makes the caches incoherent (which causes race 

conditions), we can show that cache incoherence has a negligible effect on statistical 

efficiency by using the same analysis that shows that the race conditions from asynchronous 

execution only marginally affect statistical efficiency.

In order to evaluate this technique of relaxed coherence, we ran experiments using ZSim 

[44], a popular architectural simulator that excels at modeling memory hierarchies. Using 

ZSim, we simulated an 18-core processor with the same compute characteristics and 

approximately the same cache characteristics as our 2.5 GHz Xeon processor: a 32 KB 4-

cycle latency L1 cache, 256 KB 12-cycle latency L2 cache, and a 45 MB 36-cycle latency 

shared L3 cache. We used the same code used in Section 4, except that since ZSim does not 

model a hardware prefetcher, we manually added software prefetching. While the simulation 

does not model congestion, it does model a coherency protocol (MESI) and so it does 

exhibit a slowdown caused by invalidates as the model becomes smaller, as shown in Figure 

6c. The same figure illustrates how using an obstinate cache can improve throughput: for 

values of q around 50%, the cost of running with a small model disappears. On real 

hardware, which may experience additional negative effects from invalidates (such as bus 

congestion and shared L3 cache bandwidth limitations) that are not modeled by the 

simulator, we expect the effect of the obstinate cache will be even more dramatic. 

Furthermore, as shown in Figure 6f, we observed that the obstinate cache has no detectable 

effect on statistical efficiency, even when q is as high as 95%. These results suggest that 

hardware that allows for software-controlled relaxation of the cache coherence, even in such 

a course-grained way as the obstinate cache, could be a useful tool for achieving good 

performance for low-precision SGD.

7 EVALUATION

In this section we will display the effects of our ideas on some popular problems. First, we 

will demonstrate that Buckwild! can make deep learning more efficient. Almost all deep 

learning systems, including CNNs [23] and ResNets [16], are bottlenecked by the training of 

convolution layers; this has been verified experimentally [8]. For this reason, we use the 

throughput of a convolution layer as a proxy for the hardware efficiency of the system. We 

measured this throughput for a convolution layer14 running on images of size 227×227×3 

from the ImageNet dataset [43]. We expect that low-precision would yield a linear increase 

in throughput. Figure 7a shows that this is in fact the case, and that our optimizations are 

necessary to achieve this speedup.

13The obstinate cache behavior could be enabled per-page based on whether the user sets a flag in the page table.
14The layer we studied is structured identically to the first convolution layer from Caffe’s AlexNet example [18].
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Next, we evaluate the effect of low precision on statistical efficiency for neural networks. We 

study this effect by measuring the test error for LeNet, a successful CNN architecture [25]. 

To do this, we modified Mocha [55], a deep learning library, to simulate low-precision 

arithmetic of arbitrary bit widths. Since this simulation was too slow to use ImageNet, we 

tested on the smaller MNIST [12] and CIFAR10 [22] digit classification tasks. Convolution 

layers for these datasets have speedups similar to those in Figure 7a: for both MNIST and 

CIFAR10, we observed D16M16 and D8M8 having 2.0× and 3.0× speedup, respectively, over 

full-precision. We expect that that using a 16-bit model (for all the layers) will result in 

quality indistinguishable from full-precision. Our experiments show that this is the case, and 

we show in Figure 7b that it is possible to train accurately even below 8-bits, using unbiased 

rounding. This is a surprising result, as some previous work has suggested that training at 8-

bit precision is too inaccurate [9, 14].

One common alternative to deep learning for classification tasks is the kernel support vector 

machine (SVM). We hypothesized that, as with logistic regression, Buckwild! would have 

little effect on statistical efficiency in this setting. We evaluated our techniques by running 

kernel SVMs15 on MNIST using the random Fourier features technique [41], a standard 

proxy for Gaussian kernels. To study the statistical efficiency, we measured both the average 

training loss and the test error when using all our software optimizations (and 18 threads). 

Our results, which are displayed in Figure 7d (training loss) and Figure 7e (test error), show 

that 16-bit (D16M16) Buckwild! achieves accuracy that essentially matches full-precision 

computation, and 8-bit (D8M8) produces results that are within a percent of full-precision. 

We also observed runtimes similar to those in Figure 3; compared to the 32-bit floating point 

version, the 16-bit and 8-bit versions ran 3.3× and 5.9× faster, respectively. This illustrates 

that Buckwild! has higher throughput than Hogwild! while producing results with similar 

accuracy.

