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Abstract.—Obstacles to inferring species trees from whole genome data sets range from algorithmic and data management
challenges to the wholesale discordance in evolutionary history found in different parts of a genome. Recent work that builds
trees directly from genomes by parsing them into sets of small k-mer strings holds promise to streamline and simplify these
efforts, but existing approaches do not account well for gene tree discordance. We describe a “seed and extend” protocol that
finds nearly exact matching sets of orthologous k-mers and extends them to construct data sets that can properly account
for genomic heterogeneity. Exploiting an efficient suffix array data structure, sets of whole genomes can be parsed and
converted into phylogenetic data matrices rapidly, with contiguous blocks of k-mers from the same chromosome, gene,
or scaffold concatenated as needed. Phylogenetic trees constructed from highly curated rice genome data and a diverse
set of six other eukaryotic whole genome, transcriptome, and organellar genome data sets recovered trees nearly identical
to published phylogenomic analyses, in a small fraction of the time, and requiring many fewer parameter choices. Our
method’s ability to retain local homology information was demonstrated by using it to characterize gene tree discordance
across the rice genome, and by its robustness to the high rate of interchromosomal gene transfer found in several rice species.
[k-mer; lineage sorting; Oryza; phylogenomics; suffix array.]

Construction of a phylogenetic tree from even a single
gene is “hard” from the standpoint of algorithm theory
(Felsenstein 2004), yet trees are now being inferred
from entire transcriptomes (Wickett et al. 2014) or
genomes (Neafsey et al. 2015) at a scale up to a million
times larger than this—across taxa as diverse in scope
as land plants (Wickett et al. 2014), viral epidemics
(Worobey et al. 2014), and cancer tumors (Zhao et al.
2016). In addition to data set size, genomic data add
complexities of annotation, orthology detection, and
sequence alignment upstream of tree construction, and
discordant gene trees caused by gene duplication, deep
coalescence, and lateral transfer detected downstream of
tree construction (Maddison et al. 1997; Fontaine et al.
2015; Liu et al. 2015; Nater et al. 2015). Phylogenomic
analysis pipelines have accordingly become parameter-
rich mash-ups of diverse algorithms and toolkits (Misof
et al. 2014; Wickett et al. 2014; Neafsey et al. 2015; Prum
et al. 2015; Zhao et al. 2016). Moreover, although some
of these upstream components contribute substantial
information about genomes, they can also introduce
their own biases into phylogenetic inference proper. For
example, Zwickl et al. (2014) highlighted annotation
errors in rice phylogenomics that introduced “block
shifts” into multiple sequence alignments of genes.
These affected the overall frequency spectrum of gene
trees and the final species tree reconstruction. Recent
methods that avoid annotation, alignment, and even
assembly, by recoding genomes as sets of short k-mer
strings, have shown promise to streamline and speed
up inference and make its assumptions more robust and
reproducible (Gardner and Hall 2013; Bertels et al. 2014;
Chan et al. 2014; Leimeister and Morgenstern 2014; Fan
et al. 2015; Haubold et al. 2015).

Using k-mers sampled from sequences has been a
mainstay of several core bioinformatic tools, especially

alignment and database search, for many years (Gusfield
1997). Early attempts to use k-mers for phylogenetic
inference did not perform well (Hohl and Ragan 2007),
which led to a wave of modifications to allow inexact
k-mer matching (Leimeister and Morgenstern 2014),
to include genome coordinate information between
matches (Haubold et al. 2015), and to correct k-
mer-based distances for multiple hits (Fan et al.
2015; Haubold et al. 2015). However, almost all these
approaches estimate pairwise distances from numbers
of shared k-mers, and distance-based phylogenetic
methods lose information about homology, especially
positional homology, during data reduction, which may
decrease statistical robustness in tree reconstruction
(Huelsenbeck 1995). Even if the magnitude of this impact
is small, a potentially more significant concern is that
by reducing two genomes to a single pairwise distance,
fine scale signal about discordant phylogenetic histories
across the genome is discarded, which is inadvisable
given the widespread occurrence of such discordance
(Pollard et al. 2006; White et al. 2009; Zwickl et al. 2014;
Nater et al. 2015).

To keep the speed and simplicity of k-mer based
approaches but retain information about positional
homology, we combined and extended several well-
tested ideas in new ways (Gardner and Hall 2013;
Leimeister and Morgenstern 2014; Fan et al. 2015;
Haubold et al. 2015) and leveraged recent improvements
in engineering of a key data structure (Rajasekaran
and Nicolae 2014). From a set of N genomes, which
may be at various stages of assembly, our algorithm
builds short multiple sequence alignments, or “k-mer
blocks,” starting from approximately matching k-mer
“seeds” (Fig. 1) and adding adjacent short flanking
sequences. Because a k-mer block is typically too short
to contain sufficient phylogenetic information for tree
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FIGURE 1. Seed and extend strategy to construct k-mer blocks. Step 1: a set of identical k-mers is found in taxa A, B, and D. Step 2: this k-mer
block is extended in the taxon dimension by finding additional k-mers that have at most q mismatches (here q=2; the black x’s) relative to the
k-mers found in Step 1; here block extended to include taxon E. Step 3: the four-taxon k-mer block is then extended in the genome dimension
upstream and downstream of each k-mer by a short distance, w, nucleotides. Together these two extensions yield an ungapped alignment suitable
for phylogenetic analysis.

construction itself, it can be pooled by gene, contig,
scaffold, chromosome, and so forth, into one or more
concatenated alignments, or “supermatrices.” At the
limit, all k-mer blocks discovered across the genome
can be grouped into one supermatrix, but it will often
be more informative to construct sets of supermatrices
in which smaller pools of k-mer blocks reflect the local
coordinates in the genome. This allows discovery of
different gene tree histories across the genome, species
tree inference based on sets of “gene trees” (Liu et al.
2015; Edwards et al. 2016), and other inferences about
reticulation, hybridization, or introgression (Huson
et al. 2010).

The layout of the article is as follows. First, we
describe the algorithm and its implementation details
(reserving a full description of its relationship to existing
methods for discussion). Next we describe simulation
experiments designed to characterize the distribution of
k-mer blocks that may be expected in genome-scale data
sets, to predict properties of the resulting phylogenetic
data sets. To complement this, we also examine the
genomic context of k-mer blocks discovered in a well-
annotated set of complete genome sequences for rice and
its wild relatives in Oryza. Then, we examine the actual
performance of the method in seven whole genome
data sets at various levels of sequence divergence, by
comparing results we obtain with published work for
these taxa. This part is undertaken with supermatrix

comparisons, which still provides a useful benchmark
in the literature. However, we return to the discovery
of gene tree discordance by examining collections of
gene trees built from the Oryza data, and comparing
the frequency distribution of discordant alternative
trees inferred by our method compared to a more
conventional approach using annotated and aligned
genes. Finally, we consider limitations of the method and
possible extensions.

