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Abstract

Introduction

Low-back pain (LBP) has been correlated to the presence of intervertebral disc (IVD) degen-

eration on T2-weighted (T2w) MRI. It remains challenging, however, to accurately stage

degenerative disc disease (DDD) based on T2w MRI and measurements of IVD height, par-

ticularly for early DDD. Several quantitative MRI techniques have been introduced to detect

changes in matrix composition signifying early DDD. In this study, we correlated quantitative

T2, T1rho and Apparent Diffusion Coefficient (ADC) values to disc mechanical behavior and

gold standard early DDD markers in a graded degenerated lumbar IVD caprine model, to

assess their potential for early DDD detection.

Methods

Lumbar caprine IVDs were injected with either 0.25 U/ml or 0.5 U/ml Chondroïtinase ABC

(Cabc) to trigger early DDD-like degeneration. Injection with phosphate-buffered saline

(PBS) served as control. IVDs were cultured in a bioreactor for 20 days under axial physio-

logical loading. High-resolution 9.4 T MR images were obtained prior to intervention and

after culture. Quantitative MR results were correlated to recovery behavior, histological

degeneration grading, and the content of glycosaminoglycans (GAGs) and water.

Results

Cabc-injected IVDs showed aberrancies in biomechanics and loss of GAGs without

changes in water-content. All MR sequences detected changes in matrix composition, with
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T1rho showing largest changes pre-to-post in the nucleus, and significantly more than T2

and ADC. Histologically, degeneration due to Cabc injection was mild. T1rho nucleus values

correlated strongest with altered biomechanics, histological degeneration score, and loss of

GAGs.

Conclusions

T2- and T1rho quantitative MR-mapping detected early DDD changes. T1rho nucleus val-

ues correlated better than T2 and ADC with biomechanical, histological, and GAG changes.

Clinical implementation of quantitative MRI, T1rho particularly, could aid in distinguishing

DDD more reliably at an earlier stage in the degenerative process.

Introduction

Low-back pain (LBP) is a major medical problem and one of the most frequent reasons for

people to seek medical care in Western societies [1, 2]. Multiple large general population-

based studies in the last decade have provided strong evidence that changes in magnetic reso-

nance imaging (MRI) appearance of the lumbar intervertebral discs (IVD) correlate to degen-

eration and LBP symptoms [3–5] and may aid in the assessment of severity of degenerative

disc disease (DDD) [6]. Moreover, it has been shown that in teenagers and young adolescents,

early symptomatic DDD is prognostic for exacerbation of LBP complaints and progression of

DDD in adulthood [7–11]. This leads to school- and work absenteeism, disability and/or medi-

cal intervention, all adding to the enormous socio-economic costs of LBP [1, 12, 13].

At the onset of the degenerative cascade of DDD, the nucleus pulposus (NP) of the disc

loses proteoglycans (PGs), decreasing the discs’ capability to imbibe and retain water [14].

This is thought to be the initial step in the vicious degenerative cycle: the PG drop detrimen-

tally affects the IVDs biomechanical properties, hampering the discs ability to recover from

daily loading conditions, causing cumulative loss of IVD height and making the disc prone to

further degradation [15].

Reliable detection of early DDD is challenging. Currently, conventional T1w-, T2w- and

PD-MR imaging are successfully employed in the clinical work-up of low-back pain patients

with suspected (advanced) DDD [16]. When IVD height and T2-weighted (T2w) signals are

lower than adjacent counterparts and/or what can be expected from natural ageing, degenera-

tive disc disease (DDD) is considered as a possible causal factor for the LBP [17–19]. Inher-

ently, this is at a point where the disc has already suffered an MRI detectable amount of matrix

degradation and height loss, and therefore the changes in T2 signal are apparent only at on

advanced stage of DDD. An additional drawback is that MRI provides only limited specificity

on the structural origin of the signal intensity changes [20, 21]. A decrease in T2w signal is

generally attributed to a decrease in water content, but the source of signal intensity changes

cannot be specified. Furthermore, it is difficult to determine whether water loss is due to daily

activity and circadian (diurnal) rhythm (which is known to influence both water and height

parameters) [22], or a water content drop in the ECM due to a loss of proteoglycans (PG’s)

from the matrix and therewith the inability to retain water [23–25]. Finding matrix degenera-

tion on T2w-images can also be obscured or mimicked by influx of fluids during an infectious

or inflammatory process [26] or by the presence of free water in the lacunas of degraded ECM

[27]. In addition, T2w- and PD-imaging are not informative of the discs’ mechanical (dys)
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function, or the cause of degeneration and pain [28–32]. Taken together, it is clear that addi-

tional non-invasive imaging methods are desired to address early onset DDD [7, 19, 33–36].

