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Covariance analysis of protein sequence alignments uses coevolv-
ing pairs of sequence positions to predict features of protein struc-
ture and function. However, current methods ignore the phyloge-
netic relationships between sequences, potentially corrupting the
identification of covarying positions. Here, we use random matrix
theory to demonstrate the existence of a power law tail that dis-
tinguishes the spectrum of covariance caused by phylogeny from
that caused by structural interactions. The power law is essen-
tially independent of the phylogenetic tree topology, depending
on just two parameters—the sequence length and the average
branch length. We demonstrate that these power law tails are
ubiquitous in the large protein sequence alignments used to pre-
dict contacts in 3D structure, as predicted by our theory. This sug-
gests that to decouple phylogenetic effects from the interactions
between sequence distal sites that control biological function, it
is necessary to remove or down-weight the eigenvectors of the
covariance matrix with largest eigenvalues. We confirm that trun-
cating these eigenvectors improves contact prediction.

power law | sequence covariance | phylogeny | protein |
structure prediction

Approaches to biological sequence analysis typically assume
that mutations at different sites are independent of each

other, although this approximation is clearly limited. Indeed,
covariation between sequence distal positions is important for
predicting RNA secondary structure (1), where Watson–Crick
base-pairing rules create strong covariance signals that can be
detected by straightforward methods. In contrast, for proteins,
the signal is less strong, and for many years it was unclear
whether any remnant of molecular phenotypes such as protein
structure is imprinted on covarying sequence positions (2–4).

Recently, with the growth of protein sequence databases (5)
and the introduction of sophisticated analyses (6–8), it has
become clear that covariance analysis of protein sequences can
yield exciting biological insights in a wide range of contexts (9–
27). In general a set of homologous protein sequences is con-
strained by protein structure and function, and with sufficient
data it is possible to tease out the nature of these constraints and
make biologically relevant predictions (12, 13, 16, 28–32).

An important consideration that limits our ability to infer sets
of covarying residues is sequence phylogeny, i.e., the related-
ness structure of the data samples (33–35). If some population
subgroups are more closely related, then part of the covaria-
tion observed in the data will be of purely phylogenetic origin,
unrelated to molecular phenotypes such as structure or function
(36–41). In population and medical genetics features such as geo-
graphical population structure are known to affect the degree of
covariance observed between sequences. (42–44).

This raises the question of whether, given n aligned protein
sequences of length p, it is possible to distinguish covariance due
to phylogeny from that caused by molecular phenotypes (36–41).
Here, we analyze a simple theoretical model of molecular evolu-
tion and use the tools of random matrix theory (RMT) to develop
a theory for the covariance when both phylogeny and structural
constraints are present. We show that phylogenetic covariance is
distinguished by a power law tail of large eigenvalues, which is
essentially independent of phylogenetic details, depending only
on the average branch length m/p and the number b of branch-
ing events or generations.

Thus motivated, we turn to data and find that the eigenvalue
distributions of covariance matrices from large protein sequence
alignments (MSAs) have power law tails. This suggests a strategy
for cleaning the covariance matrix that at least partly controls
for confounding phylogenetic effects: removing the power law
tail representing those modes that are most strongly corrupted
by phylogeny. For several protein families, we show that con-
tact prediction accuracy improves by excluding those eigenvec-
tors that correspond to the largest eigenvalues. It is interesting
to note that the commonly used method of inverting the sam-
ple covariance matrix similarly down-weights the largest eigen-
values and up-weights the smallest ones. Our analysis therefore
gives an alternative rationalization for why direct coupling anal-
ysis (DCA) has proved so successful at inferring true contacts in
proteins from sequence data alone. More generally, this eigen-
value power law will occur in any dataset where the samples have
a similar hierarchical relationship.