MATERIALS AND METHODS

Overview of Algorithm for Finding Homologous k-mer
Blocks

Our algorithm uses a “seed and extend” strategy
to build sets of orthologous sequences in N related
species. The seed consists of a set of exact matching
k-mers, where k is chosen large enough so that a k-
mer is unique in its own genome (to avoid paralogy),
but small enough that it is present in at least Nmin
taxa (Fig. 1). The seed is then extended in taxon space
by using an algorithm that efficiently finds k-mers in
additional taxa that have at most q mismatches relative
to the k-mers in the original block, where q is small
relative to k. Together these k-mers form an ungapped
alignment. This is then extended in genome space by
appending and prepending w nucleotides upstream and
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downstream to it, where w is of length on the order
of k. This final ungapped alignment is called a “k-mer
block.” By choosing k relatively large, but keeping q
and w small we limit inclusion of paralogous sequences,
cap sequence divergence, and increase the reliability
of the ungapped alignment as an approximation to
full optimization-based multiple sequence alignment
(Gusfield 1997).

Implementation
To scale this algorithm to gigabase genomes, running

time and memory usage are both critical. To find the
initial exact-matching k-mer seeds, the N sequences,
each of length Li, are concatenated into a string, S, of
length L=�Li. If reverse complements are included,
these are simply concatenated to the end of this string,
now with length 2L. The string is stored as a memory-
efficient-sorted suffix array containing the coordinates
of all L (or 2L) suffixes. This data structure requires ∼10
bytes/nucleotide. This array is constructed by a new,
fast sorting method that is highly scalable (Rajasekaran
and Nicolae 2014), having worst case run times of O(L
log L) and usually much better than this in practice.
Once the suffix array is sorted, exact k-mer matches form
contiguous blocks in the array. The entire data set can
then be processed merely by traversing the array from
beginning to end, checking to see if k-mers are (i) unique
in their genomes, (ii) present in n�Nmin genomes, and
(iii) not overlapping with any k-mer blocks that have
already been found.

The first extension to include additional taxa with up
to q mismatches is done by “filtration” (Pevzner and
Waterman 1995). For any k-mer that matches at most
q times with another k-mer, there must exist at least
one substring of length r=floor(k/(q+1)) that matches
exactly between the two. Thus, mismatches can be found
by looking for exact matches of length r in the suffix
array, extending them the appropriate distance in the
genome sequence and checking to see if indeed there
are q or fewer mismatches. Lookups in the suffix array
for an arbitrary r-mer are done efficiently with a binary
search. K-mers that satisfy the mismatch criteria are also
checked for uniqueness and lack of overlap with other
blocks. Extension to add the flanking sequences of each
k-mer is achieved trivially by fetching the coordinates of
the k-mers in the k-mer block and referring back to the
original stored genome sequence, S.

Genomes may be input as a set of chromosomes,
scaffolds, contigs, or other assembly units. The start
and stop coordinates of each are maintained so that
k-mer blocks can later be pooled according to these
assembly units if desired. Low complexity k-mers are
detected from the frequency spectrum of three-mer
frequencies (Morgulis et al. 2006), and excluded to limit
fruitless enumeration of matches in highly repetitive
regions.

A software implementation hakmer (“homology-
aware k-mers”) is free and open source C/C++ code
(https://sourceforge.net/projects/hakmer/). Generic

64 bit C++ code for the suffix array library is also
available (https://github.com/mariusmni/radixSA64).

Parameters Affecting k-mer Block Discovery
Here we define several terms to let us quantify

properties of the data sets produced by building k-
mer blocks. These properties depend on the sequence
input and the parameter choices in hakmer, including
k-mer length, k; the maximum number of mismatches,
q; minimum required taxonomic coverage, Nmin; and
width of flanking sequence, w. The output, consisting of
B k-mer blocks, can be characterized by three quantities.
The first is data use efficiency, ε, which is the fraction of the
L bases in the input that are present in the k-mer blocks in
the output. The second is taxon coverage, �, the number
of elements out of the N×B set of sequences possibly
found among the k-mer blocks that actually are present,
since some taxa may not contain all k-mers found in other
taxa in a k-mer block. It is guaranteed to be at least Nmin
/N but may be more. Taxon coverage is an important
predictor of impacts of missing data on phylogenomic
inference (Sanderson et al. 2010, 2011, 2015).

Low taxon coverage can induce “terraces” in
phylogenetic inference, which are sets of trees with
identical likelihood or parsimony scores (Sanderson et al.
2011, 2015). For a given collection of k-mer blocks and
its pattern of taxon coverage, it is possible to compute
the size of the terrace in which any particular tree
is imbedded. More generally, however, the probability
that terraces will exist is a function of the coverage,
the number of taxa, and number of k-mer blocks. In
particular, the number of blocks needed to ensure less
than a 5% chance that terraces exist for any unrooted
tree is given by

Bmin =−log((N−3)/0.05)/log(1−�4)

(Sanderson et al. 2010, theorem 2). Based on this idea,
we define a third quantity, the k-mer block differential , �=
log(B/Bmin), which is positive when there are sufficient
number of blocks discovered to avoid terraces and
negative when terraces are more likely.

Expected Distributions of k-mer Blocks: Simulations
To assay the impact of algorithm parameters on

the distribution of k-mer blocks discovered, genome
sequences were simulated on a star phylogeny with 50
leaves using an HKY model in Seq-Gen 1.3.3 (Rambaut
and Grassly 1997). Sequence lengths were set to 1 Mb,
and sequence divergence between root and each leaf
was set to range from 0.01 to 0.10 substitutions/site,
with equal divergences for all edges. A star phylogeny is
the worst case scenario for k-mer block discovery since
all sequences are maximally divergent from each other.
These data sets were then run in hakmer across a range of
parameter values to characterize patterns in their k-mer
block structure (Figs. 2–4).

http://github.com/mariusmni/radixSA64
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FIGURE 2. Effect of k-mer length on number of k-mer blocks
discovered (closed shapes) or number of paralogs (open shapes) in
simulations. Circles: sequence divergence=0.04; squares: sequence
divergence=0.08.

