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Probability of phenotypically detectable protein
damage by ENU-induced mutations in the
Mutagenetix database
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Computational inference of mutation effects is necessary for genetic studies in which many

mutations must be considered as etiologic candidates. Programs such as PolyPhen-2 predict

the relative severity of damage caused by missense mutations, but not the actual probability

that a mutation will reduce/eliminate protein function. Based on genotype and phenotype

data for 116,330 ENU-induced mutations in the Mutagenetix database, we calculate that

putative null mutations, and PolyPhen-2-classified “probably damaging”, “possibly damaging”,

or “probably benign” mutations have, respectively, 61%, 17%, 9.8%, and 4.5% probabilities of

causing phenotypically detectable damage in the homozygous state. We use these

probabilities in the estimation of genome saturation and the probability that individual

proteins have been adequately tested for function in specific genetic screens. We estimate

the proportion of essential autosomal genes in Mus musculus (C57BL/6J) and show that

viable mutations in essential genes are more likely to induce phenotype than mutations in

non-essential genes.
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S ingle-nucleotide variants (SNVs) represent an enormous
source of human genetic variation, causing phenotypic
differences between individuals, and less frequently, genetic

disease1–3. On average, a human gene contains approximately
four coding region SNVs, half of which are non-synonymous4,
causing a missense mutation of the protein sequence. These
single-amino-acid substitutions may alter protein function, for
example, by affecting enzymatic activity, protein–protein
interactions, expression, or stability, and thus lead to phenotypic
changes at the level of the cell, tissue, and organism5–8. SNVs may
also cause nonsense, makesense (stop loss), or start loss mutations
resulting in deficiency of protein expression. However, under-
standing the contribution of individual missense mutations, as
well as other types of mutations (e.g., indels), to a particular
phenotype or disease is hampered by the practical challenge of
testing the functional consequences of large numbers of protein
variants experimentally.

To address this challenge, numerous bioinformatic tools have
been developed to predict the possible impact of missense
mutations on protein function9–14. These computational pro-
grams use direct or machine-learning strategies to variously
incorporate information on protein structure, sequence, phylo-
geny, interaction network, and the physicochemical properties of
amino acids, to infer mutational effects on protein function. Their
output is a numerical and/or qualitative score that classifies
mutations as benign or deleterious. Some programs combine the
output of multiple prediction methods with the aim of increasing
prediction accuracy15–17. However, a small-scale study recently
found that two popular programs (PolyPhen-2 (PP2) and
Combined Annotation-Dependent Depletion) misclassified as
deleterious the effects of a majority of ENU-induced missense
mutations in genes known to be essential for immune function,
where no phenotype was detected in individual homozygous
mice18.

To determine the probability that mutations categorized as
benign or deleterious truly damage protein function, we analyze
the phenotypic effects of ENU-induced mouse mutations gener-
ated as part of a large-scale mutagenesis program for forward
genetic studies and cataloged in the Mutagenetix database
(https://mutagenetix.utsouthwestern.edu/linksplorer/
linkage_explorer.cfm). The mutagenesis pipeline provides for the
genotyping, prior to phenotypic screening, of all exomic
mutations present in a given pedigree, identified by whole-exome
DNA sequencing of the grandsire of that lineage. A variety of
phenotypic screens monitoring processes of the immune system,
neurobehavior, and metabolism are applied to each mutagenized
mouse.

Within a subset of known essential genes, we determine the
probability that putative null alleles (indels, and nonsense,
makesense, or start loss mutations caused by SNVs) and missense
alleles caused by SNVs actually cause pre-weaning lethality.
This allowed us to assign authentic damage probabilities to
putative null alleles and to each class of missense mutations
predicted by a variety of mutation effect prediction algorithms,
including PP2, SIFT, LRT, MutationAssessor, FATHMM, PRO-
VEAN, MetaSVM, MetaLR, M-CAP, and fathmm-MKL_coding,
and, in turn, to directly and rationally measure genome saturation
achieved through random germline mutagenesis. Overall, we find
that mutation effect scores generated by prediction algorithms
such as PP2 and SIFT greatly overestimate the damaging effects of
missense mutations. Moreover, about 40% of putative null
mutations fail to induce the expected null phenotype. We also
assess the level of damage to individual genes, estimate the per-
centage of essential autosomal mouse genes, and show that
essential genes are enriched for viable phenotypes relative to non-
essential genes.

Results
Selection of mutations for analyses. Our analysis utilized a
selected mutation set filtered as described below from a starting
population of 116,330 Ion Torrent sequencing-validated single
base pair or small indel mutations from Mutagenetix, each of
which occurred in at least one third-generation (G3) descendant
of a mutagenized C57BL/6J male mouse. The breeding scheme to
produce G3 mice carrying heterozygous and homozygous
mutations (Supplementary Fig. 1) yielded, from each G1 grand-
sire, an average of 30 G3 offspring (Fig. 1a), each carrying about
34 mutations (Fig. 1b)8.