Results
Molecular phenotypes cause covariance between sequence
positions (columns) of the MSA matrix X , while phylogeny
causes covariance between sequences (rows) of X . Covariance
from either source will appear in both the residue covari-
ance matrix CR =XTX /n and the sequence covariance matrix
CS =XXT/p. This is because CR and CS contain the same
information; they have the same nonzero eigenvalues, and
their eigenvectors VR and VS are related by VR =XTVS and
VS =XVR. Analyses of protein sequence data typically attribute
the detected covariance signal to interactions between sequence
positions. This can be misleading: Fig. 1 A and B shows CR and
CS for a simulated dataset where phylogeny is the only source of
covariance. Note that CR contains isolated high-scoring residue
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Fig. 1. (A and B) The covariance matrices (A) CR and (B) CS for sequences
simulated with just phylogeny. Note that CR has isolated large entries that
could be interpreted to indicate interactions between pairs of sequence
positions, although none exist in the simulation. (C) In simulations where
the contact map of dihydrofolate reductase (DHFR) is used to generate inter-
actions (gray), causal interactions are detected well by the largest 200 off-
diagonal pairs of CR in the absence of phylogeny (red, true interaction; blue,
false positive). (D) The addition of phylogeny to these simulations confounds
the signal.

pairs caused by phylogeny, which could be erroneously inter-
preted to be caused by molecular phenotypes.

What happens if there are structural interactions between spe-
cific residue pairs in the simulation? In Fig. 1 C and D we com-
pare the true interactions (gray) with the top 200 scoring pairs
from covariance matrices for sequences simulated without (Fig.
1C) and with (Fig. 1D) phylogeny. Without phylogenetic corrup-
tion, 185/200 predictions are correct; whereas with phylogeny
this reduces to 54/200. The essential question is to find a way to
disentangle phylogenetic and phenotypic (e.g., structural) covari-
ance from matrices that contain a superposition of both (e.g., Fig.
1D). To address this, we first analyze the covariance signal pro-
duced by sequences for which the only source of covariance is
phylogeny and then ask whether we can distinguish this signal
when both phylogenetic and structural correlations are present.

Phylogenetic Covariance. To understand the signature of phyloge-
netic covariance, we consider a Markov model where mutations
occur at random and different sites evolve independently. The
process starts with a random sequence of length p, drawn from
a q-letter alphabet, which undergoes a series of mutation and
duplication events dictated by a user-imposed phylogeny with b
branching events. This generates an alignment of n = 2b sim-
ulated sequences. Population structure changes the eigenvalue
spectrum of the resulting covariance matrix. To see this, consider
the simplest phylogeny, consisting of a single branching event
with equal-length branches. The true covariance matrix ΣS , i.e.,
the covariance matrix of the distribution the samples are drawn
from, follows by calculating the covariance between the resulting
sequences xi and xj . Since this is a stationary Markov process, the
covariance between two sequences separated by 2m mutations,
which we denote α(m), is E(x(2m)x(0)), which yields

α(m) = exp

[
− 2qm

(q − 1)p

]
= exp[−4m/p], [1]

where the last equality specializes to a binary alphabet. A
phylogeny with a single branching event has the true covari-
ance matrix

ΣS =

(
1 α
α 1

)
. [2]

As the mutation rate m→∞, note that α→ 0. This means
that ΣS→ I, i.e., the sequences are uncorrelated, and phylo-
genetic influence is negligible. More generally, as the number
of branching events or generations b increases, we find that
ΣS is composed of nested squares that correspond to each
branching event. This yields b + 1 distinct eigenvalues λi , with
P(λ=λi) = pi ∝ 2i−b , except for the two largest eigenvalues,
which have pi ∝ 2−b (Supporting Information). These relation-
ships imply that the eigenvalues follow the power law

λ ∼ rβ , [3]

where r is the rank, and β∝ log 2α is a function of m/p. Under
the influence of phylogeny, the maximum eigenvalue increases
exponentially with the number of branching events b. Note that
there is a precise threshold at 2α= 1, which given Eq. 1 for α
implies 2qm/p(q−1) = ln(2), above which this power law behav-
ior occurs.