Distribution of k-mer Blocks in Oryza Complete Genome
Sequences

We used genome annotations for Oryza species
(downloaded from the Gramene website: ftp://ftp.
ensemblgenomes.org/pub/plants/release-27/gff3/) to
identify the genomic context for each k-mer block.
Custom PERL scripts were used to match k-mer
coordinates with chromosome number and other
features identified in the GFF files. In particular,
we checked whether k-mers were associated with
genes and, more strictly, with coding sequences of
protein-coding genes. We also tracked whether each
sequence from a species was found on the same
chromosome in different species or, alternatively,
whether interchromosomal transfers had occurred.

Phylogenomic Analyses of Seven Genome-Scale Data Sets
To gauge downstream performance of our algorithm

in reconstructing species trees from genome data, we
constructed seven genome data sets spanning different
time depths in the tree of life, different classes of genomic
data, and input sizes ranging from 31 million to 9.4
billion base pairs and from 8 to 663 taxa (Table 1).
These included two plant organellar genome data sets, a
whole transcriptome data set for the angiosperm order
Caryophyllales, and four whole genome data sets, three
from angiosperms and one from Anopheles mosquitoes.
In our first analyses, we focused on comparing global
supermatrices built from k-mers across the genome to
results on supermatrix phylogenomic analyses in the
published work. Our data sets were constructed to

streamline data retrieval from GenBank and maximize
taxon sampling, and our taxon samples, therefore, did
not match exactly taxon sampling in the larger published
analyses.

Genome sequences were input without any
preprocessing. For each data set, a variety of parameter
sets were examined to identify an optimal set of run
conditions that would minimize paralogy, maximize
data use efficiency, and minimize terrace problems
(Table 2). The reverse complement option was used in
all data sets except for the plastid genome data sets,
where the (usual) presence of a large inverted repeat
was frequently bypassed by the algorithm’s protocol to
avoid paralogy. Thus, ignoring reverse complements
actually increased the amount of data extracted.

Phylogenetic Tree Construction
Sets of k-mer blocks were concatenated as

supermatrices, either across all blocks identified from
the genome sequence data, or in some cases at more
local scales within genomes, determined by genome
coordinates. All phylogenetic trees were inferred using
maximum likelihood implemented in RAxML v. 8.04
(Stamatakis 2014), with the default rapid hill climbing
algorithm and a GTRGAMMA model used for data sets
with <25 taxa and the GTRCAT model used for the two
genome data sets with >25 taxa. Bootstrap estimates of
support for clades were obtained using the RAxML -b
option (full, slow bootstrap), except for the two taxon-
rich data sets which used the faster -x bootstrap option
(Supplementary Figs. 1–8 available on Dryad at http://
datadryad.org/resource/doi:10.5061/dryad.96b0h).

Discovery and Characterization of Intra-genomic
Discordance

We constructed sets of gene trees in the Oryza data
set by concatenating neighboring k-mer blocks into data
sets of M blocks each, where M was 25, 100, or 1000.
Bootstrap majority rule ML trees for the 1426 data sets for
M=25 set were constructed using RAxML (raxmlHPC-
AVX -m GTRGAMMA -x seed2 -# 100 -s alignmentFile -n
outfilesname -p seed1). Each of these data sets comprised
25×72=1800 bp alignments. The discordance pattern
among these gene trees was quantified and visualized
as a consensus network in SplitsTree v. 4.10 (Kloepper
and Huson 2008), with a threshold setting of 0.05 on split
frequencies. This diagram captures the set of alternative
gene tree splits that occur in at least 5% of all input gene
trees.

To compare these results to a benchmark, we inferred
the same kind of consensus network for the 6015
gene trees assembled for the same taxa in Stein J.C.
et al. (submitted for publication). That set comprised
alignments of whole gene regions (introns, exons,
and flanking gene sequence), aligned with PRANK
(Loytynoja and Goldman 2008), for which optimal trees

ftp://ftp.ensemblgenomes.org/pub/plants/release-27/gff3/
ftp://ftp.ensemblgenomes.org/pub/plants/release-27/gff3/
http://datadryad.org/resource/doi:10.5061/dryad.96b0h
http://datadryad.org/resource/doi:10.5061/dryad.96b0h
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TABLE 1. Genomic data sets used in this study (sorted by increasing data set size)

Clade Data Time depth No. of No. of bases No. of Data
(Ma) taxa (millions) sequencesa source

Land plants Mitochondrial genomes 450b 93 31.3 93 GenBank
Angiosperms Plastid genomes 139c 663 98.3 663 GenBank
Caryophyllales Transcriptomes 107c 67 1388.2 1.61 million Dryad
Oryza Whole genomes 15d 11 3731.9 20,071 Gramene rel. 27
Anopheles Whole genomes 100e 17 3871.0 148,163 GenBank
Fabaceae (Papilionoideae) Whole genomes 60f 8 5168.4 130,672 GenBank
Eudicots Whole genomes 136c 24 9402.8 298,907 Phytozome 10.3

aThat is, genomes, chromosomes, scaffolds, contigs, treated as disjoint assembly units; bages from Sanderson and Doyle (2001),
cMagallón et al. (2015), dTang et al. (2010), eNeafsey et al. (2015), and fLavin et al. (2005).

TABLE 2. Selected k-mer block algorithm parameter settings and resulting data set characteristics obtained for each genome
data set

Clade N k q Nmin k-mer Alignment � ε �
(indexa) blocks length

Land plant mitochondrial 93 24 (0) 2 10 2279 145,856 0.25 −0.99 +0.096
Angiosperm plastid 663 28 (5) 2 100 1711 116,348 0.51 −0.40 +1.10
Caryophyllales 67 28 (0) 2 15 684 46,512 0.58 −2.89 +1.06
Oryza 11 32 (0) 0 11 35,646 2,566,512 1.00 −2.12 +∞b

Anopheles 17 32 (0) 2 12 38,648 2,782,656 0.89 −1.96 +3.83
Fabaceae 8 32 (1) 2 4 33,609 2,419,848 0.82 −2.51 +3.64
Eudicots 24 28 (0) 2 5 31,897 2,168,996 0.36 −2.71 +1.93

aIndex indicates the numeral in the supermatrix file name corresponding to this run and these parameters (see Supplementary
Materials available on Dryad); bUndefined, because �=1.0.

were constructed using ML in GARLI (Zwickl 2006),
with short length branches collapsed into polytomies.
We compared both the graph structure of the consensus
network and the split frequencies along sets of parallel
edges in the network (Fig. 5).