From the initial mutation set we selected 80,873 mutations that
were successfully genotyped in all G2 and G3 mice of their
respective pedigrees (Table 1). These mutations were located
within or near (≤15 bp) coding regions and were predicted to
disrupt coding and/or splicing in autosomal genes. Among them,
73,085 were missense mutations and were successfully scored by
PP2 as probably damaging, possibly damaging, or probably
benign (Table 1). The remaining mutations in this set (n = 7,788)
were not scored by PP2, and we classified them as putative null
alleles predicted to approximate targeted knockouts in their
effects. We categorized null alleles into two classes: class I
(nonsense, makesense, or start loss mutations); and class II
(indels and splicing errors, both frameshift and non-frameshift)
(Table 1). Eighty-two percent of the 80,873 mutations were bred
to the homozygous state in at least one G3 mouse that survived to
weaning age (Fig. 1c).

We excluded closely linked mutations within a pedigree
(mutations that were <100Mb away from any other exomic
mutation present on the same chromosome in the same pedigree)
in order to restrict our analyses to phenotypic effects attributable
to single genes. Mutations from pedigrees with <3 G3 mice were
also discarded. Finally, we filtered our mutation set to keep only
mutations in known essential genes (genes that when damaged in
homozygous state cause pre-weaning lethality), annotated as such
in the Mouse Genome Informatics (MGI) database (Supplemen-
tary Table 1). A total of 1,586 mutations in 1,027 essential genes
were left for analysis after all filters had been applied (Table 1).
Among them, 1,448 were missense mutations and PP2 predicted
477 to be probably benign, 281 possibly damaging, and 690
probably damaging; the remaining 138 mutations were putative
null mutations, 78 of class I and 60 of class II.

Estimating the probability of mutations being truly damaging.
We assessed the genotypes of pups born to parents heterozygous
for each of the 1,586 mutations and compared their frequencies to
the expected Mendelian ratios to establish the damage probability
for each mutation category. We used a method of moments
(MM) estimator, a convenient statistical tool designed to derive
parameter estimates from a sampled group of real data19, for
estimation of the probability that mutations in each PP2 category,
or putative null mutations, cause phenotypically detectable
damage (pre-weaning lethality) in the homozygous state. This
analysis used the HumDiv-trained PP2 algorithm (see below for
comparison to HumVar-trained PP2 and other mutation
prediction algorithms). The MM estimator relates the viability of
homozygotes, as a measurable outcome, to protein damage, the
unknown cause to be estimated. In the estimator, we classified
mutations in essential genes into three types according to the
frequency of lethality they are expected to cause: (1) zero
homozygous mice alive at weaning, i.e., damaging mutations in
totally essential genes; (2) homozygous mice alive at a percentage
<25% of the total number of G3 offspring, i.e., damaging muta-
tions in partially essential genes; and (3) homozygous mice alive
at the expected Mendelian frequency of 25%, i.e., non-damaging
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mutations in essential genes. These assumptions should have
reflected the overall distributions of truly damaging mutations
and essential genes in our data, although some limitations exist;
for example, other possible explanations for (2) exist, such as a
gene being annotated as totally essential in a genetic background
other than C57BL/6J, in which it may be only partially essential,
or a particular mutation may interact with non-exonic mutations
not sequenced in this project. The number of partially essential
genes was estimated to be 39% of the number of totally essential
genes based on the classification of 250 or 635 out of 885 MGI
essential genes as causing, respectively, lethality of <100% or
100% of homozygous mutant mice (annotations of “partially
essential” genes were from the International Mouse Phenotyping

Consortium (IMPC) database, because they are not available in
MGI annotations; Table 1). To take this into account, the MM
estimator assumed the number of mutations in group (2) is 39%
of the number of mutations in group (1). Applying the MM
estimator with the above statistical assumptions to real data from
the 1,586 mutations, we calculated the probability of protein
damage to be 0.594 (0.449–0.736) for class I probably null
mutations, 0.626 (0.464–0.786) for class II probably null muta-
tions, 0.167 (0.111–0.22) for probably damaging mutations, 0.099
(0.012–0.182) for possibly damaging mutations, and 0.045
(0–0.108) for probably benign mutations (95% confidence inter-
val (CI) all classes). Ordered from greatest to least, the estimated
probabilities of protein damage corresponded in sequence to the
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Table 1 Mutations analyzed in this study

Mutation classification All mutations Isolated mutations
(>100Mb from
nearest neighbor)

Mutations from
pedigrees with ≥3
G3 mice

Mutations in known
essential genes

Probably benign (score ≤0.45) 26,004 2,406 2,311 477
Possibly damaging (score 0.45–0.95) 14,412 1,314 1,270 281
Probably damaging (score 0.95–1.0) 32,669 3,077 2,982 690
Probably null class I 5,170 462 441 78
Probably null class II 2,618 273 268 60
Total 80,873 7,532 7,272 1,586

The columns represent progressive filtering steps from left to right
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order of mutation classifications arranged from most damaging to
least damaging.