8 BUCKWILD BEYOND THE CPU

To see how Buckwild! could be implemented if we were free of the architectural constraints 

of a modern CPU, we studied its performance on an FPGA. On the FPGA, we are able to 

freely explore the various components of the DMGC model. Specifically, we can: (1) 

perform arithmetic operations on data types of any precision and reclaim freed logic 

resources when doing so; (2) operate with SIMD operations that are effectively any length; 

and (3) compress memory usage directly by using low-precision without incurring overhead 

for unbiased rounding.

We started by creating a high-level, parameterized description of linear regression SGD 

(which has the same compute structure as logistic regression), focusing on the case where 

the model can fit in on-chip block RAM.16 We then compiled this description down to 

VHDL using the DHDL framework [21, 40], which uses heuristic search to choose optimal 

parameters for a particular design.

15We ran ten such SVM classifiers, one for each digit, in a standard one-versus-all system.
16This is analogous to the model fitting in the L3 cache on the CPU.
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In order to design this implementation of the algorithm, we used the concepts presented in 

previous sections to guide our design. The DMGC model was a useful guide for 

systematically understanding how statistical efficiency is impacted by precision choices. On 

the FPGA, we can exploit arbitrarily large SIMD parallelism, as well as local XORSHIFT 

modules as discussed previously. We can also design modules for performing exactly the 

same operations that we propose as new ALU instructions. Some of the other optimizations, 

such as cache considerations, do not apply to the FPGA. With the algorithm and the above 

concepts in mind, there are still a few new challenges that are unique to the FPGA 

implementation and had to be explored. First, we had to decide whether to use standard SGD 

or mini-batch SGD (as in §5.4). In hardware, these two implementations generate very 

different designs due to the way memory is managed and control signals are generated. In 

regular SGD, we only need to perform one dot product and one AXPY per model update. 

This is only acceptable if the model size is large enough to amortize the cost of issuing a 

new memory command for sequential bursts for every iteration. If the model is small, then 

we can combine multiple iterations into a single memory request. This means that mini-

batch SGD will have more throughput, as an individual worker can work on multiple 

examples in between each model update. However, this means that each update requires two 

matrix multiplies, rather than just a dot product and AXPY. We empirically found that for 

our FPGA, mini-batch SGD has the highest throughput unless a single data vector spans at 

least 100 DRAM bursts. As on the CPU, though, mini-batch may negatively affect statistical 

efficiency.

Second, with either of the two implementations, we must match the volume of data being 

read with the volume of data being processed. Every data element we load from main 

memory must be read twice per update: once to compute the error of the current model and 

then again to compute the update. The second step depends on the result of the first step. 

Therefore, we can either choose to divide the design into two stages, data-load and data-

process, where the data-process stage must consume data twice as fast as the off-chip load, 

or three stages, off-chip-load, error-compute, and update-compute, where the three stages 

must consume data at the same rate and asynchronously communicate to each other when 

they are finished. The designs are illustrated in Figure 7c. The three-stage design requires 

the second stage to copy data from the BRAM it reads from to the BRAM that the third 

stage reads from so that the third stage can compute the correct update given the error that 

stage two passes along. Thus, it is a better design when compute logic is scarce but BRAM 

is abundant. However, since the two-stage design does not need to make a redundant copy of 

the data, it is a better candidate when BRAM is scarce.

Figure 7f shows that our optimized designs have higher throughput (by up to 2.5×), but use 

less FPGA resources, as the precision decreases. Similarly, when keeping the model 

precision fixed, halving the dataset precision improves both throughput and area. This 

illustrates the benefits of setting precision using the DMGC model on the FPGA. 

Furthermore, the performance per watt is better for this algorithm on the FPGA. Using an 

Altera Stratix V GS 5SGSD8, we acheived an average of 0.339 GNPS/watt, while the 

implementation on a Xeon E7-8890 acheived 0.143 GNPS/watt.
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9 CONCLUSION

In this paper, we studied the performance of the asynchronous, low-precision variant of 

stochastic gradient descent. Understanding this technique is becoming increasingly 

important for system architects as SGD becomes increasingly dominant within machine 

learning and other domains. We introduced a new conceptual framework for classifying 

precision, the DMGC model, and showed how it can be used to both clarify existing 

techniques, and model the throughput of new implementations. With insight from this 

model, we proposed several software optimizations and hardware changes (summarized in 