Interchromosomal Transfers in Oryza
For the Oryza analysis, each k-mer block was recoded

as an ordered list of 11 integers, such that, for each, the
first integer is the chromosome number for the block’s
sequence in Leersia, the second the chromosome number
in O. barthii, and so on in lexical order of the 11 taxon
names: for example, 1-1-1-1-1-1-1-1-1-3-1 (chromosome
1 in Leersia, chromosome 1 in O. barthii, etc.). Then this list
of lists was sorted according to chromosome, and then
within chromosome by the start coordinate position of
the Leersia k-mer block sequence. Runs of consecutive
identical integer patterns were identified for any pattern
having more than one chromosome number: these
represent potentially homologous sequence transferred
between chromosomes. The length of these runs in
the list was then translated into corresponding genome
coordinates determined from the start positions of the
k-mer sequences in Leersia. Finally, the five longest
of these runs was extracted for further analysis,
which corresponded to runs spanning >250,000 nt in
Leersia (Supplementary Table 1 available on Dryad).
Phylogenetic trees were reconstructed using RAxML

(as described above) for the concatenated sets of k-
mer blocks for each of the five runs of k-mer blocks
(Supplementary Fig. 8 available on Dryad).

RESULTS

Distribution of k-mer Blocks: Simulation Results
Simulation experiments showed that the length of k-

mers must be large enough to make matches within the
same genome due to paralogy (or chance) low, but if
k was too large, few k-mer blocks having at least Nmin
taxa were found (Fig. 2). Data use efficiency, ε, was
very high for low levels of sequence divergence (<5%),
but dropped off quickly above that (Fig. 3). However,
the reduction in ε at higher sequence divergences
was ameliorated by reducing Nmin, the minimum
required taxon coverage, and increasing the number of
mismatches allowed, q (Fig. 3).

If Nmin is less than N, however, there will likely be k-
mer blocks with data missing for some taxa, which can
introduce terraces of trees with equal optimality scores
(Sanderson et al. 2011, 2015). However, the probability
of terraces emerging from our protocol, estimated from
the log block differential, �, is high only when there is
a combination of high sequence divergence and high
minimum taxon coverage. These conditions lead to a
drop in the number of k-mer blocks found, making
terraces more likely for a given level of missing data.
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However, increasing data use efficiency, reducing Nmin,
or allowing more mismatches reduces the probability of
terraces (Fig. 4).

Distribution of k-mer Blocks: Genomes of Oryza
Of the 35,646 k-mer blocks having unique exact

matches in all 10 species of Oryza (plus outgroup,
Leersia), 95.5% of these mapped to assembled

chromosomes in all 11 species. Of these, 76.6% of
blocks were found on homologous chromosomes
in all species, with the remaining 23.4% having a
nonhomologous chromosome in at least one species.
Most of the latter were in O. nivara and O. meridionalis.
These putative interchromosomal transfers often
involved contiguous runs of k-mer blocks, with the
largest spanning some 415 kb (as measured in Leersia).
Furthermore, the intrachromosomal locations of k-mer
blocks were not random. Among the k-mer blocks
mapping to chromosomes, 88% of k-mers proper were
located within genes, and 71% of the k-mer blocks
consisted of k-mers located in genes in all 11 species.
Most of the latter (70%) were localized within genes to
CDS (coding) regions, as opposed to UTRs or introns.
On average only 34% of genome length is annotated
as genic in these 11 species, so k-mer blocks are clearly
enriched in these more conserved regions.

Phylogenomic Analyses of Seven Genome-Scale Data Sets
Running times to construct data sets for further

phylogenetic analysis ranged from a few minutes
to a few hours for the largest input. The latter
required substantial memory (∼256 GB), but this
is comparable to the memory required to assemble
its genomes from raw sequence read data in the first
place, but with trivial running times by comparison.
Weeks or months of conventional informatics
processing upstream of tree building were reduced
to minutes to hours by sidestepping annotation and
alignment.

Data use efficiency ranged from 40% in the plastid
genome analysis to 0.1% in the transcriptome data, but
the number of k-mer blocks retained by the algorithm
remained large, ranging from ∼1000 in the smaller
organellar genomes and transcriptome data sets to
∼30,000 in all the whole genome data sets (Table 2).
In the largest, eudicot, data set 18.3 million nucleotides
were present in the final concatenated “supermatrix” of
k-mer blocks (24 taxa × 2.16 million bp, not counting
missing data from partial taxon coverage), despite this
representing just 0.2% of the original sequence data in
these genomes.

Phylogenetic trees constructed by maximum
likelihood methods using supermatrices of all k-
mer blocks in each data set recovered trees nearly
identical to published trees in all seven data sets,
including close agreement with bootstrap estimates
of statistical significance of clades (Supplementary
Figs. 1–8 available on Dryad). The few exceptions were
revealing. For example, a few placements of taxa in
the eudicot whole genome tree (Supplementary Fig. 7
available on Dryad) are at odds with widely cited
relationships based largely on plastid genome data
(Soltis et al. 2011), but these apparent oddities are
actually quite consistent with recent phylogenomic
studies using nuclear or mitochrondrial data (Sun et al.
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FIGURE 5. Similarity of Oryza gene tree discordance patterns across the whole genome inferred using our k-mer block method versus
conventional phylogenomic pipeline. Diagram is a consensus network of gene trees (Huson et al. 2010) (threshold = 0.05), and has the same
topology whether constructed from 1426 sets of 25 contiguous k-mer blocks or from trees inferred from alignments of 6015 annotated rice genes
(Stein J.C. et al., submitted for publication). Branch lengths are labeled with pairs of support values obtained in the k-mer data set (left number)
and phylogenomic data set (right), indicating the frequency of splits supported among the collection of gene trees.

2015). See Appendix for full discussion of each case
study.

Discovery and Characterization of Intragenomic
Discordance

A high level of intragenomic phylogenetic discordance
in the Oryza data, not detectable in the supermatrix
analysis of all data (Supplementary Fig. 4 available
on Dryad), was easily detectable by pooling small
contiguous sets of k-mer blocks to build local
phylogenies of different genomic regions. The spectrum
of 1426 local trees, each built from a concatenation
of 25 neighboring k-mer blocks, was characterized
using a consensus network (Fig. 5; Huson et al. 2010),
which indicated that most of this conflict is within the
species group closest to O. sativa, especially involving
the South American species O. glumaepatula, which is
likely to have undergone extensive introgression (Stein
J.C. et al., submitted for publication). The consensus
network structure matches exactly the network derived
from an independent set of 6015 gene trees constructed
using conventional phylogenomic methods for the
same taxa from the same raw genome sequence data
(Stein J.C. et al., submitted for publication), and the
frequency distribution of conflicting splits was very
similar between the two (Fig. 5).