We also divided the full range of PP2 scores (0–1) into six
windows and estimated damage probability using the MM
estimator to determine the correlation between predicted and
observed effects of mutations for narrower scoring windows than
used in the initial analysis (Supplementary Table 2). For the
highest and lowest scores, smaller scoring windows increased
concordance between predicted and observed effects; probably
benign mutations with scores 0–0.01 had 0.039 probability of
protein damage, and probably damaging mutations with scores
0.999–1 had 0.199 probability of protein damage. However,
narrowing the PP2 scoring windows did not dramatically alter the
probabilities of protein damage calculated by the MM estimator.

As an alternative approach to survey damage probability for
each mutation classification, we also plotted the frequencies of
homozygous mutant G3 mice per litter resulting from hetero-
zygous G2 matings (Fig. 2), where we expected that a smaller
frequency of homozygous mutant G3 mice would correspond to a
higher damage probability. Consistent with this, the most
damaging mutation classification (probably null) had the greatest

percentage of mutations for which the frequency of viable
homozygous mutant G3 mice per litter was zero (51%; Fig. 2a, b),
while the least damaging classification (probably benign) had the
smallest percentage of mutations for which the frequency of
viable homozygous mutant G3 mice per litter was zero (10%;
Fig. 2e). Strikingly, however, significant numbers of probably null
mutations failed to cause 100% lethality of homozygous mutant
G3 mice.

Overall, without regard to mutation class, we estimated that an
autosomal ENU-induced missense or putative null mutation
affecting coding/splicing causes phenotypically detectable protein
damage with a probability of 16% (weighted average for all
classes).

Comparison of PP2 with SIFT and other prediction algo-
rithms. Comparison of the effect predicted by PP2 vs. that pre-
dicted by SIFT14 for all missense mutations successfully scored by
both PP2 and SIFT showed that of 30,337 mutations classified as
deleterious by SIFT, 11.6%, 17.6%, and 70.8% were classified,
respectively, as benign, possibly damaging, and probably
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damaging by PP2 (Supplementary Table 3). SIFT classified 57.4%
of mutations as tolerated, while these were classified as benign by
PP2. Thus, although PP2 and SIFT concur in classifying the
damaging effects of the majority of mutations (57.4% of tolerated
and 70.8% of deleterious SIFT-classified mutations had con-
cordant PP2 classifications), PP2 and SIFT still showed a large
number of discrepancies. Performing damage probability esti-
mations using the subset of 1,586 mutations in essential genes
that were successfully scored by SIFT (n = 1,355) resulted in
probabilities of 0.085 (0.033–0.134, 95% CI) and 0.175
(0.114–0.237, 95% CI) for the “tolerated” and “deleterious” SIFT
classifications, respectively (Supplementary Fig. 2).

We also evaluated other popular mutation classification
algorithms, including PP2(HumVar), LRT, MutationAssessor,
FATHMM, PROVEAN, MetaSVM, MetaLR, M-CAP, and
fathmm-MKL_coding, using our damage probability analysis.
As they are primarily designed for human variants, we lifted-over
the 1,586 mutations in essential genes from mouse genome to
human genome and kept for analysis only mutations that lead to
the same nucleotide and amino-acid changes in both genomes. In
all, 1,049 of the 1,586 mutations were successfully scored by at
least one of the algorithms, using the ANNOVAR mutation
annotation software20, and we carried out damage probability
estimations for those scored by each algorithm (Supplementary
Table 4). Strikingly, damage probability estimates suggested that
all of the algorithms tested greatly overestimated the damaging
effects of the predicted deleterious/damaging class of mutations,
with the highest damage probability estimated to be 0.423 for the
mutations classified “high” by MutationAssessor. In contrast,
there was generally a slight underestimation of the damaging
effects of predicted benign/tolerated mutations. A limitation of
our analysis is the migration of the mouse mutations to the
human genes and the requirement for the same nucleotide/
amino-acid change, a procedural necessity for the algorithms
utilized; this may result in larger damage probability estimates
since it is likely that only the more “important” nucleotides and
amino acids were conserved in both species. This likely explains
the up to 3% difference in damage probabilities for the mouse
variants vs. the humanized variants for each class of mutations
classified by PP2/HumDiv. Finally, we noted that HumDiv-
trained PP2 performed similarly to HumVar-trained PP2 in
mutation effect prediction (Supplementary Table 4).

Reasons putative null alleles may not cause loss of function.
The surprising observation that putative null alleles of essential
genes did not uniformly cause an early-lethality phenotype
prompted us to examine the phenotypic effects of putative null
mutations in a manually curated set of 38 non-essential genes
known to cause distinctive phenotypes when mutated by a
probably null mutation (Supplementary Data 1). We found that
46 (77%) of 60 putative null alleles within this group of genes
elicited the expected loss-of-function phenotype in the homo-
zygous state. We examined the nature of the mutations in the
remaining 14 (23%) putative null alleles to discover possible
reasons that they failed to cause the expected loss-of-function
phenotypes. Of these 14 mutations, 7 were predicted to leave
unaffected at least one of the protein-coding transcript isoforms
encoded by the mutated gene; 2 were predicted to cause short in-
frame insertions or deletions; and 2 were nonsense mutations in
the final exons of the mRNA that may fail to trigger nonsense-
mediated decay (Supplementary Data 1).

