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Abstract

High-dimensional time-series data from a wide variety of domains, such as neuroscience, are 

being generated every day. Fitting statistical models to such data, to enable parameter estimation 

and time-series prediction, is an important computational primitive. Existing methods, however, 

are unable to cope with the high-dimensional nature of these data, due to both computational and 

statistical reasons. We mitigate both kinds of issues by proposing an M-estimator for Reduced-

rank System IDentification ( MR. SID). A combination of low-rank approximations, ℓ1 and ℓ2 

penalties, and some numerical linear algebra tricks, yields an estimator that is computationally 

efficient and numerically stable. Simulations and real data examples demonstrate the usefulness of 

this approach in a variety of problems. In particular, we demonstrate that MR. SID can accurately 

estimate spatial filters, connectivity graphs, and time-courses from native resolution functional 

magnetic resonance imaging data. MR. SID therefore enables big time-series data to be analyzed 

using standard methods, readying the field for further generalizations including non-linear and 

non-Gaussian state-space models.
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1. Introduction

High-dimensional time-series data are becoming increasingly abundant across a wide variety 

of domains, spanning economics [13], neuroscience [10], and cosmology [28]. Fitting 

statistical models to such data, to enable parameter estimation and time-series prediction, is 

an important computational primitive. Linear dynamical system (LDS) models are amongst 

the most popular and powerful, because of their intuitive nature and ease of implementation 

[15]. The famous Kalman Filter-Smoother is one of the most popular and powerful tools for 

time-series prediction with an LDS, given known parameters [14].

In practice, however, for many LDS’s, the parameters are unknown and must be estimated in 

a process often called system identification [17]. To the best of our knowledge, currently 

there does not exist a methodology that provides parameter estimates and predictions for 

ultra-high-dimensional time-series data (e.g. the dimension of the time series, p > 10, 0 0 0).

The challenges associated with high-dimensional time-series estimation and prediction are 

multifold. First, naïvely, such models include dense p × p matrices, which are often too large 

to store, much less invert in memory. Several recent efforts to invert large sparse matrices 

using a series of computational tricks show promise, though they are still extremely 

computationally expensive [4,12].

Second, estimators behave poorly due to numerical instability. Reduced-rank LDS models 

can partially address this problem by reducing the number of latent states. [7]. However, 

without further constraints, the dimensionality of the latent states would be reduced to such 

an extent that it would significantly decrease the predictive capacity of the resulting model. 

Third, even after addressing these problems, the time to compute all the necessary quantities 

can be overly burdensome. Distributed memory implementations, such as those built with 

Spark, might help overcome this problem. However, it would lead to additional costs and 

set-up burden, as it would require a Spark cluster [29].

We address all three of these issues with our M-estimator for Reduced-rank System 

IDentification ( MR. SID). By assuming the dimensionality of the latent state space is small 

(i.e. reduced-rank), relative to the observed space dimensionality, we can significantly 

improve computational tractability and estimation accuracy. By further penalizing the 

estimators, with ℓ1 and/or ℓ2 penalties, via utilizing prior knowledge on the structure of the 

parameters, we gain further estimation accuracy in this high-dimensional but relatively low-

sample size regime. Finally, by employing several numerical linear algebra tricks, we can 

reduce the computational burden significantly.

These three techniques combined enable us to obtain highly accurate estimates in a variety 

of simulation settings. MR. SID is, in fact, a generalization of the now classic Baum-Welch 

expectation maximization algorithm, commonly used for system identification in much 

lower dimensional linear dynamical systems [20]. We show numerically that the 

hyperparameters can be selected to minimize prediction error on held-out data. Finally, we 

use MR. SID to estimate functional connectomes from the motor cortex. MR. SID enables 

us to estimate the regions, rather than imposing some prior parcellation on the data, as well 

as estimate sparse connectivity between regions. MR. SID reliably estimates these 
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connectomes, as well as predicts the held-out time-series data. To our knowledge, this is the 

first time a single unified approach has been used to estimate partitions and functional 

connectomes directly from the high-dimensional data.

This work presents a new analysis of a model which has only been implemented in low-

dimensional settings, and paves the way for high-dimensional implementation. Though 

primitive, it is a first step for essentially any high-dimensional time series analysis, control 

system identification, and spatiotemporal analysis. To enable extensions, generalizations, 

and additional applications, the code for the core functions and generating each of the 

figures is freely available on Github (https://github.com/shachen/PLDS/).