New MRI techniques sensitive to proton-matrix interactions (PG-bound water), matrix-

organization, and water diffusion, rather than water-content only, could therefore prove more

meaningful in identifying early DDD [7, 33–36]. A promising MRI contrast for imaging the

PG-rich nucleus region is T1rho. T1rho is an MRI relaxation time parameter, which is sensi-

tive to low-frequency interactions between macromolecules, such as PGs, and bulk water.

T1rho correlates better with PG matrix content in cartilaginous tissue than T2 [27, 37]. More-

over, T1rho displays a higher dynamic (imaging) range than T2, which improves the ability to

detect changes in early osteoarthritis [38]. In a study by Nguyen et al. T1rho values in the

nucleus were reported to correlate strongly with GAG-content and mechanical properties,

such as swelling pressure [39].

The annulus fibrosus (AF) is a highly-organized tissue with a far lower PG content than the

nucleus. In healthy discs its porous structure aids fluid-exchange of the nucleus. This structural

organization and porosity is lost with degeneration [40]. Diffusion-tensor imaging (DTI) pro-

vides another promising MRI contrast for diagnosis of early onset DDD. DTI enables quantifi-

cation of the water apparent diffusion constant (ADC) in tissue, which strongly depends on

the structural integrity of the tissue [41, 42]. Recent reports on DTI of the IVD show that ADC

can distinct diurnal fluid flow changes [42] and regional variations (endplate to annulus) of

fluid flow changes in IVD degeneration [43, 44]. Furthermore, a study from Manac’h et al.

(2013) shows that ADC was the only MR sequence able to detect change during compression

of IVDs due to fluid-flow direction shifts [25].

The aim of this study was to assess whether early onset DDD can be detected using quanti-

tative T1rho and ADC mapping and compare results to T2-mapping. To this end, have used a

high-resolution 9T MRI scanner and an established ex vivo IVD degeneration model. Chon-

droïtinase ABC (Cabc) injection in the nucleus was used to selectively induce a small GAG

loss, to mimic the primary phase of disc degeneration [45–47]. IVDs were cultured in a biore-

actor for 20 days, this standardizes culture environment (pH stable, osmotic conditioned cul-

ture medium) and loading conditions (with continuous monitoring) to ensure comparability

between experimental groups [48–50]. We correlated T1rho and ADC mapping to accepted

parameters for IVD degeneration, including histological score, biochemical content (water

and GAG), and biomechanical parameters. Correlations were compared to conventional

quantitative T2-mapping.

Material & methods

IVD specimens

Cadaveric lumbar spines (n = 12) from healthy skeletally mature female (3–5 year-old) slaugh-

ter goats (Capra aegagrus hircus, sub breed Dutch white milk goat) were obtained from an

abattoir. The lumbar spine and IVD of this specific goat species has been extensively studied

and shown to closely resemble the human IVD with respect to biomechanical properties, cell

population (no notochordal cells) and matrix composition (18;21;39–41). Cadaver caprine

spines used in the current study were obtained after slaughter from an abattoir in The Nether-

lands (Firma vd Horst, Maarssen, N 52˚ 09.008’ E 005˚ 01.327’). As we use remnants of slaugh-

ter animals no approval of an ethical committee is required. Within 3 hours after slaughter, the

exterior of the lumbar spines was sterilized using a medical grade iodide-alcohol solution prior

to dissection under sterile conditions of the lumbar IVDs. IVDs with adjacent cartilaginous

endplates were dissected using an oscillating surgical saw. The discs were dissected by sawing

in two parallel planes as close as possible to the proximal and distal endplates, preserving the
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cartilaginous endplate but removing any excess bone tissue. The sawing planes were perpen-

dicular to the central axis of the individual motion segment. IVDs were cleaned with sterile

gauze to remove any debris, blood and muscle or ligament tissue (especially remainders of the

posterior longitudinal ligament). IVDs were inspected for signs of degeneration (hernia’s,

osteophytes, periarticular sclerosis, fused motion-segments) or anomalies. If an IVD had any

degenerative changes or aberrancies it was excluded. Mid-lumbar disc levels L2-L3, L3-L4 and

L4-L5 (n = 24 total) were used in the culture experiments, as these disc levels do not signifi-

cantly differ in height, size, mechanical properties or matrix content [46, 49–51]. Still, all

experimental groups had an equal distribution of disc levels. IVDs were then placed in a

6-wells plate with culture medium prior to MRI scanning and placement in the bioreactor.