A second example supports the overall robustness of
the k-mer method to structural changes in the genome.

We followed up on the discovery of significant numbers
of interchromosomal gene transfers by reconstructing
phylogenetic trees for the five transfers having sequence
lengths >250,000 nt (Supplementary Table 1 available
on Dryad). In each case, despite genome sequence
having been translocated to another chromosome in
at least one species, the trees obtained from the
orthologous regions on these different chromosomes
were consistent with trees from genomic regions not
exhibiting these transfers, mirroring in particular the
discordant placement of O. glumaepatula seen in Figure 5
(see also Supplementary Fig. 8 available on Dryad).

DISCUSSION

In this article, we developed and tested a method
for quickly building phylogenetic data sets from whole
genomes at large scale. The core of the method is the
enumeration of k-mer blocks, which are sets of nearly
exact matching k-mers and their flanking sequence.
If chosen correctly, these have a high probability of
orthology. The method can find tens of thousands
of k-mer blocks in whole genomes in minutes to
hours of computing time, avoiding compute-expensive
data processing steps of annotation and alignment,
and controlling for limitations caused by sequence
divergence and missing data. Genome sequence data can
be input “as is” from assemblies at contig, scaffold, or
whole chromosome scales, or any mixture thereof.
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Our approach to testing the performance of this
method was two-fold: first, we used simulation together
with highly annotated genome test data from Oryza
to discover the properties of sets of k-mer blocks
generated by our protocol; and second, we evaluated
the performance of tree inference per se from these k-
mer blocks by analysis of seven diverse genomic data
sets and comparison to published phylogenetic trees
for the same taxa. A key finding of our simulations
was that k-mer block discovery will eventually be
degraded at high levels of sequence divergence through
a combination of finding fewer k-mers blocks, and, in
those that are found, having matches to fewer taxa (and
hence more missing data). However, the simulations
also indicated the extent to which these problems could
be ameliorated by changing k, increasing the number
of allowed mismatches, q, and increasing the tolerance
for k-mer blocks with missing taxa, but doing so in
such a way that problems with phylogenetic terraces are
avoided (Sanderson et al. 2011, 2015). Not surprisingly,
when we examined where k-mer blocks were found in
a well-annotated test case of Oryza complete genome
sequence, they are clearly concentrated in conserved
coding regions, but they are not exclusively found
there. Thus, to the extent that conventional annotation-
based phylogenomic work tends to focus exclusively on
protein-coding genes, this method is able to go beyond
these regions to include other highly conserved parts of
the genome.

Analyses of seven empirical studies suggested that the
method works well over a range of phylogenomic scales
at various time depths in the tree of life. To some extent
this reflected trade-offs between average substitution
rates in different kinds of genomes and the size of those
genomes. Conserved plant mitochondrial and plastid
genomes, for example, could be pushed to time depths
of hundreds of millions of years, when combined with
small mismatch allowances, q>0, because their average
substitution rates are so slow. Though relatively small
genomes, these rates and parameter settings still led
to discovery of enough k-mer blocks to infer a high-
quality tree. In whole nuclear genome data sets, the faster
average rates might be anticipated to make up for the
difficulty in finding k-mer blocks at higher sequence
divergences, and indeed this was true. There were no
issues discovering vast numbers of k-mer blocks in
rice and Anopheles, the ages of which are only ∼10–15
Ma, but it was also still possible to find a reasonable
number in angiosperms at time depths ranging from 50
to 100 Ma.

We judged performance by comparing simple
supermatrix data sets obtained by concatenating all k-
mer blocks to results of supermatrix analyses published
in the literature. Topologies and support values were
remarkably consistent between published trees relying
on conventional annotation/alignment data processing
and those we obtained using k-mers blocks. The very
few areas of disagreement were almost all mirrored
by alternative data sets and analyses found in the
literature, especially those obtained from different

genomes, such as plastid versus nuclear genome data
sets for angiosperms (Soltis et al. 2011; Sun et al.
2015). Taxon samples were different between our trees
and trees from the literature. We opted to sample
the largest sets of whole genome sequences currently
in GenBank, rather than the exact sample from the
article in the literature. This made comparisons using
something like a tree–tree distance problematic, as we
would have to delete many taxa unique to one or the
other tree. The extensive exposition in the Appendix is
meant to leverage our experience with some of these
phylogenetic problems and provides a hopefully more
interpretable and falsifiable set of conclusions about
performance.

However, the results of supermatrix analyses in
phylogenomics studies may well typically only reflect
a “first order” approximation to the species phylogeny
that is most accurate in regions of the tree in which
biological sources of discordance such as incomplete
lineage sorting are absent. To obtain a better, “second
order” approximation it is now clear that reconstruction
of individual gene trees, by which we mean any
appropriately local region in a genome, is necessary.
Numerous methods of inferring species trees from such
gene trees are now available (Liu et al. 2015), but
rather than examining such methods explicitly in these
data sets, we focused on characterizing the discordance
in the gene trees proper, as this is ultimately a key
determinant of the species tree. We took a similar tack
in phylogenomic analysis of data for the chromosome 3
short arm in Oryza (Zwickl et al. 2014) to understand the
sources of biases in these gene tree discordance patterns.
Moreover, in both that study and our more recent
whole genome phylogenomic analysis of Oryza using
conventional annotation/alignment pipelines (Stein J.C.
et al., submitted for publication), supermatrix methods
and species tree inference using gene trees as input
returned the same results.

Because rice genome data exhibit widespread gene
tree discordance (Zou et al. 2008; Cranston et al. 2010;
Zhang et al. 2014; Zwickl et al. 2014; Stein J.C. et al.,
submitted for publication), we used it to test the power
of our k-mer block method to retain critical information
about homology in the context of discordance. We
examined (i) intragenomic conflict in phylogenetic
signal and (ii) interchromosomal transfers identified
via the k-mer blocks. The frequency distribution of
gene trees obtained by Stein J.C. et al. (submitted for
publication) using conventional methods, and by using
pools of nearby k-mer blocks, was nearly identical
(Fig. 5), suggesting that the full arsenal of species tree
inference methods now available could be used with
k-mer block data sets. The only caveat to this is that
enough coordinate information must be available to
allow pooling of nearby k-mer blocks (see below in
“Limitations, Extensions, and Prospects” section).