To systematically investigate whether such conditions affect the
propensity of putative null mutations in essential genes (as
annotated by MGI) to fully damage protein function, we
determined whether the fraction of transcript isoforms affected

by ENU-induced putative null mutations, or the position of such
mutations within the linear amino-acid sequence of a protein
might affect the frequency of homozygous mice observed. We
found that mutations predicted to affect <30% of the total
number of transcript isoforms of a gene were correlated with
greater numbers of homozygous mice than mutations predicted
to affect >30% of transcript isoforms (Supplementary Fig. 3a; P =
0.013, Student’s t-test). We also found that mutations near the N
terminus were more likely to result in smaller proportions of
viable homozygotes (Supplementary Fig. 3b; P = 0.0065 by a test
for significance of correlation), consistent with published data21.

Percentage of essential genes in the mouse genome. We wanted
to estimate the fraction of essential genes in the mouse genome
based on mutation-induced lethality caused by real mutations.
Our overall rationale was to simulate the transmission of real
mutations from real G2 mice to virtual G3 mice, varying the
percentage of genes defined as essential in the simulation until the
number of virtual viable G3 mice matched the observed number
of viable G3 mice carrying the same mutations (Supplementary
Fig. 4).

We used real breeding and genotype data from G0, G1, and G2
mice, and assigned litter sizes (Supplementary Fig. 5 and
Materials and Methods) and genotypes to virtual G3 mice with
the assumption of zero essential genes. Then, an “essential”
quality was randomly assigned to a varying fraction of genes, and
all mutations in such genes were designated as truly damaging or
not based on their PP2 mutation category and the corresponding
estimated damage probabilities. For each simulated percentage of
essential genes, G3 mice were computationally “culled” if they
were homozygous for designated truly damaging mutations in
designated essential genes. The specified percentage of essential
genes was varied until the simulation was superimposable upon
the experimental data set, which occurred when the essential gene
percentage was set to 34% (Fig. 3). Conducting this analysis
separately for each PP2 mutation category revealed a similar
essential gene percentage (30–36%) (Supplementary Fig. 6 and
Supplementary Fig. 7).

Essential genes are enriched for viable phenotypes. We specu-
lated that lethality induced by damaging mutations of essential
genes could hinder functional studies of these genes in vivo. To
address this question, we analyzed mutations in essential or non-
essential genes for their propensity to induce viable phenotypes.
For this analysis, we used mutations of essential or non-essential
genes (as annotated by MGI) that were at least 100Mb from any
other mutation on the same chromosome in the same pedigree,
that were from pedigrees with at least four G3 mice of any gen-
otype, and that were homozygous in at least 25% of G3 mice. We
determined the percentage of mutations in either essential genes
(n = 159) or non-essential genes (n = 882) that resulted in statis-
tically significant phenovariance in any of 296 screens employed
in the lab, as measured by linkage analysis using mutations as
markers8 (Bonferroni-adjusted P values for genotype–phenotype
linkage calculated using recessive, additive, or dominant trans-
mission models; Supplementary Fig. 8). A greater percentage of
mutations in essential genes than in non-essential genes was
associated with at least one phenotype with a significant P value,
despite a similar fraction of probably damaging and probably null
mutations in both groups of genes (mutations in essential genes
vs. mutations in non-essential genes: probably damaging, 25.8%
vs. 30.5%; probably null, 5.03% vs. 5.4%). Based on the set of
mutations analyzed in Supplementary Figure 8, the probability
that a mutation will induce a screened phenotype (among those
under surveillance in the lab8) with a significant linkage P value
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was 0.0527% (95% CI = 0.0477–0.0582%) for essential genes and
0.0324% (95% CI = 0.0302–0.0348%) for non-essential genes.
Notwithstanding the caveat that a limited set of phenotypic
screens was employed, this result suggests that mutations in
essential genes have a higher chance of yielding viable phenotypes
than mutations in non-essential genes.