2. The model

In statistical data analysis, one often encounters some observed variables, as well as some 

unobserved latent variables, which we denote as Y = (y1,…, yT) and X = (x1,…, xT) 

respectively. By the Bayes rule, the joint probability of X and Y is P(X, Y) = P(Y|X)P(X). 

The conditional distribution P(Y|X) and prior P(X) can both be represented as a product of 

marginals:

The generic time-invariant state-space model (SSM) makes the following simplifying 

assumptions:

(1)

A linear dynamical system (LDS) further assumes that both terms in (1) are linear Gaussian 

functions, which when written as an iterative random process, yield the standard matrix 

update rules:
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where A is a d × d state transition matrix and C is a p × d generative matrix. xt is a d × 1 

vector and yt is a p × 1 vector. The output noise covariance R is p × p, while the state noise 

covariance Q is d × d. Initial state mean π0 is d × 1 and covariance V0 is d × d.

The model can be thought of as a continuous version of the hidden Markov model (HMM), 

where the columns of C stand for the hidden states and one observes a single state at time t. 
Unlike HMM, LDS (1) allows one to observe a linear combination of multiple states. A is 

the analogy of the state transition matrix, which describes how the weights xt evolve over 

time. Another difference is that LDS contains two white noise terms, which are captured by 

the Q and R matrices.

Without applying further constraints, the LDS model itself is unidentifiable. Three minimal 

constraints are introduced for identifiability:

Constraint 1: Q is the identity matrix

Constraint 2: the order of C′ s columns is fixed based on their norms

Constraint 3: V0 = 0

Note that the first two constraints follow directly from Roweis and Ghahramani (1999), 

which try to eliminate the degeneracy in the model. Additionally, V0 is set to zero, meaning 

the starting state x0 = π0 is an unknown constant instead of a random variable. We put this 

constraint on, because in the application that follows only one single chain of time series 

observed. To estimate V0, multiple series of observations are required.

The following three constraints are further applied to achieve a more useful model:

Constraint 4: R is a diagonal matrix

Constraint 5: A is sparse

Constraint 6: C has smooth columns

The constraint on R is natural. Consider the case where the observations are high 

dimensional, which means that the R matrix is very large. One cannot accurately estimate 

the many free parameters in R with a limited amount of observations. Therefore, some 

constraints on R will help with inferential accuracy, by virtue of significantly reducing 

variance while not adding too much bias. For example, R can be set to multiples of the 

identity matrix, or more generally, a diagonal matrix. A static LDS model with a diagonal R 
is equivalent to Factor Analysis, while one with multiples of the identity R matrix leads to 

Principal Component Analysis (PCA) [21].

The A matrix is the transition matrix of the hidden states. In many applications, it is 

desirable for A to be sparse. An ℓ1 penalty on A is used to impose the sparsity constraint. In 

the applications that follow, A is a central construct of interest representing a so-called 

connectivity graph, and the graph is expected to be sparse.

Similarly, in many applications, it is desirable for the columns of C to be smooth. For 

example, in neuroimaging data analysis, each column of C can be a signal in the brain. 

Having the signals spatially smooth can help extract meaningful information from the noisy 
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neuroimaging data. In this context, an ℓ2 penalty on columns of C is used to enforce 

smoothness.

With all those constraints, the model becomes:

(2)

where A is a sparse matrix and C has smooth columns.

Let θ = {A, C, R, π0} represent all unknown parameters, while P(X, Y) represents the full 

likelihood. Then, combining model 2 and the constraints on A and C leads us to an 

optimization problem:

(3)

where λ1 and λ2 are tuning parameters and ‖·‖p represents the p-norm of a vector. 

Equivalently, this problem has the following dual form:

where .  and  are d × d and p × d dimensional matrix spaces 

respectively.  is the p × p diagonal matrix space and πd×1 is the d dimensional vector 

space.

3. Parameter estimation

Replacing log P(X, Y) in problem (3) with its concrete form, one gets

(4)

Denote the target function in the curly braces as Φ(θ, Y, X). Then a parameter estimation 

algorithm is one that optimizes Φ(θ, Y, X) with regard to θ = {A, C, R, π0}.
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Parameter estimation for LDS has been investigated extensively in statistics, machine 

learning, control theory, and signal processing research. For example, in machine learning, 

the exact and variational inference algorithms for general Bayesian networks can be applied 

to LDS. In control theory, the corresponding area of study is known as system identification.