Finite-Sampling Effects. We have thus seen that phylogeny pro-
duces a striking signature in the covariance matrix. However,
because the number of MSA sequences is limited, this signa-
ture will be affected by finite sampling—the sample covariance
matrix will contain large entries purely by chance. We use RMT
to develop a quantitative characterization of the effect on the
corresponding eigenvalue distribution. Consider n independent
sequences of length p, with amino acids drawn uniformly at ran-
dom. The probability distribution of the sample eigenvalues fol-
lows the Marčenko–Pastur (MP) distribution

f (λ) =

√
(b+ − λ)(λ− b−)

2πcλ
, b± = (1±

√
c)

2
, [4]

where c =n/p (45). Our simulations confirm that the histogram
of eigenvalues of sequences simulated without phylogeny or
structural interactions is well described by this analytical formula
(Fig. 2A). As n increases, Eq. 4 implies that this distribution
sharpens around λ= 1. RMT further predicts how Eq. 4 general-
izes to describe the eigenvalue distribution of the sample covari-
ance matrix C for any true covariance matrix Σ, such as those
caused by phylogeny. We start with the Stieltjes transform,

G(z , c) =

∫ +∞

−∞

dF (λ)

z − λ , [5]

where F (λ) is the cumulative distribution function of f (λ), the
limiting eigenvalue distribution of C . Marčenko and Pastur (45)
used the method of characteristics to relate G(z , c) to T (λ), the
cumulative eigenvalue distribution of the true covariance matrix
Σ, yielding

G(z , c) = −1

(
z − c

∫ ∞
−∞

λdT (λ)

1 + λG(z , c)

)−1

. [6]

This equation describes the effects of finite sampling. If the
true eigenvalues cluster at/near unity, this will result in the MP
distribution of Eq. 4. For phylogeny, the eigenvalues of Σ are
drawn from a discrete distribution, so dT (λ) =

∑
i piδ(λ−λi)dλ

(46), where pi =P(λ=λi) follows the power law of Eq. 3. Eq.
6 describes how finite sampling smoothens out this discrete
distribution.

Fig. 2B shows how the eigenvalue distribution changes if the
sequences follow our simplest phylogeny, where ΣS (Eq. 2) has
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Fig. 2. (A) Eigenvalue distributions of n = 4,096 sequences with p = 100
residues, drawn from a model with Σ = I. The eigenvalues of the sequence
covariance matrix (bars) match the classical MP distribution (blue curve).
(B) Here 211 initial sequences are simulated along a tree with equal branch
lengths and a single branching event, with m = 10 mutations per branch.
(C) Here 29 initial sequences are evolved with b = 3 branching events
(Inset); branch lengths are drawn from a Poisson distribution with mean 10.
(D) Here 25 initial sequences are evolved with b = 7 branching events and
branch lengths drawn from a half-normal distribution with mean 10 (Inset,
eigenvalue tail). In each case, the histogram of eigenvalues (averaged over
200 runs) matches the analytical solution (red curve), not the classical MP
distribution (blue curve).

eigenvalues λ±= 1±α. Alignments of n0 = 211 sequences were
simulated with m = 10 mutations per branch. The shape of the
eigenvalue distribution differs significantly from that of the MP
distribution (blue curve). RMT allows us to predict this spectrum
using Eq. 6, which becomes

z − c

2

(
1 + α

1 + (1 + α)G

)
− c

2

(
1− α

1 + (1− α)G

)
= − 1

G
.

The inverse Stieltjes transform, given by the positive imaginary
part of G(z , c), analytically describes the expected eigenvalue
distribution of CS . This is used to plot the red curve in Fig. 2B,
which shows excellent quantitative agreement with the simula-
tion, unlike the MP distribution shown in blue. As the number
of branching events increases we simply use our exact formulas
(Supporting Information) for the true eigenvalue distributions in
Eq. 6 to compute the expected distribution.

Analysis of Inhomogeneous Phylogenies. Real phylogenetic trees
are inhomogeneous, with branches of different lengths. Our
framework naturally extends to this setting. Fig. 2 C and D
shows the eigenvalue distributions of trees drawn from differ-
ent distributions; Fig. 2C has three branching events with branch
lengths drawn from a Poisson distribution, while Fig. 2D has
seven branching events with branch lengths drawn from a half-
normal distribution. Note that the eigenvalue distribution broad-
ens as the number of branching events b increases, reflecting that
the maximum true eigenvalue is ∝ αb .