IVDs with anomalies on the pre-experimental MRI were also excluded. After the pre-scan,

IVDs were randomly assigned to one of 3 experimental groups: 1. an injection control group

injected with 100uL of Phosphate Buffered Saline solution (PBS 10x; n = 8); 2. a Chondroïti-
nase ABC (Cabc) group injected with 100uL of 0.25u/ml Cabc solution (n = 8); or 3. a Chon-

droïtinase ABC (Cabc) group injected with 100uL of 0.5u/ml Cabc solution (n = 8). The

injection method was standardized; both groups were punctured via the left lateral annulus

with a 32G needle and the solution was injected slowly into the nucleus, prior to placement in

the culture chamber (Fig 1).

IVD culture and loading

IVDs were cultured for 20 days in individual culture chambers in the previously described

Loaded Disc Culture System (LDCS) (39), which is housed in an incubator at 37˚C, 95%

humidity, and 5% CO2. Discs were cultured in standard DMEM (Gibco, Paisley, UK) with

10% FBS (HyClone, Logan, UT), 4.5g/L glucose (Merck, Darmstadt, Germany), 50 μg/ml

ascorbate-2-phosphate (Sigma Aldrich, St. Louis, MO), 25 mmol/L HEPES buffer (Invitrogen),

10,000 u/ml penicillin, 250 μg/L streptomycin, 50 μgr/mL gentamicin and 1.5 μgr/mL ampho-

terizin B (all from Gibco). These culture conditions were previously optimized to maintain the

IVDs native properties in a bioreactor for up to 21 days [50, 52–54]. Medium (40 ml per cul-

ture chamber) circulated continuously (3ml/h) using a peristaltic pump and was exchanged

every 48 hours and checked for pH (7.2–7.4) and osmolarity (360–380 mOsm; measured by

cryoscopy).

During culture, IVDs were loaded with dynamic axial loading. Loading magnitudes and

frequency were derived from in vivo pressure measurements in a lumbar segment of a goat

during different activities (e.g. lying down, walking and jumping on a haystack) [55]. Firstly,

all discs were subjected to a low sinusoidal load (Low Dynamic Load, LDL; 0.09–0.11 MPa;

1Hz) during the first 8 hours of culture to investigate the response of the disc to initial low

axial loading: if an IVD showed large aberrancies in its baseline subsidence behavior, it was

excluded. However, in the current study this did not occur. All IVDs were subsequently sub-

jected to a simulated-physiological load (SPL), consisting of a sinusoidal load (1 Hz) alternat-

ing in magnitude every 30 minutes (between 0.09–0.11 MPa and 0.1–0.6 MPa) for 16 hours

per day, followed by 8 hours of LDL (Fig 2). In previous reports, we have shown that native

caprine disc mechanical properties and cell viability can be maintained over 21 days in LDCS

culture, when IVDs are loaded with this simulated-physiological loading [49, 50].

Mechanical data collection

Loading forces during culture were continuously measured with a Kam-e load cell (Bienfait,

Haarlem, The Netherlands); disc height changes were measured with an OADM12 opto-
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electric sensor (Baumer, Berlin, Germany). Both signals were digitized at 100 Hz. We used cus-

tomized programs in Matlab (Mathworks, Natick, MA, USA) to analyze the data.

To compare the recovery behavior between experimental groups, we quantified parameters

of the displacement relaxation curves during the rest phases. For this we fitted a stretched

exponential function to the curves. This allows us to characterize the behavior by three

descriptive parameters. Displacement relaxation curves during the rest-load sequence (8 hours

of LDL) at t = 481 hours (day 20) were used to quantify the effects of injection on IVD bio-

mechanical behavior and compare between groups. We fitted a stretched exponential function

to these displacement curves described by [56–58]:

d ¼ ðd1 � d0Þ½1 � eð� ðt=tÞbÞ� ð1Þ

Fig 1. Process map showing the IVD specimen handling steps after dissection of the lumbar caprine IVDs from the spine.

https://doi.org/10.1371/journal.pone.0191442.g001
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In this function δ (delta) is the displacement of the IVD at time (t); τ (tau) is the time con-

stant of the function and β (beta) is a stretch constant; δ1 (delta infinite) is the displacement at

t = infinite; δ0 (delta 0) is the displacement at the onset of the curve t = 0; τ (tau) represents the

time required to reach 63% of the asymptotic value after the onset of the loading phase. Param-

eter βmodulates the deviation from the standard exponential function described by tau, such

that for β< 1, deformation is faster than exponential for t< tau. When the stretch constant β
becomes increasingly smaller than 1 and closer to zero, this indicates that a single time con-

stant (tau) was insufficient to describe viscoelastic behaviors and suggests creep behavior is

involved due to deformation mechanisms (e.g. disc bulge and degenerative changes, fluid

transport and flow-independent deformations) [56–59]. The LDCS displacement data at t = 0

and δ0 in the stretched exponential were set at 0 for standardization.

