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Background.  A mother’s infection with placental malaria (PM) can affect her child’s susceptibility to malaria, although the 
mechanism remains unclear. The fetus acquires a small amount of maternal cells and DNA known as maternal microchimerism 
(MMc), and we hypothesized that PM increases MMc and that MMc alters risk of Plasmodium falciparum malaria during infancy. 

Methods.  In a nested cohort from Muheza, Tanzania, we evaluated the presence and level of cord blood MMc in offspring 
of women with and without PM. A maternal-specific polymorphism was identified for each maternal–infant pair, and MMc was 
assayed by quantitative polymerase chain reaction. The ability of MMc to predict malaria outcomes during early childhood was 
evaluated in longitudinal models.

Results.  Inflammatory PM increased the detection rate of MMc among offspring of primigravidae and secundigravidae, and 
both noninflammatory and inflammatory PM increased the level of MMc. Detectable MMc predicted increased risk of positive 
blood smear but, interestingly, decreased risk of symptomatic malaria and malaria hospitalization.

Conclusions.  The acquisition of MMc may result in increased malaria infection but protection from malaria disease. Future 
studies should be directed at the cellular component of MMc, with attention to its ability to directly or indirectly coordinate anti-ma-
larial immune responses in the offspring.
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Malaria remains one of the largest killers of children <5 years 
of age worldwide with nearly half a million preventable deaths 
each year, the majority of which occur in sub-Saharan Africa 
[1]. In addition, pregnant women are uniquely susceptible to 
placental malaria (PM), a condition in which Plasmodium 
falciparum–infected red blood cells (iRBCs) sequester in the 
intervillous spaces of the placenta, leading to a dense inflam-
matory infiltrate of mononuclear cells [2]. PM is associated 
with miscarriage, stillbirth, and intrauterine growth retarda-
tion [3]. First-time mothers are at the greatest risk of PM, and 
with subsequent pregnancies women develop antibodies that 
block the adhesion of iRBCs to chondroitin sulfate A expressed 
in the placenta [4]. PM has also been associated with alterations 
in the VEGF pathway including elevated placental VEGF and 
soluble FMS-like tyrosine kinase 1 (sFlt-1) expression in pri-
migravidae [5] and those with inflammatory PM [5, 6].

Multiple studies describe an association between PM and 
earlier time to first malaria infection as well as increased risk 
of malaria during childhood after controlling for epidemiologic 
risk factors [7–10]. The association between PM and malaria 
in the offspring is thought to be the result of prenatal immune 
priming against soluble malaria antigens, resulting in a malar-
ia-specific immunotolerant phenotype in the infant [11–13]. 
The fetus is able to mount malaria-specific T-cell [14, 15] and 
B-cell responses [15, 16], and cord blood (CB) from infants 
born to malaria-infected women demonstrated reduced or 
partial antigen-presenting cell activation [17, 18], interleukin 
10 production after parasite stimulation [12, 13, 17, 19], and 
the presence of regulatory T cells that suppressed reactivity to 
parasite antigens [19, 20]. This malaria-specific CB tolerance 
predicted a similar tolerant phenotype at 6 months of age and 
increased susceptibility to malaria, relative to nonexposed or 
exposed but sensitized infants [12].

The in utero tolerance generated against malaria mirrors the 
essential tolerance developed by the fetus against allogeneic 
antigens expressed by the mother. During pregnancy, fetal tol-
erance against noninherited maternal antigens develops as a 
consequence of the acquisition of a small number of maternal 
cells or DNA known as maternal microchimerism (MMc) [21]. 
The fetus acquires MMc as early as the second trimester, MMc 
is persistent in the offspring for decades after birth [22], and 
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children maintain tolerance against maternal, but not paternal, 
alloantigens [21]. MMc is found in progenitor and differentiated 
populations [23], including T cells, B cells, monocytes, macro-
phages [24], and neutrophils [25], as well as nonimmune cells 
[26]. Limited work in humans suggests that maternal micro-
chimeric cells are functionally active [27]. The mechanism of 
transfer may involve passive transfer via microtransfusions or 
active transfer dependent on a VEGF-A gradient across the pla-
centa [28].