The potential of the k-mer block method to grapple
with data sets having complex discordant signals,
however, was well illustrated by examining patterns
of interchromosomal transfer in Oryza. A few species
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of Oryza exhibit large numbers of regions on certain
chromosomes that evidently are homologous to regions
on different chromosomes in the remaining species.
This complex pattern of homology (or conceivably
assembly errors in some cases) is evident in pairwise
global alignments of all chromosomes across Oryza (see
Gramene rel. 50 at http://www.gramene.org), but how
to exploit it has not been so clear. Runs of k-mer blocks
having the same chromosomal distribution patterns
were easy to find and their pooled phylogenetic histories
were quite similar to the gene tree distributions found in
gene trees not undergoing transfers. This indicates that
k-mer blocks can be used to directly uncover new sources
of gene tree discordance within a genome, and yet are
robust enough that the gene trees inferred from them
correctly mimic those from regions of the genome not
undergoing transfers.

Relationship of hakmer to Other Methods
Our method uses some techniques found in previous

work, including especially the use of approximate k-mer
matching (though we use a different implementation),
and the anchors together with flanking ungapped
alignments, but it also differs from all of them in key
ways. Most importantly, it builds ungapped multiple
sequence alignments rather than distance matrices, thus
preserving information about local homologies within
the genome, and it effectively insures orthology between
species by forcing exact or approximate k-mer matches
to be long enough to be single copy within a genome
(Fig. 2).

Hakmer is similar to kSNP in certain respects (Gardner
and Hall 2013; Gardner et al. 2015). Their method is
aimed at SNP detection for phylogenetic reconstruction
and other problems. It finds k-mers (with k odd) having
exactly one mismatch that is flanked symmetrically
by (k − 1)/2 exact matches on either side, and uses
the mismatch as phylogenetic information. In contrast,
hakmer finds k-mers with up to q mismatches and then
uses both the k-mers and flanking regions of length
w in the multiple sequence alignment. Hakmer should,
therefore, be useful to deeper phylogenetic depths, and
less prone to paralogy problems, because hakmer allows
k to be set large enough to essentially guarantee a single
match per genome, while also allowing more than just
a single mismatch in the extended block, and including
additional flanking regions for additional phylogenetic
information. kSNP uses MUMmer’s suffix tree data
structures (Kurtz et al. 2004) to find additional matches
among genomes, which requires more memory than
our suffix array to index positions of matches across all
genomes without any speed improvement (Leimeister
and Morgenstern 2014).

Chan et al. (2014) reviewed the performance of several
pairwise distance methods, which use functions of the
number of exact k-mer matches between genomes of
different species. They compared performance to what
would be obtained from multiple sequence alignments

using sequence data simulated under a wide variety
of interesting evolutionary models. Fan et al. (2015)
estimate a pairwise distance based on the number of
shared exact matching k-mers, but they also attempt to
correct for multiple hits in the same k-mer by reference to
both a Poisson process model of base substitution and a
model generating homoplasy in the k-mers that depends
on k-mer frequencies and structure.

Not all pairwise distance methods require k-mers of
fixed length. Ulitsky et al. (2006) compute the pairwise
distance between genomes as the average over all
start positions in sequence 1 of the lengths of the
longest exact matches in sequence 2. Leimeister and
Morgenstern (2014) extended this method by allowing
up to q mismatches. They implemented this with an
“extended” suffix array data structure. Haubold et al.
(2015) compute pairwise distances by finding two anchor
points between two genomes, where an anchor is a
maximal exact match found in both genomes. They
then use the ungapped alignment between anchors to
compute a corrected distance measure.

Several methods use unassembled short read
sequence data aligned to reference genomes to build
alignments and then trees. Bertels et al. (2014) criticized
potential biases of some such methods that align reads to
a single reference genome, which they attempt to correct
by identifying SNPs from reads mapped to several
reference genomes simultaneously. These approaches
require computationally relatively expensive short read
aligners at their core, which limits scalability. Moreover,
avoiding paralogous sequences in the same genome
is fundamentally difficult in unassembled data, and
Bertels et al. (2014) try to limit this by a weighting
scheme based on how aligned reads map to multiple
places in reference genomes. To achieve the level of
performance seen in large genome data sets, we found
it necessary to work with assembled genomes with
hakmer.

Limitations, Extensions, and Prospects
Our method is designed to gain a rapid and accurate

phylogenetic foothold in large and complex genomic
data sets across taxa at moderate levels of sequence
divergence. It is not ideal when sequence divergence is
so large that there are few k-mers shared by a substantial
fraction of taxa and/or flanking regions are so diverged
that they require formal multiple alignment algorithms.
By the same token, in deep phylogenies there may well be
issues with composition bias or saturation that require
careful model fitting that may be degraded by having
samples of short stretches of the genome rather than long
aligned blocks. Nor is our method necessary when taxa
are so closely related that very long stretches of exact
matches are frequent between genomes (much longer
than our k-mers); these can be discovered by existing
exact algorithms such as those in MUMmer (Kurtz et al.
2004), or by invoking very fast heuristics like BLAST
(Altschul et al. 1997), which will perform well at such
high levels of sequence identity.

http://www.gramene.org
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Several possible strategies may increase the domain
of reasonable problem instances for this method.
Increasing q, the mismatch limit, obviously detects more
divergent k-mers, and running times for algorithms for
matching k-mers with q mismatches increase with q
sublinearly (Nicolae and Rajasekaran 2015; in fact at
best at O(q log q)1/2), but in our implementation this is
combined with binary searches of the whole suffix array,
which adds considerable overhead. Increasing q runs
the risk of finding k-mer blocks with highly divergent
flanking sequences as well, necessitating gapped
alignment protocols. It might be more productive to
increase the length of the flanking regions, w, directly,
which adds phylogenetically variable sites roughly
at a rate proportional to w. One strategy to avoid
the inevitable alignment problems that also increase
in probability with w would be to trigger a formal
multiple sequence alignment algorithm if w exceeds
some threshold. Running time for this often scales
as O(w2) in practice, however, and would get quite
expensive unless the number of taxa is kept low.
Alternatively, the extension length could be chosen
adaptively using techniques like those used in sequence
database searches, such as extending the k-mer block
as an ungapped alignment until the running alignment
score drops by some threshold amount from its peak
value, as in BLAST (Altschul et al. 1997).