Specifically, one way to search for the maximum likelihood estimation (MLE) is through 

iterative methods such as Expectation-Maximization (EM) [22]. The EM algorithm for a 

standard LDS is detailed in Zoubin and Geoffrey (1996) [11]. An alternative is to use 

subspace identification methods such as N4SID and PCA-ID, which give asymptotically 

unbiased closed-form solutions [8,27]. In practice, determining an initial solution with 

subspace identification and then refining it with EM is an effective approach [6].

However, the above approaches are not directly applicable to optimization problem (3) due 

to the introduced penalty terms. We therefore developed an algorithm called M-estimation 

for Reduced-rank System IDentification ( MR. SID), as described below. MR. SID is a 

generalized Expectation-Maximization (EM) algorithm.

3.1. E Step

The E step of EM requires computation of the expected log likelihood, Г = E[ log P(X, Y)|

Y]. This quantity depends on three expectations: E[xt|Y],  and . for 

simplicity, we denote their finite sample estimators by:

(5)

Expectations (5) are estimated with a Kalman filter/smoother (KFS), which is detailed in the 

Appendix. Notice that all expectations are taken with respect to the current estimations of 

parameters.

3.2. M Step

Each of the parameters in θ = {A, C, R, π0} is estimated by taking the corresponding partial 

derivatives of Φ(θ, Y, x), setting them to zero, and then solving the equations. The details of 

derivations can be found in the Appendix.

Let the estimations from the previous step be denoted as , and 

the current estimations as . The estimation for the R matrix 

has a closed form, as follows:

(6)

where diag extracts the diagonal of the in-bracket term, as we constrain R to be diagonal in 

Constraint 4.
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The estimation for π0 has a closed form. The relevant term  is minimized only 

when .

The estimation for the C matrix also has a closed form. Using a vectorization trick as in [25], 

one can derive C’s closed form solution with the Tikhonov regularization [24]

(7)

For matrix A, its estimation is similar to that of C, but slightly more complex. The 

complexity is that A does not have a closed form solution due to the ℓ1 penalty term. 

However, it can be solved numerically with a Fast Iterative Shrinkage-Thresholding 

Algorithm (FISTA) [5]. The FISTA algorithm is detailed in the Appendix.

With FISTA, matrix A updates as follows:

(8)

The parameters in the EM algorithm are initialized with the singular value decomposition 

(SVD). In addition, several matrix computation techniques are utilized to make the 

algorithm highly efficient and scalable. The details can be found in the Appendix. 

Combining the initialization, E-step, and M-step, a complete EM algorithm for MR. SID is 

addressed in Table 1.

4. Simulations

4.1. Simulation setup

Two simulations of different dimensions are performed to demonstrate the parameter 

estimations, computational efficiency, and predicting ability of MR. SID. In the low 

dimensional setting, p = 300, d = 10, and T = 100. A is first generated from a random 

matrix, then elements with small absolute values are truncated to zero to make it sparse. 

Afterwards, a multiple of the identity matrix is added to A. Finally, A is scaled to make sure 

its eigenvalues fall within [−1, 1], thus avoiding diverging time series. Matrix C is then 

generated as follows. Each column contains random samples from a standard Gaussian. 

Then, each column is sorted in ascending order. Covariance Q is the identity matrix and 

covariance R is a multiple of the identity matrix. Initial state π0 = 0 is a zero vector. 

Pseudocode for data generation can be found in the Appendix.

In the high-dimensional setting, p = 10000, d = 30, and T = 100. The parameters are 

generated same in the manner. To evaluate the accuracy of estimations, we elect to define the 

distance between two matrices A and B as

(9)
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where CA, B is the correlation matrix between columns of A and B, P(n) is a collection of all 

the permutation matrices of order n, and P is a permutation matrix.

Both the standard LDS and MR. SID are applied to the simulation data. Estimation 

accuracies are plotted against penalty sizes in Fig. 1. From the plot, one sees that the 

prediction accuracy first improves, then drops when the penalties increase. MR. SID is also 

used for time series prediction, and the result is plotted in Fig. 2. The prediction accuracy 

peaks when the penalty coefficients λA and λC are around 10−3. This makes sense, as the 

same (λA, λC) pair also gives the best estimations of A and C, as seen in Fig. 1. The latter 

observation provides us a way to pick tuning parameters in real applications: one can use a 

collection of tuning parameter pairs (λA, λC) for estimations (with train data) and 

subsequently for predictions (with test data). The pair that gives the most accurate out-of-

sample predictions is picked. This trick is used in Section 5.