We hypothesized that PM, with its associated alterations in 
the VEGF pathway as well as damage to the trophoblast barrier, 
increases the prevalence and level of CB MMc and that MMc 
alters malaria susceptibility in early childhood. Using a nested 
cohort study, we evaluated the association between PM and CB 
MMc, as well as the ability of MMc to predict malaria outcomes 
during early childhood.

MATERIALS AND METHODS

Cohort

Data and samples were utilized from the Mother Offspring 
Malaria Study (MOMS) prospective birth cohort conducted in 
Muheza, Tanzania, between 2002 and 2006 [29]. Women and 
infants were enrolled at the time of delivery after exclusion 
for probable human immunodeficiency virus (HIV), chronic 
illness, sickle cell disease (HgbSS), or multiple births, and the 
infants were followed up to 4 years. Maternal–infant pairs were 
included in the present study based on availability of placen-
tal histology for PM categorization (n = 270), available paired 
maternal cord samples (n = 77), informative typing for a mater-
nal-specific allele (n = 63), and sufficient CB sample size to 
assess MMc (n = 53).

Time points for sample collection during early childhood 
included routine visits (every 2 weeks for the first year of life and 
every 4 weeks thereafter) and nonroutine visits (village health 
worker visits, walk-in visits, or hospitalizations). Any non-zero 
P.  falciparum parasite count by microscopy was considered a 
positive blood smear (BS); non-falciparum malaria was excluded 
from analysis. Positive smears that occurred within 28 days of 
an initial positive BS without an intervening negative BS were 
excluded from analysis. Symptomatic malaria was defined as a 
positive BS plus any of the following: fever (temperature >38°C), 
gastrointestinal distress, respiratory distress, anemia (hemoglo-
bin <8 g/dL), convulsions, prostration, or glucose <2.2 mmol/L. 
Malaria hospitalization was defined as hospitalization in the set-
ting of a positive BS. Maximum parasitemia was defined as the 
highest BS value within 28 days of an initial positive BS.

The MOMS cohort was approved by both United States 
(Western Institutional Review Board) and Tanzanian (National 
Institute for Medical Research, Medical Research Coordinating 
Committee) ethical review boards. The current study was 

approved by the Institutional Review Board of the Fred 
Hutchinson Cancer Research Center.

Diagnosis of Placental Malaria

PM diagnosis was based on microscopy of placental blood film 
[4], and inflammation was determined by histologic evaluation 
of placental cryosections [30]. PM negative women were neg-
ative by thick smear as well as by histology (no parasites, pig-
ment, or inflammation). A woman was considered positive for 
PM if the placental thick smear was positive. Inflammatory PM 
was defined as thick smear positive and any evidence of inflam-
mation by histology. Women with evidence of past infection 
(pigment or inflammation but no parasites) were excluded.

Cord Blood Collection and Genomic DNA Extraction

To limit the possibility of maternal blood contamination, CB 
was collected at the time of delivery into EDTA via cross-clamp-
ing of the umbilical cord and direct cannulation of the umbil-
ical vessels. CB was frozen and stored at –70°C until genomic 
DNA (gDNA) extraction. The gDNA was extracted from cord 
and maternal blood using QiaAMP DNA Micro or Mini Kits 
(Qiagen) and from filter papers using a modified Chelex-100-
based method [31].

Identification of Maternal-Specific Polymorphisms and Microchimerism 

Evaluation

Maternal and infant samples were genotyped at HLA class II loci 
DRB1, DQA1, and DQB1 using Luminex-based (One Lambda) 
polymerase chain reaction (PCR) sequence-specific oligonucle-
otide probe techniques. Noninherited, nonshared HLA poly-
morphisms were identified that could be used to evaluate MMc 
[32]. Maternal–infant pairs with noninformative HLA typing 
were typed at 4 non-HLA loci: ATIII, TG, GSTT1, and TNN, 
targeting insertion/deletion/substitution polymorphisms.