Genome saturation by ENU-induced protein-damaging muta-
tions. Using programs such as PP2 or SIFT to classify mutation
effects for estimation of genome saturation in forward genetic
screens may result in over-estimation of the number of suffi-
ciently damaged genes. To more accurately estimate genome
saturation, we devised a methodology that incorporates the esti-
mated probability of damage for each PP2 mutation class to
calculate saturation of the mouse genome by ENU-induced
protein-damaging mutations. Our approach was to assess the
probability that a given gene has been damaged homozygously in
one or more mice within the pedigree(s) containing mutation(s)
of that gene. Then, the sum of the probabilities of damage to all
mutated genes represents the expected fraction of the mouse
genome damaged by the analyzed mutations. We calculated that
an expected 33.7%, 29.1%, and 24.6% of all mouse genes were

mutated by true protein-damaging mutation(s) in at least one,
two, or three homozygous mice, respectively (Fig. 4), for the total
of 119,452 recorded coding or splice site mutations in the
Mutagenetix database as of 31 March 2017. This assessment of
saturation can be applied to any screen, given knowledge of the
mutations, their zygosity in the G3 population, and their effects as
classified by PP2. As large numbers of allelic variants are created
for individual genes, this method is also useful in estimating the
likelihood that a particular gene has been truly functionally
damaged and tested for phenotypic effect. For example, seven
mutant alleles of Ap4e1 (adaptor-related protein complex AP-4,
epsilon 1) in our collection have been bred to homozygosity in 32
G3 mice; based on the probability of damage by these mutations,
we calculated about 71% probability that Ap4e1 was functionally
damaged or destroyed and examined in three or more mice
(Supplementary Fig. 9).

Discussion
We found that mutation effect scores generated by prediction
algorithms such as PP2 and SIFT, which have not previously been
translated to absolute estimates of likelihood of damage, greatly
overestimated the damaging effects of missense mutations. In
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plotting curves
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support of this, based on comparison of the predicted and actual
effects of 2,314 TP53 missense mutations on transactivation
activity, one study found that a substantial fraction of mutations
classified as deleterious by various prediction programs showed
only subtle effects on TP53 transactivation activity18. For muta-
tions in essential genes, it may be that the qualitative phenotypic
measure we utilized (lethality and sub-viability) precluded
observation of subtle effects, thereby magnifying the apparent
discrepancy between predicted and observed effects of mutations.
Tissue- or system-specific phenotypic screens may disclose more
fully the damaging nature of predicted deleterious mutations.
False-positive predictions of deleterious effects may also reflect
permissive positions within the protein sequence, for which
substitutions may not or may minimally affect protein function(s)
despite being evolutionarily conserved or meeting other PP2/SIFT
criteria as important.

Somewhat surprisingly, putative null mutations of essential
genes induced lethality of all homozygous mice within a given
pedigree an average of only 61% of the time. This observation was
supported by the finding that 23% of putative null alleles within a
small, curated set of non-essential genes failed to produce
expected phenotypic effects although targeted knockout alleles of
the same genes were known to do so. This suggests that putative
null alleles induced by ENU may be less robust in their
destructive effects than targeted knockout alleles. We found evi-
dence that putative null alleles may not fully destroy the encoded
protein when they occur toward the C terminus, possibly because
truncations close to the end of the coding sequence preserve some
protein function. We found that putative null alleles affecting
30% or fewer of the transcript isoforms of a gene also may not
fully destroy protein function. In addition, it is possible that
mutations affecting critical splice junction nucleotides may per-
mit some normal splicing to occur, along with alternative splicing
that yields a functional protein product; premature stop codons
and indels that alter reading frame may be phenotypically sup-
pressed by alternative splicing; and makesense alleles, while
usually destabilizing, may also occasionally yield functional pro-
tein products.

Our conclusions concerning the damaging effects of mouse
mutations presumably also apply to human mutations and

emphasize the importance of experimental validation of mutation
effects in the assessment of the etiology of germline genetic dis-
eases or cancer. On a practical level, an informed decision based
on actual probabilities of protein damage caused by mutations of
the various classes is necessary to set cutoff scores for filtering
mutations to be tested experimentally. Supplementary Table 4
documents the estimated damage probabilities of each class of
mutations predicted by a variety of algorithms, including PP2,
SIFT, LRT, MutationAssessor, FATHMM, PROVEAN,
MetaSVM, MetaLR, M-CAP, and fathmm-MKL_coding, and
could serve as a useful resource for this purpose. A limitation of
our study is the assumption that reduced frequencies of viable
homozygous mutant G3 mice in a litter (expected frequencies
<25% but >0%) are only due to mutations of partially essential
genes. Other possible explanations exist; for example, a gene may
be annotated as totally essential in a genetic background other
than C57BL/6J, in which it may be only partially essential; or, a
particular mutation may interact with non-exonic mutations not
sequenced in this project. Given limited data, it is impossible to
consider all scenarios in our estimations. However, the corre-
spondence between the magnitude of calculated damage prob-
abilities and the severity of predicted effects of mutations, and the
concordance between our estimates and previously published
essential mouse gene percentages, suggests that these issues have
not dominantly biased our damage probability estimates.