Table 3) that can improve the performance of a Buckwild! implementation by up to 11×. We 

also showed that low-precision computation can be useful for SGD beyond the CPU, and 

described techniques that were useful to achieve good performance on an FPGA.
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Figure 1. 
C++ code for SGD on logistic regression.
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Figure 2. 
Bounds for throughput as model size changes. Dashed line represents the setting where the 

model is too large to fit in the L3 cache.
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Figure 3. 
Comparison of real measured dataset throughput (giga-numbers-per-second) with 

throughput predicted by the performance model, for multiple threads and precisions, and for 

sparse and dense data.
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Figure 4. 
Hand-optimized AVX2 code outperforms GCC-Ofast across multiple precisions by up to 

11× (as seen in Figure 4a).
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Figure 5. 
The effects of random number generation and new 4-bit SGD on hardware and software 

efficiency.
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Figure 6. 
Effects of turning off prefetching, changing mini-batch size, using and obstinate cache, and 

running on an FPGA.

De Sa et al. Page 28

Proc Int Symp Comput Archit. Author manuscript; available in PMC 2018 January 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 7. 
Effects of running on an FPGA, and validation of approach via alternate applications to 

convolutional neural network layers (the bottleneck for most systems) and kernels SVM.
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Table 1

DMGC signatures of previous algorithms.

Paper DMGC Signature

Savich and Moussa [45], 18-bit G18

Seide et al. [46]

Courbariaux et al. [9], 10-bit G10

Gupta et al. [14] D8M16

De Sa et al. [11], 8-bit D8M8
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Table 2

Base sequential throughputs used for simplified model, in units of giga-numbers-per-second (GNPS), 

measured on Xeon E7-8890 (throughputs vary by CPU).

DMGC Signature dense T1 sparse T1

D32f [i32]M8 0.203 0.103

D32f [i32]M16 0.208 0.080

D32f [i32]M32f 0.936 0.101

D8[i8]M32f 0.999 0.089

D16[i16]M32f 1.183 0.089

D16[i16]M16 1.739 0.106

D8[i8]M16 2.238 0.105

D16[i16]M8 2.526 0.172

D8[i8]M8 3.339 0.166
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Table 3

Summary of optimizations discussed in this paper.