The maternal-specific polymorphism for each maternal–
infant pair was selectively amplified from CB gDNA using 
a panel of previously developed quantitative PCR (qPCR) 
assays [32, 33]. The sensitivity of the qPCR assays is one tar-
get genomic equivalent (gEq) in 20 000 background gEq [32]. 
A  calibration curve for the polymorphism-specific assay was 
included to quantify the amount of MMc for each experiment. 
Every sample was also tested for the nonpolymorphic β-globin 
gene (HBB), and a HBB calibration curve was concurrently 
evaluated on each plate to quantify the total number of gEq of 
DNA tested in each reaction. Only samples with an anticipated 
total of ≥104 gEq were utilized, and all samples were run in at 
least 2 separate reactions.

Detectable MMc was defined as any positive maternal-spe-
cific qPCR amplification. Level of MMc was determined by 
comparison of the qPCR amplification against the assay-spe-
cific calibration curve and is expressed as the standardized 
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ratio of MMc gEq per 105 gEq tested. To use level of MMc as a 
predictor, the measured values were transformed as natural log-
arithm (MMc gEq / 105 gEq tested +1).

Statistical Analysis

Prevalence of CB MMc by PM category was evaluated by 
logistic regression with adjustment for the total number of 
gEq tested for each subject. Level of MMc by PM category 
was evaluated with negative binomial regression, accounting 
for the number of microchimeric gEq detected as well as the 
total number of gEq assessed in each sample. This approach 
accounts for the nonnormal distribution of MMc data as well 
as the large number of zeros [34]. The output of this model 
is a detection rate ratio (DRR), which can be interpreted as 
“X number of microchimeric gEq in group A  for every one 
microchimeric gEq in group B.” Comparison of sFlt-1 level 
was conducted using the Mann–Whitney U test. Odds of 
malaria outcomes were assessed using generalized estimat-
ing equation (GEE) models with clustering by individual, a 
binomial outcome structure, and an exchangeable correla-
tion matrix [29]. Odds of positive BS considered all visits as 
either negative or positive. Odds of symptomatic malaria and 
malaria hospitalization were restricted to those visits with 
positive BS. Comparison of maximum parasitemia during 
infection was assessed using a GEE model with clustering by 
individual, a Gaussian outcome structure, and an exchange-
able correlation matrix. All models utilized robust standard 
errors.

Covariates considered for inclusion in the adjusted 
models included sickle cell trait (HgbAA, HgbAS), mater-
nal gravidity (primigravid, secundigravid, or multigravid), 
village (rural, semiurban), bed net use (no, yes, unknown), 
malaria transmission season at each visit (low, high), and 

age of the child at each visit (modeled as a cubic spline with 
3 knots at the 10th, 50th, and 90th percentile). Univariate 
analysis was conducted and each covariate was tested indi-
vidually in the model. Covariates were included in the 
final model if they changed the coefficient for detectable 
MMc by 10% or more (confounding) or were significantly 
related to the outcome at the P  ≤  .10 level (prediction). 
Reduced GEE models were compared using quasi-likeli-
hood under the independence model criterion to confirm 
their improved model fit [35]. The reduced model for each 
outcome is presented.

Final covariates in the GEE model of odds of positive 
blood smear included maternal gravidity (confounder), bed 
net (predictor and confounder), malaria transmission season 
at each visit (predictor), and age of the child (predictor and 
confounder). Final covariates in the GEE model of maximum 
parasitemia included sickle cell trait (predictor), maternal 
gravidity (predictor and confounder), village (confounder), 
bed net use (predictor and confounder), malaria transmission 
season at each visit (predictor), and age of the child (con-
founder). Final covariates in the GEE model of odds of symp-
tomatic malaria included sickle cell trait (predictor), maternal 
gravidity (predictor and confounder), village (predictor and 
confounder), bed net (predictor), and age of the child (pre-
dictor and confounder). Final covariates in the GEE model of 
odds of malaria hospitalization included sickle cell trait (pre-
dictor), maternal gravidity (confounder), and age of the child 
(predictor).

To understand whether the effect of MMc to predict malaria 
outcome was the result of its association with PM, we tested for 
confounding by PM as well as effect modification by PM. Where 
the interaction term for PM and MMc was significant at the 
P ≤ .1 level, we present stratified analyses.