For inhomogeneous phylogenies we discovered that analytical
solutions follow a simple rule. Consider a phylogeny with branch
lengths drawn from a distribution with mean 〈m〉 and bounded
variance; the eigenvalue distribution is then well approximated
by the eigenvalue distribution for the tree with all branch lengths
equal to 〈m〉 and the same number of branching events. The red

curves in Fig. 2 C and D show that this prediction fits the simu-
lated data closely. To derive the result, we consider a phylogeny
with b = 1 and branch lengths m1,m2 drawn from a Poisson dis-
tribution with mean 〈m〉=µ, so that ρi := P(m1 + m2 = i) =

(2µ)ie−2µ/i !. If αi = exp(−qi/p(q − 1)), then the eigenvalues
of the true covariance matrix are λ= 1 ± αi . Applying Eq. 6
we find

z − c

2

∞∑
i=0

ρi(1 + αi)

1 + (1 + αi)G
− c

2

∞∑
i=0

ρi(1− αi)

1 + (1− αi)G
= − 1

G
.

Examining the summands, we note that

∞∑
i=0

ρi(1 + αi)

1 + (1 + αi)G
=

1

G
− 1

G(1 + G)

∞∑
i=0

ρi

1 + αi
G

1+G

,

where

∞∑
i=0

ρi

1 + αi
G

1+G

=

∞∑
i=0

ρi

[
1− G

1 + G
αi+

(
G

1 + G

)2

α2
i + · · ·

]
.

In the limit of large p the dependence on the tree parameters ρi
and αi simplifies, so that

∞∑
i=0

ρi(αi)
j = exp

{
2µ(e−qj/p(q−1) − 1)

}
∼ e−2µqj/p(q−1).

This approximation, valid for large p, allows us to write

∞∑
i=0

ρi(1 + αi)

1 + (1 + αi)G
≈ 1 + e−2qµ/p(q−1)

1 + (1 + e−2qµ/p(q−1))G
.

Hence the Stieltjes transform for the inhomogeneous tree is
equal to the Stieltjes transform for a homogeneous tree with
m =µ the mean of the distribution the branch lengths are drawn
from. This result can be generalized for any arbitrary distribu-
tion and phylogenetic tree topology (Supporting Information).
This result about inhomogeneous phylogenies is important as
it extends our analysis methods to more realistic phylogenies,
implying that the power law tail of large eigenvalues described
above is general.

Phenotypic Covariance. The eigenvalue spectrum for phenotypic
covariance depends on how phenotype couples the residues to
each other. While this will differ for different phenotypes, recent
work has focused on using covariance analysis to predict con-
tacts in tertiary protein structure (11, 13, 14, 16–18). If we
consider interactions drawn from a protein contact map, what
covariance is caused? For an alphabet with q = 2, the correla-
tion between two residues that interact with strength j is given
by tanh(j ), which saturates as j increases so that the result-
ing correlation does not exceed unity. With multiple interactions
and a larger alphabet, the situation is more complex; however,
we can use simulations to characterize the sample covariance
matrix and corresponding eigenvalue distribution. We first simu-
late sequences without phylogeny, using a simple Markov model
with nonzero residue couplings at locations dictated by protein
contact maps. These couplings were chosen uniformly from the
interval [−5, 5]. With the 784 interactions of Fig. 3A, the eigen-
value distribution of the sample covariance matrix is described
well by the MP distribution (Fig. 3B). This empirical observation
suggests that the eigenvalues of the true covariance matrix are
all of similar size, suggesting that structural interactions do not
lead to an eigenvalue power law. While real proteins will also
have other phenotypic interactions, this model provides a rele-
vant starting point.
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Fig. 3. Simulations with just structural interactions. Here 4,096 sequences
are simulated without phylogeny, with structural interactions taken from
the contact map of DHFR with strengths uniformly distributed on [−5, 5]. A
shows the interaction matrix, and B is the spectrum of the covariance matrix
of the resulting sequence alignment. B, Inset shows the upper edge of the
eigenvalue distribution in more detail; compare with Fig. 2D.

Phylogenetic vs. Structural Covariance. Crucially, this model sug-
gests that there are strikingly different signatures between the
covariance matrix expected from phylogeny and that expected
for interactions caused by residue contacts. If only structural
interactions are present, the limiting behavior of the maximum
eigenvalue saturates logarithmically as a function of the number
of interactions (Fig. 4A). In contrast, Fig. 4B shows that the max-
imum eigenvalue caused by phylogeny increases exponentially as
the sequences undergo more duplication events. Moreover, Fig.
4C shows a log–log plot of the eigenvalues as a function of rank
for our simulations with just phenotypic interactions (Fig. 3); the
data are well fitted by a line of slope zero reflecting the absence
of the power law.