In general, sets of genomes are mixtures of less and
more conserved regions, so our analyses based on k-
mer matches preferentially extracts a subset of these
genomes, the properties of which might be biased
with respect to phylogenetic inference. This sort of
ascertainment bias seems much more likely to affect
inferences derived from branch lengths or associated
with rates, including coalescent-based species tree
inference perhaps, than it does simple gene tree topology
reconstruction (Costa et al. 2016), but this remains to be
investigated for our method.

To fully exploit the power of species tree inference
methods that allow gene tree discordance, we expect
that pooling of nearby k-mer blocks will be needed.
This means in general that multiple k-mer blocks must
be available at the scaffold level in genome assemblies
to make pooling worthwhile. If sequence divergence
is high, there may be too few k-mer blocks present
on the average scaffold for pooling. This was not a
problem in the Oryza or Anopheles data sets, which
have large N50 values, but would have been more
problematic in the other whole genome data sets having
more heterogeneity in assembly quality, and certainly
in the transcriptome data set, which is intrinsically
limited in the length of its assembly unit by the size
of a transcript. The same remedies for high sequence
divergence described above can be helpful to reduce
the average distance between blocks, by increasing
the number of blocks discovered per unit coordinate
distance.

In conclusion, our experience with this k-mer based
phylogenomic approach on real data sets suggests

that it is a rapid and effective way to tease apart
not just the primary phylogenetic signal one would
obtain from more conventional supermatrix analyses
but also more nuanced signals arising from discordant
histories in the genomes. Though both simulations
and empirical analyses suggest it ultimately is limited
by sequence divergence, the phylogenetic scope of its
applicability appears to be quite broad. In plant data
sets, it provided useful results for nuclear genome
data to depths of 50–100 Ma and for slower evolving
plastid and mitochondrial genomes back to the origin
of angiosperms and land plants at 140/450 Ma,
respectively. The method offers dramatically increased
speed, reproducibility, and simplicity of data analysis,
but it is not without cost. Only further experience
will demonstrate whether this kind of high-throughput
phylogenomics can be applied sufficiently broadly in the
tree of life (and with sufficient accuracy) to compete with
more exhaustive conventional approaches.
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APPENDIX: DETAILED RESULTS OF PHYLOGENOMIC

ANALYSES OF SEVEN DATA SETS

Land plants: mitochondrial genomes.—Our bootstrap tree
(Supplementary Fig. 1 available on Dryad) for 87
taxa has areas of strong and weak support. We can
compare it to the 41-gene mitochondrial analysis of
Liu et al. (2014), by pruning our tree to the taxa
found in theirs. Only two differences emerged. In their
tree, Oryza is one nearest neighbor interchange (NNI)
closer to Triticum, and in their tree the hornworts are
sister to vascular plants, whereas in ours hornworts
are sister to mosses, albeit with weak support. The
uncertain position of hornworts figured prominently
in Liu et al.’s (2014) arguments for the need to
compensate for convergent base compositional shifts
causing conflicting phylogenetic signals in the deeper
part of land plant phylogeny (cf. their figure 1). In an
analysis of 17 chloroplast genes primarily for bryophytes,

http://datadryad.org/resource/doi:10.5061/dryad.96b0h
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Chang and Graham (2014) agreed with the remaining
relationships within the mosses indicated by our tree,
although they also found the hornworts sister to vascular
plants.

Within angiosperms, there are two areas of poor to
medium support in our tree. The first is associated with
the position of Vaccinium macrocarpon, which although
is near its traditionally accepted place as sister to the
rest of the asterids (Soltis et al. 2011) in our tree, it is
in a polytomy. In the RAxML optimal tree (data not
shown), it is found on a short branch within that clade,
as sister to our representatives from Asterales (Helianthus
and Daucus). A more surprising outlier is the aberrant
position of the clubmoss Selaginella, which should be
sister to the other clubmoss in our sample, Huperzia.
Instead, in our bootstrap tree, it is in a polytomy with
asterid and rosid angiosperms. More precisely, in the
RAxML optimal tree (data not shown), it is nested within
the genus Cucumis (cucumber). Bootstrap support in this
entire area of the tree is low, suggesting that Selaginella
is behaving as a “rogue taxon” (Aberer et al. 2013),
which is also supported by the fact that it is present
in very few k-mer blocks, indicating low homology
with other genomes in our data set. Because it hits
with 99% identity (and 84% overlap) to the Selaginella
chloroplast genome, it may be a scaffold mistakenly
annotated as mitochondrial when it is in fact plastid
(Banks et al. 2011). The cucumber sample (GenBank
accession NC_016004.1) with which this problematic
Selaginella genome grouped in the optimal tree is
also unusual, as it is from a second mitochondrial
chromosome found in that species. It also has few k-
mer blocks, indicating low homology to the rest of the
data.

Like our tree based on nuclear genomes of eudicots
(Supplementary Fig. 7 available on Dryad), our
mitochondrial genome tree weakly suggests Vitis is
outside asterids + rosids and that the “Celastrales–
Oxalidales–Malpighiales” (COM) clade (represented
here only by Ricinus) is again closer to malvids than to
rosids (see below for further discussion).

Angiosperms: plastid genomes.—Our tree (Supplementary
Fig. 2 available on Dryad) for 663 taxa had strong
support throughout. Major relationships along the
backbone, as well as among the approximately 42
orders represented, were nearly identical to those in
recently published phylogenies derived from multiple
genomic compartments (Soltis et al. 2011) or from plastid
genomes (Ruhfel et al. 2014) with fewer taxa. Exceptions
include that our tree placed Ceratophyllum as sister to
the monocots with weak support, instead of sister to
eudicots (Moore et al. 2007; Soltis et al. 2011; Ruhfel
et al. 2014), although support for that placement in
other studies is also generally weak and sensitive to
the data partitioning scheme (Moore et al. 2007; Ruhfel
et al. 2014). Our only sample from Pandanales, the
mycoheterotrophic Sciaphila densiflora, was on a very
long branch in the RAxML optimal ML tree (data not

shown) and placed in a polytomy with Asparagales
and the commelinid clade. Sciaphila was also found on
a long branch in the original analysis associated with
the publication of its highly unusual reduced plastid
genome, which is only 21 kbp in length (Lam et al.
2015). The only other significant departure from previous
published phylogenies is for Cypripedium macranthos
(Orchidaceae). Unlike the other two members of this
genus represented in our tree, this taxon is grouped
outside the orchids (but still within the Asparagales),
with Eustrephus (Asparagaceae). A megablast search
against GenBank’s nucleotide database shows equally
good hits to members of Arecaceae, Bromeliaceae, and
Asparagaceae with ~97% identity over ~93% its length,
and it has been found on a long branch in previous
trees (Luo et al. 2014). Our other plastid genomes from
Cypripedium all hit to members of Orchidaceae in BLAST
searches, indicating that the plastid genome for C.
macranthos is an outlier. A handful of other genera were
not monophyletic in our bootstrap tree, but in each case
a few NNI moves would restore monophyly. Plastid
genome evolution is so slow that it is rarely used for
species-level relationships within genera; it is certainly
possible that whole plastid genomes sampled via k-mers
are also not ideal at such a low taxonomic level.