Magnetic resonance imaging (MRI)

MRI scans were performed with a 9.4 T Bruker BioSpec horizontal-bore scanner equipped

with an Avance III console and Paravision 5.1 software (Bruker, Ettlingen, Germany). Directly

after dissection and inspection (within 8 hours of injection and culture), intervertebral discs

were put in a standard 50 mL plastic syringe for the pre-experimental scan. Directly after

Fig 2. Scheme of the daily simulated-physiological loading (SPL) regimes. On the Y-axis the axial load (MPa) as applied on the IVDs. All IVDs started with 8

hours of low dynamic load (LDL) around 0.1 MPa, after which a 16 hour SPL loading regime was applied as indicated in the caption, this diurnal regime is

repeated daily.

https://doi.org/10.1371/journal.pone.0191442.g002

Quantitative MRI in early intervertebral disc degeneration

PLOS ONE | https://doi.org/10.1371/journal.pone.0191442 January 30, 2018 6 / 21

https://doi.org/10.1371/journal.pone.0191442.g002
https://doi.org/10.1371/journal.pone.0191442


culture, IVDs were again placed in a 50 mL syringe for the post-experimental scan (within 8

hours after culture). For susceptibility matching and to prevent dehydration of the discs during

the MRI measurements, the syringe was filled with culture medium. The syringe with discs

was fixed horizontally in a 35-mm-diameter quadrature send-and-receive birdcage coil (Bru-

ker) and placed in the MRI scanner. The central axis of the disc was aligned with the B0 mag-

netic field of the MRI scanner, which means that the ligament fibers of the annulus fibrosis

were all aligned at approximately the same angle with B0, minimizing the orientational depen-

dence of the relaxation times caused by dipolar interactions of fiber-bound water molecules.

The MRI protocol comprised of 2D multi-slice T2-weighted (T2w) imaging, T2-mapping,

T1rho-mapping, and diffusion-tensor-imaging (DTI) for ADC-mapping. Unless stated other-

wise, orientation = axial, number of slices = 9, slice thickness = 1 mm, and field-of-view (FOV)

= 30 x 30 mm2. Other acquisition parameters were as follows. T2w: sequence = RARE, repeti-

tion time (TR) = 2500 ms, echo time (TE) = 36 ms, RARE-factor = 8, number of averages (NA)

= 8, encoding matrix = 384 x 384, reconstruction matrix = 384 x 384, acquisition

time = 16m0s. T2-mapping: sequence = multi spin-echo, TR = 3000 ms, TE = 9, 18, 27, 36, 45,

54, 63, 72, 81, 90, 99, and 108 ms, NA = 2, encoding matrix = 128 x 96, reconstruction

matrix = 128 x 128, acquisition time = 9m36s. T1rho-mapping: sequence = spin-lock prepara-

tion with gradient-echo readout, number of slices = 1, TR = 5000 ms, TE = 5 ms, spin-lock RF

amplitude = 1000 Hz, spin-lock time (SLT) = 5, 10, 20, 40, 60, 80, and 100 ms, NA = 1, encod-

ing matrix = 64 x 64, reconstruction matrix = 128 x 128, acquisition time = 37m20s. DTI:

sequence = spin-echo with Stejskal-Tanner diffusion gradients, TR = 2000 ms, TE = 20 ms,

number of diffusion gradient directions = 10, diffusion b-value = 1000 s/mm2, one image with

b-value = 0 s/mm2, NA = 1, encoding matrix = 128 x 64, reconstruction matrix = 128 x 128,

acquisition time = 23m28s. The T1rho pulse sequence was performed with a spin-lock prepa-

ration compensated for B1 and B0 field imperfections [60].

IVD region definition and image analysis

Calculation of the parametric maps was performed in Mathematica (Wolfram Research, Inc.).

Quantitative T2 values were calculated by pixel-wise fitting of signal intensities S to the equa-

tion S(TE) = S0 e-TE/T2. T1rho values from fits to the equation S(SLT) = S0 e-SLT/T1rho. The

apparent diffusion coefficient (ADC) was calculated using the Bruker Paravision 5.1 software.

Subsequently, the central slice of the stack of 9 slices through the middle of the intervertebral

disc was used for further evaluation. A region of interest (ROI) outlining the nucleus pulposus

was manually drawn in Mathematica (Fig 3). Quantitative parameter values (T2, T1rho, and

ADC) are reported as mean ± standard deviation within the ROI. The 3D-T1w images were

exported in Dicom format and imported in RadiAnt (Medixant, Poland) Dicom viewing soft-

ware. The length tool was used to quantify disc height.