To estimate the proportion of essential genes in the mouse
genome, we took a novel approach in which we simulated the
transmission of actual mutations and the survival of virtual G3
mice to which they were transmitted, varying the essential gene
percentage applied in the simulation until numbers of homo-
zygously damaged proteins matched observed numbers. Our
estimate of the proportion of essential genes (34%) was similar to
estimates based on gene targeting22–24 and other methods25,
supporting the validity of our estimates of damage probability
and the overall rationale of the simulation. However, in contrast
to determinations of essential gene percentage based on lethality
of knockout mouse lines22–24, 26, our approach may be considered
unbiased in that it required no gene selection, a process that may
skew the range and severity of phenotypes observed. Moreover,
due to the random nature of ENU mutagenesis across the whole
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genome, our approach avoids inaccuracy that may be introduced
by the reported region-to-region and chromosome-to-
chromosome variation in the density of essential mouse
genes25. Importantly, the essentiality simulation validates our
approach to estimation of genome saturation, both of which were
based on a similar paradigm of incorporating damage probability
estimates, which can be widely applied in other forward genetic
screening projects.

Although essential genes might be considered genomic “dark
matter”, invisible to forward genetic analysis because homozygous
mice carrying truly damaging mutations would be expected to
show a lethal phenotype, we found that essential genes were
enriched for viable recessive phenotypes compared to non-
essential genes. This is especially striking given that our analysis
was limited to mutations that were transmitted to G3 mice at a
minimum frequency of 25% (expected Mendelian frequency),
which means that a large fraction of truly damaging mutations in
partially essential genes were excluded from the comparison. In
mice, homozygous mutations in partially essential genes have
been reported to yield more phenotypes than homozygous
mutations in non-essential genes22. Moreover, several studies
reported that essential mouse genes were enriched among disease
genes when their human orthologs were examined for disease
associations22, 27, 28. Essential genes, required for survival at one
or more stages of pre-weaning development, may be more
pleiotropic than non-essential genes, the consequences of which
are relatively localized or focused phenotypes for hypomorphic
alleles and lethality for null alleles.

Methods
Breeding and genotyping of ENU-mutagenized mice. Five- to six-week old
C57BL/6J mice were purchased from The Jackson Laboratories. ENU mutagenesis
was performed by injecting male mice intraperitoneally with 100 mg ENU/kg of
body weight once per week for 3 weeks. After the last injection, the mice were
housed one per cage for 12 weeks to allow for recovery of fertility29. Mutagenized
G0 males were bred to C57BL/6J females or to female mice that carried ENU-
induced mutations from their G0 fathers (termed G0′; Supplementary Fig. 1). The
resulting G1 males were crossed to C57BL/6J females to produce G2 mice. G2
females were backcrossed to their G1 sires to yield G3 mice. The viability of G3
mice was determined at weaning (28 days of age). In the G3 generation, with regard
to individual ENU-induced mutations, homozygotes for the reference allele, het-
erozygotes, and homozygotes for the variant allele are referred to as REF, HET, and
HOM mice, respectively. Mice were maintained within the Animal Resource
Center of the University of Texas Southwestern Medical Center. All experimental
procedures using mice were approved by the Institutional Animal Care and Use
Committee of the University of Texas Southwestern Medical Center and were
conducted in accordance with the institutionally approved protocols and guidelines
for animal care and use.

Every G1 mouse was subjected to whole-exome sequencing as previously
described8. A total of 58 755 622 bp were targeted for whole-exome sequencing
using oligonucleotide probes from Life Technologies’ TargetSeq Custom
Enrichment Kit and modified to run on an Illumina HiSeq 2500 platform. Paired-
end 2 × 100-bp sequencing was performed using an Illumina HiSeq 2500
instrument to detect heterozygous autosomal and hemizygous X-linked mutations.
Reads were demultiplexed using CASAVA according to their index sequence and
lane numbers. Reads were mapped to the University of California Santa Cruz
mm10 genome reference sequence for C57BL/6J using Burrows-Wheeler Aligner
v0.7.10. Duplicate reads were removed by SAMtools and indel regions left aligned
by Genome Analysis Toolkit. Coverage was calculated over targeted regions using
BEDTools. Variants relative to the C57BL/6J reference sequence (GRCm38) were
called and annotated by a combination of SAMtools, SnpEff, SnpSift, and
ANNOVAR, and then filtered to eliminate SNPs listed in dbSNP (build 137) and
common variants observed in a rolling total of 40 previously sequenced mice with
unshared G0 sires. Synonymous mutations and mutations not predicted to affect
splicing or coding sense were also eliminated. Remaining mutations with a quality
score ≥20 were listed in BED format and targeted in AmpliSeq panel design. On
average, coverage of the composite coding region was such that 97% of all coding
nucleotides were sequenced 10× or more times. The G2 females and all G3 mice
were then genotyped at all mutation sites predicted to change the protein-coding
sequence (i.e., missense, nonsense, makesense, start loss, splicing errors, and small
indels) that showed a quality score exceeding 20. The rate of validation for all
mutations tested was 93.9%. For mutations with a quality score >80 (encompassing
91.96% of all mutations), the rate of validation was 99.3%. While no attempt was
made to validate synonymous mutations, >99% of these mutations were presumed