5. Application

5.1. Data and motivation

MR. SID is applied to two datasets in this section: the Kirby 21 data and the Human 

Connectome Project (HCP) data.

The Kirby 21 data were acquired from the FM Kirby Research Center at the Kennedy 

Krieger Institute, an affiliate of Johns Hopkins University [16]. Twenty-one healthy 

volunteers with no history of neurological disease each underwent two separate resting state 

fMRI sessions on the same scanner. The data are preprocessed with FSL, a comprehensive 

library of analysis tools for fMRI, MRI, and DTI brain imaging data [23]. Specifically, FSL 

is used for spatial smoothing with a Gaussian kernel. Then MR. SID was applied on the 

smoothed data. The number of scans was T = 210.

The Human Connectome Project (HCP) is a systematic effort to map macroscopic human 

brain circuits and their relationship to behavior in a large population of healthy adults 

[9,18,26]. All scans consist of 1200 time points. A comprehensive introduction of the dataset 

is given by [26].

Extensive research has been done to analyze the above datasets. Methods such as PCA and 

ICA (Independent Component Analysis) have been applied to obtain spatial decompositions 

of the brain, as well as the functional connectivity among the decomposed regions. Thus, for 

our first application, we applied MR. SID to the Kirby 21 data with the intent of obtaining 

both a spatial decomposition graph and a connectivity graph. As a second application, MR. 

SID was applied to the HCP data to predict brain activities. For both datasets, the motor 

cortex, which contains p = 7396 voxels, is analyzed instead of the whole brain.

5.2. Results

MR. SID is first applied to two subjects (four scans) from the Kirby 21 dataset. To pick the 

optimal penalty size, different values of λA = λC were attempted. Their values range from 

10−10 to 104. Then the estimated models with each combination were used to make 

predictions. We use the value of 10−5, as it gives the most accurate out-of-sample 
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predictions. To determine the number of latent states, d, the profile likelihood method 

proposed by Zhu et al. [30] is utilized. The method assumes the eigenvalues of the data 

matrix follow a Gaussian mixture, and uses profile likelihood to pick the optimal number of 

latent states. Apply the method to all four scans, the numbers of latent states are 11, 6, 14 

and 15 respectively. Their average, d = 11, is used.

First, let’s look at the estimations of A matrix. Let A12 stand for the estimated A matrix for 

the second scan of subject one. Similar logic applies to the A11, A21, A22, and C matrices. 

These matrices contain subject-specific information. 4 matrices leads to 6 unique pairs. 

Intuitively, the pair (A11, A12) and (A21, A22) should have the highest similarity, as each 

comes from two scans of the same subject. This idea is validated by Table 2, which 

summarize similarities among the 4 matrices. The distance measure in Eq. (9) was used. The 

Amari error [2], which is another permutation-invariant measure of similarity, is also 

provided. A smaller d(A, B) or Amari error means higher similarity.

Next, let’s look at the C matrices. 3D renderings of the columns of C11 are shown in Fig. 3. 

The 3D regions in the plot are comparable to existing parcellations of the motor cortex. As 

an example, the blue region in Fig. 3 accurately matches the dorsomedial (DM) parcel of the 

five-region parcellation proposed by Nebel MB et al. [19].

Matrix A and C have natural interpretation here. Each yt is a snapshot of brain activity at 

time t. The columns of C are interpreted as time-invariant brain “point spread functions”. At 

each time point, the observed brain image, yt, is a linear mixture of latent co-assemblies of 

neural activity xt. Matrix A describes how xt evolves over time. A is a directed graph if one 

treats each neural assembly as a vertex. Each neural assembly is spatially smooth, and 

connectivity across them is empirically sparse. This naturally fits into the sparsity and 

smoothness assumptions of MR. SID.

To summarize, MR. SID gives a spatial decomposition of the motor cortex, as well as the 

sparse connectivity among the decomposed regions. The connectivity graph contains 

subject-specific information and can correctly group scans by subject. The decomposed 

regions are spatially smooth and are comparable to existing parcellations of the motor 

cortex.