Table 1.  Descriptive Summary by Maternal Placental Malaria Category

Covariate No PM (n = 26) Noninflammatory PM (n = 14) Inflammatory PM (n = 13) P Valuea

Maternal age, y 25.3 23.3 24.0 .4

Gravidity .1

  0 6 (23) 4 (29) 5 (39)

  1 5 (19) 7 (50) 2 (15)

  2 (+) 15 (58) 3 (21) 6 (46)

Infant sex, female 13 (50) 5 (36) 8 (62) .4

Sickle cell trait 7 (27) 2 (15) 3 (23) .7

Birth weight, g 3063 3050 2803 .2

Semiurban 17 (65) 4 (29) 8 (62) .07

Bed net .6

  No 8 (31) 6 (43) 7 (54)

  Yes 16 (61) 7 (50) 6 (46)

  Unknown 2 (8) 1 (7) 0 (0)

High malaria transmission season at birth 23 (50) 8 (57) 8 (62) .8

Data are presented as No. (%) unless otherwise indicated. Maternal age and birth weight are means.

Abbreviation: PM, placental malaria.
aDifference in means tested using linear regression with PM category modeled as an unordered categorical variable. Difference in distribution tested using χ2 test.



1448  •  JID  2017:215  (1 May)  •  Harrington et al

All statistics were conducted in Stata 14 software (StataCorp 
LP).

RESULTS

Inflammatory Placental Malaria Predicts Increased Cord Blood Maternal 

Microchimerism

CB MMc was evaluated for 53 infants: 26 born to women with-
out PM, 14 born to women with noninflammatory PM, and 
13 born to women with inflammatory PM. The mean number 
of gEq tested in each group was not significantly different (no 
PM: 6.7 × 104, noninflammatory PM: 5.9 × 104, inflammatory 
PM: 8.0 × 104, P = .4). The demographic characteristics of the 3 
groups of women did not significantly differ (Table 1).

MMc was detected in the CB of 23% of offspring of women 
without PM, 29% of offspring of women with noninflam-
matory PM (adjusted odds ratio [AOR],  1.31 [95% confi-
dence interval {CI}, .29–5.92], P =  .7), and 46% of offspring 
of women with inflammatory PM (AOR, 2.93 [95% CI, .68–
12.65], P =  .2). There was evidence of effect modification by 
parity where the effect was similar among offspring of primi-
gravidae and secundigravidae but different among offspring 
of multigravidae (interaction term, P = .04). Among offspring 
of primigravidae and secundigravidae, detection of MMc was 
significantly more likely in the setting of inflammatory PM 
(AOR, 48.43 [95% CI, 3.78–638.26], P = .003) and there was a 
trend toward increased detection in the setting of noninflam-
matory PM (AOR, 7.42 [95% CI, .75–72.94], P = .09), whereas 
no such relationship was evident among offspring of multi-
gravidae (Figure 1A).

The mean level of MMc was 4 per 105 gEq among offspring 
of women without PM, 835 per 105 gEq among offspring 
of women with noninflammatory PM (DRR,  191 [95% CI, 
11–3202], P < .001), and 2036 per 105 gEq among offspring of 
women with inflammatory PM (DRR, 466 [95% CI, 26–8356], 
P < .001) (Figure 1B). Remarkably, there were 4 CB samples with 
>1% MMc, all among infants born to women with PM, and the 
mean level was 8601 per 105 gEq in the offspring of the 2 women 
with massive intervillositis. sFlt-1, a biomarker of placental dys-
function and preeclampsia [36], was previously measured from 
maternal peripheral plasma in 15 of the women [37], among 
whom detection (3859 pg/mL vs 1161 pg/mL, P  =  .002) and 
level (R2 = 0.79) of MMc were associated with sFlt-1 level.

Maternal Microchimerism Predicts Increased Risk of Positive Blood 

Smear During Early Childhood

There were 2777 unique BS for the 53 offspring: 243 positive 
BS from 2000 unique BS for those without detectable MMc and 
145 positive BS from 777 unique BS for those with detectable 
MMc. Detectable MMc predicted increased risk of positive 
BS during early childhood (AOR,  1.73 [95% CI, 1.06–2.81], 
P  =  .03) (Figure  2A). There was no evidence of confounding 

or effect modification by PM status. Increasing level of MMc 
predicted increased risk of positive BS (per log increase in 
MMc: AOR, 1.10 [95% CI, 1.03–1.18], P = .008). During infec-
tion, the maximum parasitemia was significantly lower in those 
infants with detectable MMc vs those without MMc (Δ = –459 
iRBCs / 200 white blood cells (WBCs) [95% CI, –708 to –210], 