Histology

Directly after culture and MRI scanning, the IVDs were divided in halves; the left half was

used for histological sectioning and the right half was used for matrix water and GAG content

measurements. Histology halves were fixed in formaldehyde and decalcified using Kristensen’s

solution (formic acid decalcifier buffered with formate). A midsagittal tissue slice of 1 mm was

cut with a scalpel and embedded separately in paraffin for sagittal sectioning. The rest of the

IVD was embedded and cut for transverse sectioning. Three 3-μm thick sections were cut

using a standard microtome and subsequently stained with a standard H&E, safranin-O, and

alcian-blue. Histological classification of degeneration was performed according to the Rutges

score. This is a descriptive histological score that quantifies degenerative changes in the NP,
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AF and endplate using both transverse and sagittal sections. On a continuous scale, 0–2 signi-

fies a healthy non-degenerated disc, 3–5 mild degeneration, 6–8 moderate degeneration, 9–11

severe degeneration, and a score of 12–15 being completely degenerated [46, 61].

Water and GAG measurement

Quantitative biochemistry was performed after culture on tissue samples taken from nucleus,

inner annulus (iAF), and outer annulus (oAF) regions of the IVDs (n = 8 for each region).

Water content of each sample was calculated from measured wet (ww) and dry weights (dw),

before and after freeze drying (speedvac). Dry weight samples (~1 mg) were digested in a

papain-digestion (5 mmol/L L-cysteine, 50 mmol/L EDTA, 0.1 M sodium acetate, pH titrated

to 5.53 using 1 M NaOH and 3% (v/v) papain) at 65uC. Papain-digestion suspension (10 mL)

was analyzed using a 1.9-dimethyl-methylene blue (DMMB) assay (Biocolor Ltd., Carrickfer-

gus, UK) in accordance with the manufacturer’s description and measuring light absorption of

samples with a spectrophotometer at a wavelength of 656 nm. Measured amount of glycosami-

noglycans (GAG) for each sample was normalized to tissue dry weight.

Statistical analysis

Descriptive data are presented as means ± standard deviation (SD). Effects of intervention on

MRI quantitative values, day 20 stretch-exponential parameters and post-experimental mean

percentage water and GAG content were tested using Generalized Estimating Equations

(GEEs). An exchangeable correlation structure was used to take into account correlation

between outcome parameters observed on IVDs of the same goat. Robust standard errors were

Fig 3. IVD Region definition. High resolution T2w MRI of a mid-height transverse slice (left) with a schematic representation of the five ROIs drawn in the image

on the right. The nucleus, inner- and outer-annulus region were separated by their signal intensity and morphological appearance on the transverse image. The

anterior and posterior outer-annulus were defined as the most anterior and posterior 120o of outer-annulus laminae. The lateral section comprised the 60o

sections in between anterior and posterior outer-annulus on each side. The mean signal intensity of the three outer-annulus regions was calculated from the signal

intensity measured in two separate areas on opposite sides of the IVD. The posterior notch was omitted for analyzes because of lack of signal homogeneity.

https://doi.org/10.1371/journal.pone.0191442.g003
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used to take into account possible misspecification of the correlation structure. The models

contained fixed effects for intervention (PBS, 0.25 Cabc and 0.5 Cabc) and/or fixed effects for

ROI (when comparing means between nucleus and inner-annulus and means within the

outer-annulus regions). Similarly GEE analysis was used to compare the mean percentage

change in T2 and T1rho. For this comparison the fixed effect was an indicator for T2% change

versus T1rho % change and an exchangeable correlation structure was used to account for cor-

relation within IVD. In case of a significant effect of intervention or ROI, posthoc tests were

compared with a Bonferroni correction in order to decide which pairs of interventions or

ROIs differed significantly in terms of their means. William’s test was used for comparison of

dependent correlations (e.g. correlation between %water and T2 post-experiment and correla-

tion between %water and T1rho post-experiment). GEE analyzes were performed in SPSS 24

(IBM Corporation, Armonk, NY, USA). William’s test was performed in R 3.2.5. version using

the psych package (The R Foundation for Statistical Computing, 2016). P-values below 0.05

were considered significant.

Results

Baseline values of the pre-experiment scans are shown in Table 1 for all three MR sequences

per disc region and per lumbar level. There were no significant differences in values of regions

between scanned level. For T2, T1rho and ADC mean regional values differed significantly

between the NP and iAF (T2 and T1rho p< 0.001; ADC p = 0.02). For T2 and T1rho the sepa-

rate oAF regions also differed significantly (all p< 0.001). For ADC the separate outer-annulus

values did not differ significantly. Between experimental groups, discs from the three lumbar

levels were equally distributed (three L2-L3 and L3-L4 discs, and two L4-L5 discs) and no sig-

nificant differences in pre-experimental (baseline) scan values were found (mean ± standard

deviation MRI values of pre- and post-experimental T2, T1rho, and ADC scans per disc region

are shown in S1 Table with all pre- and post-experimental MRI values per disc region).