Caryophyllales: transcriptomes.—Our bootstrap tree of 67
taxa (Supplementary Fig. 3 available on Dryad) was
fully resolved and all but six clades were supported
>90% (most 100%). This tree agreed with that of Yang
et al. (2015: their figure S1) at every node but one,
this involving a simple NNI within the genus involving
Portulaca cryptopetala within Portulaca. Yang et al.’s
analysis was based on 1122 putative orthologous loci
identified from the set of all transcriptomes.

Oryza: whole genomes.—Our bootstrap tree
(Supplementary Fig. 4 available on Dryad) for 10
species of Oryza and the outgroup Leersia is identical
to that obtained by Stein J.C. et al. (submitted for
publication) for the same species, including the 100%
bootstrap support estimates at each node of the tree.
Stein et al. used 6015 single copy orthologous genes
across all 12 chromosomes. They obtained the same
tree whether using a supermatrix of all loci, or the
MP-EST species tree inference method (Liu et al. 2010),
which uses the set of gene trees as input instead and
optimizes across gene tree coalescent histories. Our tree
also agrees with a considerably smaller analysis (Zwickl
et al. 2014) of 473 genes obtained from the short arm
of chromosome 3, except that in their tree O. rufipogon
is switched from the sister group of O. sativa to be the
sister group of O. nivara and O. indica. They obtained
the same results with concatenation and species tree
inference methods.

Anopheles: whole genomes.—Our bootstrap tree
(Supplementary Fig. 5 available on Dryad) was fully
resolved with 100% support at each node. We compared
our tree with two recently published genome-scale
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phylogenomic studies of Anopheles: Neafsey et al.
(2015), which has a broad sample across the genus with
outgroups, and Fontaine et al. (2015), which focuses on
the A. gambiae complex. Neafsey et al. (2015) identified
1085 “relaxed” single copy orthologs and estimated
trees using concatenated amino acid sequences and a
PROTGAMMAJTT model. Our tree agrees with theirs
(their figures 1 and S4) except within the A. gambiae
complex, where our tree is resolved but theirs is not.
They did not report bootstrap values, but all of ours
were 100%. Fontaine et al. (2015) inferred a complex
phylogenetic history within the A. gambiae complex in
which whole genome trees disagreed with inferences
from the X chromosome alone (they argued the latter
were more accurate). Our tree agrees with their whole
genome tree (their figure S17), except in their tree A.
melas is the sister group of A. merus. Their support
values were 100% at each node. On the other hand,
our tree was identical to their X chromosome tree with
respect to these two species, but disagreed with respect
to the position of A. gambiae within the complex (in
accord with the disagreement they observed between
autosomes and the X chromosome).

Fabaceae: whole genomes.—Our bootstrap tree
(Supplementary Fig. 6 available on Dryad) was
fully resolved with 100% support at each node. No
whole genome trees have been published for Fabaceae,
so we compared our tree with the three-gene taxon-rich
analysis of the family presented in Bruneau et al. (2013).
Our tree agrees with that tree at each node. Whether
Lupinus or Arachis is the correct outgroup (or both
are) is unclear, requiring further taxa to be sampled
for resolution. Our tree also agrees with the large
plastid-genome-based phylogenomic tree described
above (Supplementary Fig. 2 available on Dryad). In
that tree Lupinus and Arachis are sister groups, jointly
acting as outgroups to the remaining six taxa in our
whole genome tree.

Eudicots: whole genomes.—Our bootstrap tree for 24
taxa (Supplementary Fig. 7 available on Dryad) has
only two nodes with less than 90% bootstrap support.
Comparisons to previously published phylogenies
suggest agreement within relatively closely related
clades, such as Brassicaceae (Huang et al. 2016), but
possible disagreement in the placement of three leaf taxa
(Vitis, Cucumis, and Eucalyptus) as well as the position
of the COM clade, represented here by Euphorbiaceae
(Riccinus, Manihot), Salicaceae (Populus), and Linaceae
(Linum). Soltis et al. (2011), in a combined analysis of
17 nuclear-ribosomal, mitochondrial, and chloroplast
genes, found strong support for the placement of
Vitaceae (Vitis) as sister to the Rosid clade (sister to
all but Solanum and Mimulus in our analysis, after
rooting on Aquilegia; one NNI move on our tree).
However, placement of Vitis, and the support for that
placement, varies across trees generated using nuclear
nonribosomal data (Zhang et al. 2012), mitochondrial
data (Zhu et al. 2007), and chloroplast data (Sun et al.

2015). In another discrepancy with the large 17-gene
combined analysis (Soltis et al. 2011), we found support
for Cucumis (Cucurbitaceae) to be phylogenetically
closer to Fabales than to Rosales. This placement
(again, one NNI move away on our tree) is consistent
with the five-gene nuclear data set (Zhang et al.
2012) and some cpDNA analyses (Sun et al. 2015).
Similarly, mitochondrial data (Zhu et al. 2007; Sun
et al. 2015) and nuclear data (Zhang et al. 2012),
reanalyzed in Sun et al. (2015), support our unexpected
position of Myrtales (Eucalyptus) as sister to the rest of
the rosids. Our most substantial discrepancy involves
the COM clade, which has been considered part of
the fabids (Soltis et al. 2011), but our analysis provides
strong support for its placement closer to the malvids.
However, Sun et al. (2015) reanalyzed several data sets
to elucidate relationships among the fabid, malvid,
and COM clades, and also found strong support
from the mitochondrial and nuclear genomes for this
placement. In all of these cases, the previously accepted
phylogenetic placement was almost entirely derived
from chloroplast data, whereas our results are consistent
with at least some nuclear and mitochondrial genome
analyses.
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