Figure 1.  Prevalence and level of cord blood maternal microchimerism (CB MMc) 
by placental malaria (PM) category. No PM: n = 26; noninflammatory PM: n = 14; 
inflammatory PM: n  =  13. Not detected (n/d). A, Inflammatory PM was associ-
ated with increased prevalence of CB MMc among offspring of primigravidae and 
secundigravidae (adjusted odds ratio,  48.43; P  =  .003) but not multigravidae. B, 
Noninflammatory (detection rate ratio [DRR], 199; P < .001) and inflammatory PM 
(DRR, 466; P < .001) were associated with increased level of CB MMc.
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P  <  .001). Increased level of MMc predicted decreased maxi-
mum parasitemia (per log increase in MMc: Δ = –59 iRBCs / 
200 WBC [95% CI, –90 to –28], P < .001).

Maternal Microchimerism Predicts Decreased Risk of Symptomatic 

Malaria and Malaria Hospitalization

There were 145 symptomatic episodes out of 243 positive BS 
among those offspring without detectable MMc and 69 symp-
tomatic episodes from 145 positive BS among those offspring 
with detectable MMc. Children with MMc were significantly 
less likely to have symptomatic malaria in the setting of a posi-
tive BS (AOR, 0.47 [95% CI, .31–.72], P = .001) (Figure 2B). The 
effect of MMc to predict decreased risk of symptomatic malaria 
was modified by PM (interaction term: P = .02; among offspring 
of PM-negative women: AOR, 0.39 [95% CI, .19–.81], P = .01; 
among offspring of PM-positive women: AOR, 0.73 [95% CI, 
.48–1.13], P = .2).

There were 26 malaria hospitalizations from 243 positive 
BS among those offspring without detectable MMc and 8 
malaria hospitalizations from 145 positive BS among those 
offspring with detectable MMc. Similar to our finding with 
symptomatic malaria, there was a protective effect of MMc on 
risk of malaria hospitalization (AOR, 0.41 [95% CI, .18–.93], 
P = .03) (Figure 2C). There was no evidence of confounding 
or effect modification by PM status. In addition, there was 
no evidence of effect modification by parity for any malaria 
outcome.

DISCUSSION

In the present study, we found that inflammatory PM was 
associated with increased detection and level of CB MMc, 
most prominently among offspring of primigravidae and 
secundigravidae. CB from women with noninflammatory PM 
displayed an intermediate phenotype, suggesting that both 
malaria infection and inflammation may contribute to the 
differences we describe. Our results are consistent with prior 
studies describing increased risk of chronic, inflammatory PM 
during first and second pregnancies [2, 5], and it may be that 
the multigravidae in our study developed less placental pathol-
ogy associated with their infections. The prevalence and level 
of MMc we found in our PM-negative group were similar to 
that described in CB from healthy pregnancies, however, the 
prevalence and level from the PM positive groups were much 
greater [38]. In addition, the level of MMc was >1% in 4 CB, 
all from women with PM, nearly 2 orders of magnitude greater 
than previously described [38]. An association was suggested 
between sFlt-1 level and MMc level. sFlt-1 secreted by the syn-
cytiotrophoblast during PM may bind VEGF in the maternal 
intervillous spaces [36], accentuating the VEGF gradient across 
the placenta [28] and resulting in increased active transport of 
maternal cells. Alternatively, the increased MM c we detected 

Figure  2.  Probability of malaria outcome by cord blood maternal microchime-
rism (MMc) detection. Offspring with no detectable MMc: n = 37; offspring with 
detectable MMc: n = 16. Solid line: no detectable MMc; dashed line: Detectable 
MMc. Age modeled as a cubic spline with 3 knots. A, MMc predicted increased 
risk of positive blood smear (BS) (adjusted odds ratio [AOR], 1.73; P = .03). B, MMc 
predicted decreased risk of symptomatic malaria, given a positive BS (AOR, 0.47; 
P = .001). C, MMc predicted decreased risk of malaria hospitalization, given a pos-
itive BS (AOR, 0.41; P = .03).
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may represent maternal DNA, for example, in the form of exo-
somes or microparticles.