MRI pre- and post-experimental scan values

Fig 4 shows representative images of pre- and post-experiment maps (top to bottom; T2,

T1rho, and ADC) of a 0.5Cabc injected IVD.

The difference in paired pre- and post-experimental scan values per sample are expressed

as mean % loss (post to pre) in Fig 5. Between the experimental groups the pre-to-post differ-

ence in T2 and T1rho are larger (differ more from 100%) for the Cabc injections in general

and for the higher dose in particular. The signal loss post to pre was significant (p< 0.001) in

all three experimental groups in the nucleus region for T2 and T1rho (Fig 5). When comparing

signal losses between experimental groups, T2 signal loss in the nucleus was significantly larger

in the 0.25 Cabc group (p = 0.04) and the 0.5Cabc group (p< 0.001) when compared to

changes in the PBS group. T1rho post-experiment signal decrease was also significantly larger

in both the 0.25 Cabc (p = 0.001) and the 0.5 Cabc (p< 0.001) group when compared to

changes in the PBS group (Fig 5A and 5B). T2 and T1rho changes for the inner- and outer

annulus regions in the Cabc groups did not differ significantly when compared to the PBS con-

trol group. No ADC signal change was significantly different in any region when compared to

PBS (Fig 5C, 5D and 5E).

Correlation of MRI with recovery behavior

Changes in recovery behavior due to injection of PBS or Cabc are shown in Table 2. As

expected, Cabc injection had a dose-related effect on the IVD’s poro-elastic behavior. The tau

(time-constant) increases significantly more compared to PBS in the 0.25 Cabc (p = 0.024) and
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0.5 Cabc (p< 0.001), and 0.5 more than 0.25 Cabc (p = 0.005). The beta (stretch-constant)

decreased significantly in the 0.5 Cabc group when compared to PBS (p = 0.006). The delta

infinite (height loss) also changed significantly in the 0.5 Cabc groups when compared to PBS

(p< 0.001) and 0.25 Cabc (p = 0.02).

The measures of disc biomechanics during recovery at day 20 are correlated to the post-

experimental MR scan values (Fig 6). T2 and T1rho nucleus values have an equal negative

moderate correlation with tau (r = -0.675 and r = -0.691, respectively; not significantly differ-

ent). For beta both have a moderate positive correlation.

In Fig 7 the correlations are shown between the T2, T1rho and ADC post-experiment

nucleus measurements and the histological score for degeneration. The Rutges score in the

PBS group was the lowest; 2 to 5 (mean score = 3,6), corresponding with no or mild degenera-

tive changes. Both Cabc groups had scores ranging between 4 and 9 (0.25 Cabc mean

score = 5.8; 0.5 Cabc mean score = 6.2), showing mild to moderate degenerative changes.

T1rho values correlated strongly with the degeneration score (r = -0.854), significantly stron-

ger than T2 and ADC nucleus values (p = 0.005 for T1rho compared to T2 and p< 0.001 for

T1rho compared to ADC).

The relation between matrix-content in the nucleus (water and GAG) as measured after the

experiment and the post-experiment MR values are shown in Fig 8. T2 had a strong positive

correlation with water-content (r = 0.863), significantly stronger than T1rho (r = 0.634;

p = 0.01) and ADC (r = 0.692; p = 0.047) (Fig 7). T1rho showed the strongest positive correla-

tion with GAG-content (r = 0.872), significantly stronger than T2 (r = 0.807; p = 0.03) and

ADC (r = 0.620; p = 0.01).

Discussion

In the current study, we correlated quantitative T2, T1rho and ADC values to disc mechanical

behavior, IVD histology and water- and GAG content, to assess their potential for early DDD

detection. We demonstrated in our IVD model that quantitative MR mapping with T2 and

T1rho, is sensitive to small degenerative changes in the IVDs matrix. To our knowledge, this is

Table 1. Baseline T2, T1rho, and ADC values (mean ± SD) per ROI and disc level.

ROI Level T2 (ms) T1rho (ms) ADC (x10-3 mm2/s)