To probe these signatures further, we use simulations with
a controlled mix of phylogeny and structural interactions. Fig
4D shows that the spectra for simulations with just phylogeny
and simulations with both phylogeny and 200 random structural
interactions obey the same power law. In both cases the upper
power law tail follows β= log(2α)/ log(2) (red line). With inter-
actions, the lower extent of the power law is diminished; the blue
curve in Fig. 4D drops off before the yellow curve. Importantly,
these two spectra diverge only outside the power law regime,
implying that phylogeny dominates those modes that follow the
power law.

These simulations therefore suggest that interactions between
residues affect the smallest eigenvalues, while phylogeny affects
the largest eigenvalues, giving a potential mechanism for dis-
tinguishing the effects of phylogeny. Intuitively, this could arise
because interactions between residues make it less likely that
mutations at those sites will be accepted, reducing the effective
mutation rate of these residues and hence affecting eigenvec-
tors with low eigenvalues. In Fig 5 we simulate sets of sequences
with both phylogeny and structural interactions from two differ-
ent protein contact maps and obtain similar results to those in
Fig 4D. In contrast to Fig. 3, we find that the eigenvalue distri-
butions of the resulting sequence alignments are not MP, but are
well fitted by our analytic approach. The red curves in Fig. 5 A
and B are each found using the phylogenetic parameters from
the power law fits in Fig. 5 C and D, respectively.

Eigenvalue Spectra of Protein Sequence Data. Given the vastly dif-
ferent signatures in the eigenvalue distributions expected from
phylogeny and structural interactions, it is of great interest to
see whether such signatures arise in protein sequence data. To
probe this, we choose three representative protein families for
which covariance analysis has been shown to yield accurate con-
tact predictions. In Fig. 6 A–C, Top we show that the eigen-
value distributions follow a power law in each case, as predicted

by our theory. Furthermore, as for the simulated data, Fig. 6
A–C, Middle shows that the phylogenetic parameters extracted
from the power fitted in each case provide a closer fit (red
curves) to the eigenvalue distribution than to the MP distribution
(blue curves).

Cleaning Protein Spectra. The analysis of simulated data suggests
that the effects of phylogeny can be diminished by removing
large modes of the covariance matrix and enforcing the con-
straint that the remaining eigenvalues are all of the same size.
Namely, instead of the full covariance matrix from the sequence
alignments, we propose truncating the highest modes,

C (t) = vtv
T
t + · · ·+ vrvTr , λ1 ≥ · · · ≥ λt ≥ · · · ≥ λr ,

where r = p(q − 1). Fig. 6 shows the results of this approach
for contact prediction. For each protein, the slope of the power
law fit in Fig. 6 A–C, Top is used to estimate the phylogenetic
parameters required for the analytical solution in Fig. 6 A–C,
Middle (red curve). The point at which the eigenvalues deviate
from the power law fit in Fig. 6 A–C, Top (purple dashed line)
is used to determine which modes are dominated by phylogeny
and should be truncated from the outer product expansion of the
sample covariance matrix. Fig. 6 A–C, Bottom shows how well
different truncations do at contact prediction; the purple dashed
line reflects the threshold found from the power law fit and is
near optimal in all cases. This phenomenology is entirely consis-
tent with the notion that the modes corresponding to the large
eigenvalues reflect the phylogenetic relatedness of the aligned
sequences.