authentic if their quality score exceeded 80. Mutations were validated and
genotypes were determined in G1, G0′ (when available), G2, and G3 mice using
AmpliSeq custom panels and Ion Torrent sequencing. All loci were amplified in
single PCR via custom AmpliSeq panel primer mixes. The amplicons were made
into Ion Torrent barcoded libraries and run on the Ion PGM (Life Technologies) in
316 or 318 chips via 200-bp sequencing. Alignment was performed by TMAP
software within the Torrent Suite Software package to the UCSC mm10 genome
reference sequence for C57BL/6J. Variants were called using the Torrent Variant
Caller plugin available in Torrent Suite software, and an output file was generated
containing the total number of reads for REF and VAR alleles for each barcoded
sample. All putative mutations that were shown to be false positives (i.e., genotyped
as homozygous reference in both the G1 and a wild-type control sample) were
eliminated from further consideration. For estimating probability of damage, only
autosomal genes were analyzed because the X chromosome was not mutagenized in
G1 mice that did not have a G0′ dam.

Classification of mutation types. All missense alleles were evaluated and scored
by PP2 (HumDiv-trained)30, which was modified for evaluation of mouse muta-
tions according to the README file accompanying the program download. Briefly,
PP2 was provided with mouse entries from the Uniprot and Pfam databases, then
multiple sequence alignments were built using the mouse sequences. Non-missense
mutations predicted to affect coding or splicing were not scored by PP2, and were
classified as probably null and divided into two categories: class I (nonsense,
makesense, or start loss mutations); and class II (splicing errors and indels (up to
12 bp in length) predicted to cause coding or splicing errors, both frameshift and
non-frameshift). Effects of mutations up to 100 bp from an exon boundary on
splicing of transcripts were evaluated by a splice site prediction program based on
the maximum entropy model developed by Yeo and Burge31, in which scores are
assigned to 9-mer splice donor sites and 23-mer splice acceptor sites. Higher
scoring sequences have a greater probability of being used in splicing. All ENU-
induced mutations were evaluated for their effect on the score of native sequences.
Mutations predicted to disrupt native splice sites leading to exon skipping or use of
a cryptic splice site were classified as probably null. Intronic mutations not pre-
dicted to affect splicing were classified as probably benign.

Identifying a list of previously known essential genes. We retrieved viability
annotations from MGI and IMPC databases. Specifically, a batch query requested all
mouse genes with Mammalian Phenotype (MP) information from MGI. A gene was
classified as essential if at least one of the MP annotations reported lethality asso-
ciated with an induced mutation of any kind, yielding a list of 3555 essential genes
(Supplementary Table 1; retrieved August 2016; http://www.informatics.jax.org/
batch)32. Viability annotations for 2729 genes from the IMPC database were also
retrieved (retrieved August 2016; http://www.mousephenotype.org/data/
batchQuery)33; some genes had conflicting records within the IMPC annotations
and were discarded from further analysis. The remaining 2691 genes were classified
as viable (1784; 66.3%), sub-viable (258; 9.6%), or lethal (649; 24.2%). We compared
annotations for the set of genes annotated in both databases and found that MGI
annotations were on average 95.5% concordant with those of IMPC (Supplementary
Table 5). Because of its larger size, we used the essential genes list from MGI to filter
our mutation set, resulting in 1586 mutations in 1027 MGI essential genes.

Among the genes classified as essential by MGI, IMPC classified 635 as totally
lethal and 250 as partially lethal when damaged. Therefore, we assumed the
proportion of partially essential genes to be 39% (250/635) of totally essential genes.

Calculation of damage probability for each mutation class. ENU-induced
mutations in essential genes with complete genotypic data for both G2 and G3
mice were filtered to remove those mutations <100Mb away from any other
mutation on the same chromosome within the same pedigree, which left mutations
that were meiotically unlinked from all other identified coding/splicing mutations
in the same pedigree (Table 1). The mutations were further filtered to exclude those
from pedigrees with fewer than three G3 mice of any genotype. Finally, for each
damage category (probably damaging, possibly damaging, probably benign, and
probably null), the proportion (pi) of G3 HOM mice out of all G3 mice in the same
litter(s) was calculated for each mutation.

Three subgroups of mutations were assumed to exist:

1. One subgroup of proportion (ρ) contained mutations in which the proportion
of HOM mice is 0. These represent mutations in essential genes that induce a
totally lethal effect.

2. One subgroup of proportion (0:39ρ) contained mutations in which the
proportion of HOM mice are randomly distributed around θ. These represent
mutations in essential genes that induce partial lethal effect. θ is a variable
between 0 and 0.25. The true value for it is unknown so we used θ = 0.125 for
this study.

3. One subgroup (1� 0:39ρ) contained mutations that do not damage the
proteins and the proportion of HOM mice is distributed around 0.25.

The probability of each class of mutations being truly damaging was calculated

by a MM estimator (ρMM ¼ 1:39 ´
1
4�
P

pi

n
1
4 ´ 1:39�1

8 ´ 0:39
), where pi refers to the proportion
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of HOM mice for each mutation and n refers to the total number of mutations in
each category. The confidence interval was derived from 5000 bootstrap samplings.