NP L2-L3 65.8 ± 10.3 133.2 ± 24.2 1.2 ± 0.2

L3-L4 61.6 ± 11.7 122.6 ± 42.3 1.3 ± 0.2

L4-L5 63.4 ± 10.7 130.1 ± 25.3 1.2 ± 0.2

iAF L2-L3 40.2 ± 4.9 74.8 ± 7.2 1.2 ± 0.1

L3-L4 40.6 ± 7.2 75.1 ± 8.2 1.1 ± 0.2

L4-L5 40.2 ± 4.7 73.8 ± 6.1 1.2 ± 0.1

oAFa L2-L3 26.0 ± 4.1 36.0 ± 5.4 1.1 ± 0.4

L3-L4 26.7 ± 2.7 37.3 ± 3.8 1.0 ± 0.2

L4-L5 24.2 ± 5.4 34.8 ± 3.0 1.0 ± 0.4

oAFl L2-L3 30.6 ± 5.4 49.0 ± 12.0 1.2 ± 0.3

L3-L4 27.5 ± 5.7 44.0 ± 6.0 1.0 ± 0.1

L4-L5 30.3 ± 3.1 44.5 ± 6.9 1.1 ± 0.3

oAFp L2-L3 27.8 ± 3.1 40.8 ± 5.7 1.1 ± 0.3

L3-L4 26.3 ± 2.9 39.2 ± 3.5 1.0 ± 0.2

L4-L5 27.2 ± 3.2 38.5 ± 4.5 1.0 ± 0.3

https://doi.org/10.1371/journal.pone.0191442.t001
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Fig 4. Representative quantitative parameter maps (T2, T1rho, and ADC) of a mid-level transverse slice of 0.5 Cabc-injected IVD pre- and post-experiment.

Color scales are 0-150ms, 0-200ms, and 0–2.5x10-3 mm2/s, for T2, T1rho, and ADC, respectively.

https://doi.org/10.1371/journal.pone.0191442.g004
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the first study to directly compare the correlation of quantitative high-resolution T2, T1rho,

and ADC maps with actual disc recovery behavior.

With the use of a 9.4T MRI we were able to image the lumbar caprine IVD in high anatomi-

cal detail. We quantitatively mapped the IVD’s 5 distinct regions on T2, T1rho, and ADC

images and found significant differences between the nucleus, inner-annulus, and the anterior,

Fig 5. Bar graphs showing mean ± SD post-to-pre differences (mean difference of sample paired post-experiment value to pre-experiment differences) for

all three experimental groups. Results are shown of the T2 (a) and T1rho (b) values in the nucleus and ADC in the outer-annulus; anterior (c), lateral (d) and

posterior (e). PBS clearly had the least influence on quantitative MRI values for all three parameters, whereas 0.25 and 0.5 Cabc show larger loss of signal in the

nucleus. Asterisk (�) indicates p-values below 0.05.

https://doi.org/10.1371/journal.pone.0191442.g005

Table 2. Stretched exponential fit parameters for the recovery curves at day 20.

Exp. group τ (tau) β (beta) δ1 (delta infinite)

PBS 3.08 ± 0.61 1.01 ± 0.12 -4.6 ± 0.8

0.25 Cabc 3.74 ± 0.62 0.87 ± 0.14 -5.2 ± 0.9

0.5 Cabc 5.54 ± 1.41 0.70 ± 0.24 -6.4 ± 1.2

Descriptive parameters (mean ± SD) from the stretched-exponential fits of the recovery deformation curves during

the last LDL loading at day 20 for all three experimental groups.

https://doi.org/10.1371/journal.pone.0191442.t002
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Fig 6. Correlation of post-experiment T2 (top row) and T1rho (bottom row) nucleus values with day 20 stretched-exponential parameters tau, beta and

delta infinite.

https://doi.org/10.1371/journal.pone.0191442.g006

Fig 7. Correlation of post-experiment MR T2, T1rho, and ADC nucleus values with Rutges histological degeneration score.

https://doi.org/10.1371/journal.pone.0191442.g007
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lateral and posterior outer-annulus. These regions have previously been described to be dis-

tinct on histological appearance, as well as their biochemical composition of the matrix in both

human and caprine IVDs [46, 49, 50, 62–65]. The current baseline MR values found for these

IVD regions closely resemble values found in similar regional measurements of human lumbar

discs [66–70]. Furthermore, baseline values correspond to those found for Pfirrmann grade

1–2 (healthy) human lumbar IVDs, while post-experiment data is similar to grade 2–4 mild

degenerative IVDs [67, 69, 71, 72]. This further validates our Cabc-induced degeneration

model in lumbar caprine discs as a comparative model for early human IVD degeneration.

T1rho values pre- and post-experiment showed a larger range of values than T2. This is in

part due to T1rho having a larger dynamic range than T2 [73–76]. However, the differences

found in the correlation of T2 and T1rho and disc mechanical properties, as expressed by the

stretched-exponential parameters, show that T1rho values are also more closely linked to

actual disc function. Both T2 and T1rho correlated to the Cabc dose-dependent tau increase.