Discussion
This paper was motivated by recent advances (9–14, 16, 21) in
predicting protein structure and function from the covariation
of sequences, a strategy that has been successful for predict-
ing RNA secondary structure for some time (1, 35). A major
confounding effect in both situations is the effect of phylogeny,

A B

C D

Fig. 4. (A and B) Largest eigenvalue obtained in simulations with (A) only
structural interactions with strength 1.0 and (B) only phylogeny. Lines of best
fit are shown. (C) Eigenvalue distribution obtained in simulations from Fig. 3
with just structural interactions, where the predicted slope is zero. (D) Com-
parison of eigenvalue distributions obtained in simulations with (yellow)
phylogeny and (blue) phylogeny and structural interactions. The presence of
interactions does not alter the power law, but does affect the small eigen-
value behavior. The lines of best fit are constrained using λ∝ (r)log(2α)/ log(2),
where α is from Eq. 1.
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Fig. 5. Simulations with phylogeny and interactions. Here sequences are
simulated with phylogeny and interactions taken from the contact map of
(A) DHFR, using m/p = 0.068, and (B) Trypsin, using m/p = 0.059. A and B,
Top show the histograms of eigenvalues, compared with the MP distribution
(blue curve); Insets show the contact maps. These m/p values are used to
compute the analytical distributions (red curves) which match the data well.
A and B, Bottom show log–log plots of the eigenvalues as a function of
rank. The predicted slope is calculated from the value of α(m/p) using Eq. 1
in each case and provides an excellent fit.

which introduces correlations between residues (30, 36, 38). The
correlations due to structure/function and phylogeny must be dis-
entangled for accurate prediction.

A B C

Fig. 6. Protein sequence alignments follow the power law, and moreover spectral deviation from the power law can be used to deconvolve the influence
of phylogeny from the covariance matrix, and facilitate contact prediction. A–C show analysis of protein sequence data from (A) Trypsin, (B) DHFR, and
(C) TRML-HAEIN, a knotted tRNA-methyltransferase. In A–C, Top we show that the eigenvalues of each protein sequence alignment follow a power law.
The purple dashed line indicates the point at which the spectrum deviates from this power law, indicating a threshold above which phylogeny dominates
the spectrum. The parameter m is inferred from this power law using the equation λ∼ r−β , where β= log 2α/ log 2 and α(m) is given by Eq. 1. The
inferred values of m are used to plot the red lines in A–C, Middle, which provide a good fit to the empirical spectral distributions. A–C, Bottom show that
the phylogenetic threshold, derived from A–C, Top, provides an excellent indication of which modes should be removed from the covariance matrix to
deconvolve the influence of phylogeny and dramatically improve contact prediction using just the covariance matrix.

The primary accomplishment of this paper is to identify a fea-
ture of the eigenvalue distribution of protein covariance matrices
(the power law tail) that distinguishes covariance due to phy-
logeny from that caused by structural interactions. The pres-
ence of power law tails in the data from diverse protein fam-
ilies allows us to develop an initial approach to deconvolving
structural interactions from the covariance that results from
sequence phylogeny alone. Our finding that the largest modes
of the covariance matrix are dominated by phylogeny suggests
an alternative rationalization for the matrix inversion step that
enabled features of protein structure and function to be pre-
dicted from covariance analysis of large protein sequence align-
ments. Furthermore the resulting cleaned covariance matrix can
be used as input for other inference approaches (9–12, 18,
19, 21).

A further result is a general understanding of how phyloge-
netic effects impact sequence covariation in different regions of
parameter space. Depending on the sequence length p and the
average branch length m , there is a parameter regime where
the covariance matrix does not feature a power law tail of
large eigenvalues, and hence a different approach to disentan-
gling phenotypic interactions from phylogenetic correlations is
required. Specifically, as the eigenvalues of the true covariance
matrix for phylogenetic interactions are ≈(2α)k , we expect large
eigenvalues when 2α> 1. Given Eq. 1 for α, this is equivalent to
2q/(q − 1)m/p< ln(2).

We have focused on the eigenvalue distribution; however,
information about the phylogeny will also be imprinted in
the eigenvectors of the covariance matrix. In the phylogenetic
regime, the eigenvectors will have structure that reflects the
relationship between the different sequences (43, 44), providing
additional information about which modes should be removed
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for better inference of phenotypic interactions. Understand-
ing the extent to which the effects of phylogeny and struc-
tural/functional interactions can be disentangled is an important
direction for future research. Is it possible to separate the effects
of phylogeny from those of interaction in parameter regimes with
no power law tail? Under what circumstances can we accurately
infer the strength of interactions? The approach outlined here

provides a mathematical framework that future work can exploit
to definitively answer these questions.
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