Optimization Beneficial when? Stat. eff. loss

Optimized SIMD Always None

Fast PRNG Using unbiased rounding Negligible

No prefetching Communication-bound Negligible

Mini-batch Communication-bound Possible

New instructions Always None

Obstinate cache Communication-bound Negligible
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	In this section, we will describe asynchronous low-precision SGD in detail, and discuss prior work related to this algorithm. SGD is used for minimizing a function that can be written as a sum of many components, specifically(1)To simplify our analysis throughout this paper, we will focus on a particular version of this problem, logistic regression [52]: given data examples (xi,yi) ∈ ℝn × {−1, 1}, we want to solveFor this problem, the SGD updates are of the formFrom a hardware perspective, the cost of this step will be dominated by the two vector operations, a dot product and an AXPY (a-x-plus-y operation); the remainder of the work is in negligible scalar computations. Many other problems can be solved using SGD with a single dot-and-AXPY pair (in addition to negligible scalar computation), including linear regression and support vector machines (SVM). Because of this, SGD on logistic regression has a hardware efficiency that is representative of SGD on any problem in this class. Even problems with more complicated updates will typically have performance similar to logistic regression, since more complicated SGD steps typically consist of similar linear algebra operations (such as matrix multiply).The computational structure of SGD can also vary based on whether the input dataset is dense or sparse. Dense datasets have examples xi that are represented simply as a array of n numbers, while sparse datasets have examples xi with mostly zero entries, so it is cheaper to instead store a list of only the nonzero entries. Since dot and AXPY algorithms on dense and sparse vectors differ substantially in terms of their memory access patterns, it is natural that the overall performance of SGD for these two cases will also differ. Throughout this paper we will consider dense and sparse datasets separately.Next, we will describe asynchronous execution and low-precision computation individually, using a simple implementation of SGD. For dense logistic regression, sequential, full-precision SGD might be implemented as in Figure 1.Asynchronous execution—Asynchronous execution is a widely-used technique also known as Hogwild! [36] (on which the Buckwild! name was based). Hogwild! SGD could use the same code as in Figure 1; it differs from sequential SGD in that multiple threads each run 
sgd_workerin parallel, sharing a single copy of the model vector 
w. Because the model is accessed without locking, race conditions can occur if one thread writes the model 
wwhile another thread is computing its own update. On well-behaved problems, Hogwild! is known to both “achieve a nearly optimal rate of convergence” (statistical efficiency) and run “an order of magnitude” faster than methods that use locking (hardware efficiency) [11, 31, 36]. This impressive speedup has inspired a flurry of research into asynchronous SGD across problem domains, including deep learning [37], PageRank approximations [34], and recommender systems [54]. Fast asynchronous variants of other algorithms have also been proposed, such as coordinate descent [27, 28] and Gibbs sampling [10, 19]. Hogwild! has been successfully applied in industry, such as in Microsoft’s Project Adam [7].Low-precision computation—Reduced-precision SGD can be implemented using the code in Figure 1 by simply changing each red 
float data type to a low-precision, fixed-point type, such as 
int8_t. Additionally, casts would need to be added to lines 6 and 10 to convert the low-precision numbers safely to and from 
float. Because the conversion in the AXPY operation decreases the number of bits used to represent the numbers, it introduces round-off error, which is especially significant when the precision of the model is small. Additional round-off error can occur implicitly at the start of the algorithm, when the dataset is rounded to a low-precision type. While low-precision SGD has received somewhat less research attention than asynchronous SGD, basic results that characterize its statistical efficiency are still known [11]. Additionally, several systems have been suggested for using low-precision arithmetic for deep learning and other problems [9, 14, 45, 46, 48]. Later, we will examine these systems in more detail in terms of our DMGC model.Other settings—While we focus here on the performance of SGD on a single CPU or FPGA, much previous work exists that analyzes (full-precision) SGD in other settings. For example, Zhang and Ré [56] analyzed the trade-offs that exist when running asynchronous SGD on non-uniform memory access (NUMA) machines. Similar work exists for algorithms running on clusters [15] and on GPUs [20, 57]. When designing a system that uses SGD, it is important to understand both how the large-scale structure of the available compute resources affect the performance, as well as how optimizations can improve the performance of individual chips. For this reason, we believe that our contributions in this paper, especially when combined with previous work, will be useful to system designers.
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	3 THE DMGC MODEL
	In this section, we describe our main conceptual contribution, the DMGC model, and describe how low-precision systems described in previous work can be classified thereby. The main idea behind the DMGC model is that the real numbers44Throughout this section, we use the word “numbers” to refer specifically to values that represent real numbers in the algorithm, and not to values that represent indexes or counters. used by a parallel SGD algorithm can be separated into four distinct groups: numbers used to store the dataset, numbers used to represent the model, numbers used as intermediate values while computing the gradients, and numbers used to communicate among the several worker threads. This categorization is natural because these numbers are both used differently by the algorithm and stored differently within the memory system, and so making them low-precision will have different effects on performance.Dataset numbers—Dataset numbers are those used to store the input dataset, the xi in (1) or the examples exfrom Figure 1. As inputs to the algorithm, they are constant, and they compose the vast majority of data in the process’s live data at any given time. Since there are so many of them and they are reused only infrequently, dataset numbers are typically stored in DRAM, and we focus our analysis on problems for which this is the case55For very small problems, the dataset could be stored in the last-level cache, and for very large problems it would not fit in DRAM and so need to be stored on disk, but since the trade-off space is very different in these rare cases we do not address them here.