T1rho’s higher correlation to beta, is most likely due to T1rho’s stronger correlation to GAG-

content. The R-values found in the current study are comparative to T1rho-GAG correlations

reported in human [73, 77]. The stretch-constant beta deviates further from 1 (to zero) when

poro-elastic properties are lost in favor of more linear (solid-elastic) material behavior [59]. In

the case of the IVD, this has been shown to be caused by loss of GAGs (and therewith water)

from the NP [78] and structural damage to the disc [57]. Taken together, when lower T1rho

Fig 8. Correlation of post-experiment MR T2, T1rho, and ADC nucleus values to GAG and water content.

https://doi.org/10.1371/journal.pone.0191442.g008
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values are found, this is representative for the biomechanical deterioration of the poro-elastic

properties of the IVD, which is the first step in the degenerative cascade of DDD.

Our data on T2- and T1rho in correlation with recovery behavior are in agreement with

numerous other studies. In reports from Mwale et al. (bovine tail IVD) and Antoniou et al.
(human lumbar IVDs) T2 and T1rho values were found to correlate (r-values between 0.6–

0.7) with compressive modulus and hydraulic permeability of NP and AF tissue samples of

various degenerative states [79, 80]. On human subjects with in vivo discography measured

“opening pressure” (OP), Borthakur et al. reported lower T1rho values and pressures in painful

discs with moderate correlation (r = 0.54) of T1rho and OP [81]. Various other reports have

shown similar correlations of T1rho to intradiscal pressure [39, 82].

In addition, an important finding in the current study is that in the same IVD samples,

T1rho also correlates strongly to the histological degeneration score (r = 0.854) and signifi-

cantly better than T2 and ADC. The Rutges degeneration score is an adaptation of the tradi-

tional Thompson and Boos scores [61]. Besides sagittal and transvers H&E stained sections, it

includes a safranin-O and alcian-blue staining of transverse IVD sections. The latter two are

both PG-content sensitive staining techniques [83]. Therefore, we feel the found correlation

further exemplifies T1rho’s strong affinity with actual GAG-content in the IVDs matrix.

A study limitation can be observed by the loss of T2 and T1rho after culture in all groups,

even the PBS injected IVDs. Culture medium is hyperosmotic, but comparable to reported

osmotic pressures in vivo [53, 54, 84, 85]. This may still have caused slight efflux of water dur-

ing culture and loading, explaining the overall loss. However, the LDCS culture conditions do

not seem influence T2 values greatly, nor the correlation of T2 measures with water-content

(r = 0.863), as these are in line with reports in literature for both goat and human lumbar IVDs

[86–89].

Another potential limitation of the current study is that the pre- and post-experiment scans

were performed while IVDs were unloaded for up to 8 hours and submerged in PBS. All discs

are hereby enabled to return to their maximum hydrated and height recovered state [50].

Healthy discs will respond to this environment differently than degenerated discs [52, 54].

This could potentially exacerbate the effects of Cabc-induced degeneration or diminish water-

content loss under axial compression in degenerative discs. We observe a slightly higher over-

all water-content (76–89%) in the IVDs when compared to data from our previous reports

(70–85%) [46, 49, 50]. However, we can still quantify T2 and water-content differences

between the experimental groups, which refutes the latter. Conversely, the much higher corre-

lation of T2 (r = 0.863) with water-content than T1rho (r = 0.634) could be a resultant of an

exacerbating effect of the scanning circumstances (i.e. unloaded and submerged in PBS),

although found correlations are consistent with those found in other studies [39, 77, 87, 89–

91]. This underlines a very important message, namely that T2 measurements are sensitive to

the interaction of degenerative changes, disc environment, and scanning circumstances,

whereas T1rho measures –correlating more to GAG content– are not.

The current study does not provide much support for the utility of ADC in detection of

early DDD. In part this is due to the limitations of the study design, because we only injected

the NP with Cabc. The ADC of the AF can be expected to be most sensitive to degenerative

changes, because of its highly structured organization. However, the limited culture period

makes degenerative changes in the AF as a result of the injection in the NP improbable. Other

study limitations could also attribute to a lack of signal change specifically for the ADC: while

scanned the IVDs were unloaded, at room temperature, and submerged. The influence of this

static hydrated equilibrium on the ADC signal is unknown. However, others have found no

influence of an unloaded or compressive state of IVDs with respect to T1 and T2 [25].
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In summary, the current region-specific results and found correlations in our lumbar cap-

rine IVD model, demonstrate that T1rho nucleus values correlate with GAG content, histolog-

ical degeneration, as well as disc mechanical properties to a higher degree than T2 and ADC.

We speculate selective implementation of T1rho, e.g. when (early) DDD is expected but T2

images do not confirm the suspicion, could aid in observing degenerative changes with more

certainty in clinical practice [92]. Potentially, with improved patient selection at an early dis-

ease stage with the use of optimized MRI techniques, early intervention (using therapeutics

such as anti-inflammatory-, disease-modifying- or regenerative drugs) might yield more suc-

cess in relieving symptoms and preventing progression of the IVDs degenerative cascade.
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