Simulation of ENU mutagenesis. Simulation of ENU mutagenesis was accom-
plished by using breeding and genotype data from the G0, G1, and G2 mice
available in the Mutagenetix database (retrieved March 2017; http://mutagenetix.
utsouthwestern.edu); G3 mice were “bred” in silico by a random process. To
determine the number of G3 mice in each pedigree when all genes were hypo-
thetically neutral, we fit a linear regression model of pedigree sizes regressed by
pedigree type, number of litters produced, and number of each type of mutations in
each G2 mother (Supplementary Fig. 5). Then, all mutation counts were set to zero,
which is equal to the assumption that all mutations in the genes were neutral. Next,
the simulation randomly generated G3 mice and their genotypes from in silico
“mating” based on the genotypes of the G2 mother and father, and the hypothetical
pedigree sizes. Then, an “essential” quality was randomly assigned to a varying
fraction of genes, and all mutations in such genes were designated as truly
damaging or not based on their PP2 mutation category and the corresponding
estimated damage probabilities. The assigned essential genes were further sampled
to be “partially essential” or “totally essential” with a ratio of 39:100. For each
simulated percentage of essential genes, G3 mice were computationally “culled” if
they were homozygous for designated truly damaging mutations in designated
totally essential genes; G3 mice homozygous for designated truly damaging
mutations in designated partially essential genes were culled at a rate of 50%.

Calculation of genome saturation by damaging mutations. We employed a
straightforward method to calculate the saturation of the genomic target, building
upon the probability of damaging a certain gene g in the homozygous state in at
least n G3 mice (n = 1, 2,…,) from one or multiple pedigrees. When analyzing
mutation data from a single pedigree or a superpedigree (combined pedigrees
containing a common mutated gene) for a certain gene g, we denote all mutations
to be analyzed as mutj (j = 1…J) and all G3 mice to be analyzed as mousek (k = 1…
K) . We use a matrix, M, of J × K dimensions to denote the mutation status of these
mice in the mutations. Mjk = 1 is mouse k is homozygous for mutation j; otherwise,
Mjk = 0. Note the same mutation can be shared across different mice and even
different pedigrees and the same mouse can have more than one mutation in the
target gene.

When J ≤ 10, we go through every enumeration where each unique mutation mj

was set to be truly damaging or not with probability P(mj) . Then given the
assumed damaging status of all mutations, we calculate the number of mice,
cm1 ;m2 ;m3 ¼mJ , carrying at least one truly damaging homozygous mutation of the
gene in question. Then the probability of damaging at least n mice in one pedigree
or one superpedigree is

PgðnÞ ¼
X

m1¼0;1

X

m2¼0;1

X

m3¼0;1

:::
X

mJ¼0;1

Pðm1ÞPðm2ÞPðm3Þ:::PðmJÞI cm1 ;m2 ;m3 :::mJ � n
� �

When J>10, we will carry out 1,000 Monte Carlo simulations. In each
simulation, each unique mutation mj was sampled to be truly damaging or not
depending on their mutation category and previously calculated damaging
probability. Then given the sampled damaging status of all mutations, we calculate
the number of mice carrying at least one truly damaging homozygous mutation of
the gene in question. Then we will obtain a vector of integer numbers C=[c1,c2,…,
c1000], each element of which is the number of homozygously mutated mice. The
probability of damaging more than n mice in one pedigree or one superpedigree is

estimated to PgðnÞ ¼
P

s¼1:::1000

I cs>¼nð Þ
1000 .

Building on PgðnÞ, the expected number of all mouse genes damaged within the
entire mutagenesis effort in at least n HOM mice is S ¼ P

g¼1¼G PgðnÞ. The
saturation can be calculated at each time point in the whole process of the
screening project and plotted in a cumulative manner. The saturation calculation
and plotting functionalities have been implemented on the Mutagenetix website
(Supplementary Fig. 9, https://mutagenetix.utsouthwestern.edu/report/
gene_damage/damage_prob.cfm).

Calculation of the probability of inducing viable phenotypes. We investigated
all phenotypic screens conducted for the same set of mutations as analyzed in
Supplementary Figure 8 in essential genes and non-essential genes. We calculated
the percentage of screen/mutation combinations with linkage P values <1 × 10−5

over all available screen/mutation combinations. We used these percentages as the
estimates of probability of inducing putative phenotype for mutations in essential
genes and non-essential genes in our mutagenesis screening project. All recessive,
additive, and dominant phenotypes were considered. Confidence interval was
calculated from binomial distribution.

Code availability. Core analysis codes are deposited in GitHub: https://github.
com/wtwt5237/Probability-of-phenotypically-detectable-protein-damage-.git.

Data availability. Summary-level mutation, genotype, and phenotype data are
available in the Mutagenetix database (https://mutagenetix.utsouthwestern.edu/).
Comprehensive detailed data are available upon request from the authors.
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