We further hypothesized that this increased MMc may in part 
explain the previously described association between PM and 
risk of malaria during early childhood [7–10] and investigated 
a proxy of malaria-specific tolerance, namely, the association 
between MMc and malaria outcomes during early childhood. 
Offspring with detectable CB MMc had a greater risk of pos-
itive BS during early childhood, however, when infected they 
were less likely to have symptoms or to require hospitalization. 
The predictive effect of MMc on risk of positive BS could not 
be solely explained by the association of MMc and PM as there 
was no evidence of confounding or effect modification by PM 
status. In contrast, the effect of MMc to predict risk of symp-
tomatic malaria was greater among the PM-negative group, 
suggesting that there may be a difference in the effect of “nor-
mal” and “abnormal” MMc. Our findings are striking because 
they dissociate risk of malaria infection from risk of disease. 
MMc was associated with a greater risk of P. falciparum infec-
tion but a lower risk of symptomatic malaria, perhaps due to 
improved control of maximum parasitemia or a more tempered 
inflammatory response. These findings may imply a mechanism 
of natural protection from disease, and we hypothesize that this 
may be advantageous in malaria-endemic settings.

The acquisition of MMc could play a role in the development 
of malaria-specific tolerance by a number of different poten-
tial mechanisms. First, prior work in mice has demonstrated 
“cross-tolerance” where antigen-tolerant regulatory T cells are 
able to suppress reactivity against a novel antigen experienced 
in conjunction with the primary antigen [39, 40]. These data 
suggest that the fetal acquisition and maintenance of tolerance 
to MMc may have the secondary consequence of cross-toler-
ance to malaria antigens if they are experienced in conjunc-
tion. Second, the fetus may acquire a maternal graft specifically 
enriched for regulatory cells (eg, classical FOXP3+ Tregs or 
FOXP3– Tr1 cells), which directly modify the antimalarial activ-
ity of fetal and infant cells. Maternal FOXP3+ Tregs increase 
during pregnancy [41], traffic to the placenta [42], and are 
essential for maintenance of tolerance toward the fetus [41, 42]. 
Consistent with our epidemiological findings, Tregs may atten-
uate the risk of immune-mediated pathology during malaria 
infection by limiting the formation of memory T-cell responses 
[43]. Similarly, FOXP3– Tr1 cells, associated with chronic anti-
gen exposure [44], predict increased risk of malaria infection 
[45, 46] but reduced risk of immune-mediated pathology in 
both mice [47–49] and humans [43]. Third, maternal microchi-
meric cells may directly present malaria antigens to fetal cells, 
mimicking the presentation of self-antigens by antigen-pre-
senting cells resulting in clonal deletion, while also potentially 
inducing peripheral tolerance through antigen contact with-
out expression of inflammation-dependent costimulatory sig-
nals. Alternatively, the fetus may develop tolerance to soluble 

parasite antigens independent of MMc exposure, or MMc may 
be a marker of altered maternal antimalarial antibody transfer 
during the pregnancy.

Our study has a number of limitations. First, our sample size 
was limited by sample availability. Nonetheless, important dif-
ferences between groups were observed. A second consideration 
is the possibility of maternal contamination of CB at the time of 
collection. Arguing against this, all CB samples were collected 
and processed in the same rigorous manner, with cross-clamp-
ing and direct cannulation of umbilical vessels. Third, sample 
availability did not permit distinguishing between the cellular 
and genetic components of MMc, although we plan to address 
this in future studies. Finally, CB and peripheral blood mono-
nuclear cells were not available, precluding direct assessment of 
maternal or malaria-specific tolerance, although we were able to 
evaluate clinical outcomes as a proxy.

We investigated a novel mechanism for the association between 
PM and increased risk of malaria in the offspring, namely the in 
utero acquisition of maternal cells or DNA. Next steps should 
address a number of remaining questions including the per-
sistence of MMc during childhood, the phenotype of acquired 
maternal cells, and the functionality of these cells with regard to 
their ability to directly affect or coordinate immune responses 
against malaria. Finally, these observations may have important 
implications for the role of MMc in other perinatal infections 
such as CMV or HIV [50], postnatal infections, and response to 
immunization.
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