—such as those targeted by popular in-memory ML frameworks, including SciKit Learn [39]. Because dataset numbers are constant inputs, to make them low-precision we need to quantize them only once: either at the beginning of the algorithm, if the input is stored on disk as full-precision floats; or before the algorithm runs, if we are given a low-precision version of the input dataset to load. For some applications, such as recommender systems and compressed sensing where the input dataset is naturally quantized, this can be done without any loss of fidelity; however, in general quantizing the dataset can affect the statistical efficiency of the algorithm. We call the precision of the dataset numbers, measured in bits, the dataset precision.When solving a dense problem, the input dataset consists only of dataset numbers; however, when solving a sparse problem, the dataset also contains values that encode the indexes of the nonzero entries of the example vectors. These integer values also can be made low-precision66For model sizes too large to be indexed by the low-precision type, this can be achieved by storing the difference between successive nonzero entries. Since this part of the implementation did not significantly impact throughput in our experiments, we do not discuss it further in this paper., and since this does not change the semantics of the input dataset, doing so incurs no loss of statistical efficiency. We call the precision of these values the index precision.Using low-precision for the dataset is advantageous from a hardware efficiency perspective. Since most numbers read from DRAM are dataset numbers, representing them in low-precision both decreases the amount of DRAM bandwidth needed to execute the algorithm, and decreases the amount of pressure on the entire cache hierarchy. This will improve performance when SGD is memory bound.Model numbers—Model numbers are those used to store the model, the w in (1) and Figure 1. In general, model numbers include any mutable state that persists across iterations. Unlike dataset numbers, model numbers are modified continuously throughout the algorithm, and while they make up only a small fraction of the process’s live data, they represent a significant part of its working set since every model number is frequently reused. Because of this, being able to effectively cache the model is important for achieving fast execution, and the model numbers are typically all stored in the last-level cache; we focus on problems for which this is possible. We call the precision of the model numbers the model precision.In order to make the model numbers low-precision, it is necessary to quantize by rounding every time the model is written, i.e., every time the AXPY on line 4 of Algorithm 1 is executed. There are two different ways we can do this rounding. The first is standard rounding, also known as nearest-neighbor or biased rounding, which rounds to the closest number that is representable in the low-precision model type. The second, unbiased rounding, randomly rounds up or down in such a way that the expected value of the quantized output is equal to the input. Unbiased rounding, which has been used in some [14] previous work on low-precision SGD, must be implemented using a pseudorandom number generator (PRNG), which decreases its hardware efficiency; however, it typically yields more accurate solutions (higher statistical efficiency) than biased rounding. Later, in Section 5.2, we will show how by using an extremely fast PRNG we can make the hardware efficiency cost of unbiased rounding negligible for many applications.Using a low-precision model has similar advantages to using a low-precision dataset. Having smaller model numbers puts less pressure on the cache hierarchy, and may allow a model to fit in cache when it otherwise would not. Additionally, computing the gradient updates on the CPU can be cheaper with a lower-precision model, since more SIMD parallelism can be extracted for operations producing 8-bit or 16-bit numbers.Gradient numbers—Gradient numbers are those used as intermediate values while computing the update step, such as 
xi_dot_wand 
scale_ain Figure 1. Unlike with the dataset or the model, which typically have a single precision, it often makes sense to use different precisions for different gradient numbers in an algorithm. Depending on how they are used, making these numbers low-precision may or may not have an effect on statistical efficiency, and their effect on hardware efficiency is similarly context-dependent.Communication numbers—Communication numbers are those used to communicate among worker threads in a parallel algorithm. Sometimes, this communication is done explicitly, in which case we call its precision the communication precision. However, in many implementations, such as in Figure 1 and in standard Hogwild!, communication is not explicit; instead, the coherence protocol of the CPU cache hierarchy is employed to communicate asynchronously between cores. In this case, there are no communication numbers— and inasmuch as they exist, they will have the same precision as the model, since they are just model numbers communicated by the cache coherence protocol.DMGC signatures—Using the four classes of numbers outlined above, we can classify a particular implementation of SGD in terms of the precision of its numbers within each class. This classification, which we call a simplified DMGC signature, is written asThe i term is included only if the problem is sparse, and the [i] notation means the problem could possibly be sparse. For example, a dense implementation that uses an 8-bit dataset, a 16-bit model, and explicitly computes and communicates with 32-bit floats would have signature D8M16G32C32.The information in a DMGC signature is enough to model the statistical efficiency of an algorithm from first principles by using techniques from previous work like De Sa et al. [11]. However, as it is a simplified model, this type of signature does not encode everything we want to represent about an algorithm from a hardware perspective. To address this, we augment the simplified signature with rules that capture more information about precision:•Since floating-point and fixed-point numbers differ, we suffix an f to the size of floating-point numbers.•When any explicit synchronization is done among workers, we add a s subscript to the C; absence of an s implies asynchronous execution. We can omit the C entirely if, as in Hogwild!, the algorithm relies entirely on the cache hierarchy for implicit communication.•For simplicity, we omit the G term entirely if the gradient computation is equivalent to using full-precision numbers (i.e. no fidelity is lost in intermediate values). Similarly, we can leave out the D and M terms when the algorithm uses full-precision arithmetic for those numbers.Using these rules, we can assign any implementation a DMGC signature. For example, standard sparse Hogwild! has signature D32f i32M32f and a dense Buckwild! implementation using 8-bits for the dataset and the model and unbiased rounding has signature D8M8.
	Dataset numbers
	Model numbers
	Gradient numbers
	Communication numbers
	DMGC signatures

	3.1 Classifying previous implementations

	4 MODELING PERFORMANCE
	5 SOFTWARE OPTIMIZATIONS
	5.1 Efficient SIMD computations
	5.2 Fast random number generation
	5.3 Turning off prefetching
	5.4 Increase the mini-batch size

	6 HARDWARE OPTIMIZATIONS
	6.1 New vector ALU instructions
	6.2 Relaxing coherence: the obstinate cache

	7 EVALUATION
	8 BUCKWILD BEYOND THE CPU
	9 CONCLUSION
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Table 1
	Table 2
	Table 3