As a second application, MR. SID is applied to the HCP data. The goal is to predict future 

brain signals using historical data. HCP data has T = 1200 time points. The first N = 1000 

(about 80%) were used as training data, while the rest were used for out-of-sample test. For 

comparison purposes, the PCA/SVD method (to initialize MR. SID) and the LDS/HMM 

model are also fitted. Parameter estimations are first performed for all three methods, then 

the estimated parameters were fed into Eq. (2) to make k-step predictions into the future. 

Pseudocode for k-step ahead predictions is given in the Appendix.

The prediction accuracies are shown in Fig. 4. From the top panel, one can see that MR. SID 

has significantly higher prediction accuracies than SVD for the first 150 steps. Considering 

that SVD is used to initialize MR. SID, this observation demonstrates that MR. SID makes 

real improvement on top of SVD. The middle panel is a sample plot of the true time series 
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and predictions. MR. SID gives more accurate predictions and its prediction interval covers 

the true signal. Note that the interval gets wider for longer term predictions, as the errors 

from each step accumulate. The bottom panel compares MR. SID models of different 

penalties: when there is no penalty, MR. SID gives identical result as LDS/HMM; with the 

optimal penalty picked with training data, it gives more accurate predictions than LDS.

6. Discussion

We have taken a first step towards the modeling and estimation of high-dimensional time-

series data. The proposed method balances both statistical and computational considerations. 

Indeed, much like the Kalman Filter-Smoother for modeling time-series data, and the Baum-

Welch algorithm for system identification act as “primitives” for time-series data analysis, 

MR. SID can act as a primitive for similar time-series analysis when the dimensionality is 

significantly larger than the number of time steps. Via simulations we demonstrated the 

efficacy of our methods. Then, by applying the proposed approach to fMRI scans of the 

motor cortex of healthy adults, we identified limited sub-regions (networks) from the motor 

cortex.

In the future, this work could be extended in two important directions. First, the assumption 

of conditionally independent observations given latent states remains a challenge. The 

covariance structures in the observation equation, R, should be generalized and prior 

knowledge could be incorporated into it [1]. The idea is that R should be general enough to 

be flexible, but sufficiently restricted to make the model useful. Many other methods, e.g. 

those that use tridiagonal and upper triangular matrices, could also be considered. 

Mohammad et al. have discussed the impact of autocorrelation on functional connectivity, 

which also provides some direction for extension [3]. In addition, the work can also be 

extended on the application side. Currently, only data from a few subjects have been 

analyzed. As a next step, the model can generalize to a group version and be used to analyze 

more subjects. The A matrix estimated by MR. SID could potentially be used as a measure 

of fMRI scan reproducibility.
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Fig. 1. 
x axis is tuning parameter λC under log scale and y axis is the distance between truth and 

estimations; λA is increasing proportionally with λC. One can see that in both the low 

dimensional and hight dimensional setting, estimation accuracies for A and C first increase 

then decrease as penalty increases.
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Fig. 2. 
Estimation and prediction accuracies. The x-axis represents the penalty size on a log scale. 

The y-axis represents the estimation and prediction accuracies. Note that the penalty which 

yields the most accurate estimation also gives the best prediction.
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Fig. 3. 
3D rendering of columns of matrix C11: estimation for the first scan of subject one.
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Fig. 4. 
Predictions on HCP data: (1) MR. SID and SVD predictions over time, with accuracies 

measured as mean squared error (MSE). (2) Sample time series plot. True signals and 

predictions are both averaged over a sample of 20 voxels. The dotted blue lines represents 

the 60% prediction interval of MR. SID. Values were log-scaled for plotting. (3) Prediction 

accuracies of LDS/HMM and MR. SID.
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Table 1

The complete EM algorithm.

Algorithm EM Algorithm for MR. SID

1. Initialize θ = {A, C, R, π0} with SVD

2. While convergence criteria are unmet E Step

3. Update the expectations in Eq. (5) with the KFS M Step

4.

, as in Eq. 6

5.

6. Update Cnew, as in Eq. (7)

7. Update Anew with FISTA, as in Eq. (8)
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Table 2

Similarities among estimated A matrices.

dA, B A11 A12 A21 A22

A11 0

A12 0.076(0.88) 0

A21 0.105(1.05) 0.095(1.08) 0

A22 0.095(1.02) 0.095(1.09) 0.085(0.98) 0
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