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ABSTRACT

In recent years, several radiotracers that selective-
ly bind to pathological tau proteins have been de-
veloped. Evidence is emerging that binding patterns 
of in vivo tau positron emission tomography (PET) 
studies in Alzheimer’s disease (AD) patients close-
ly resemble the distribution patterns of known neu-
rofibrillary tangle pathology, with the extent of 
tracer binding reflecting the clinical and pathologi-
cal progression of AD. In Lewy body diseases 
(LBD), tau PET imaging has clearly revealed corti-
cal tau burden with a distribution pattern distinct 
from AD and increased cortical binding within the 
LBD spectrum. In progressive supranuclear palsy, 
the globus pallidus and midbrain have shown in-
creased binding most prominently. Tau PET pat-
terns in patients with corticobasal syndrome are 
characterized by asymmetrical uptake in the motor 
cortex and underlying white matter, as well as in 
the basal ganglia. Even in the patients with multi-
ple system atrophy, which is basically a synucle-
inopathy, 18F-flortaucipir, a widely used tau PET 
tracer, also binds to the atrophic posterior puta-
men, possibly due to off-target binding. These dis-
tinct patterns of tau-selective radiotracer binding in 
the various degenerative parkinsonisms suggest 
its utility as a potential imaging biomarker for the 
differential diagnosis of parkinsonisms.
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INTRODUCTION

11C-Pittsburgh compound B (11C-PIB) is a radio-
tracer that selectively binds to amyloid-β (Aβ) in se-
nile plaques, which are a pathological hallmark of 
Alzheimer’s disease (AD). This radiotracer has en-
abled a new era of pathology-targeted molecular 
imaging of neurodegenerative diseases. The recent 
development of 18F-labelled radiotracers that are se-
lective for Aβ, including 18F-flutemetamol, 18F-flor-
betapir, 18F-florbetaben, and 18F-NAV4694 (former-
ly 18F-AZD4694), has also facilitated the application 
of Aβ-imaging for clinical use.1-4 Positron emission 
tomography (PET) using these Aβ-selective radio-
tracers clearly mirrors the extent of Aβ accumulation 
in the brain,5,6 thereby enabling an earlier diagnosis 
of prodromal AD.7,8 However, because neocortical 
Aβ pathology generally plateaus at an early stage of 
AD,9 Aβ-imaging is less effective in delineating the 
progression of AD.10

Paired helical filaments (PHF) of hyperphosphor-
ylated tau protein are a major constituent of neuro-
fibrillary tangles (NFT), the second major patho-
logical hallmark of AD.11 NFTs first appear in the 
transentorhinal region, spreading hierarchically to 
the neighboring limbic areas and distant associa-
tion neocortices before finally reaching the primary 

cortices.11 Because the distant propagation of tau pa-
thology is preceded by an early and widespread 
dissemination of Aβ pathology in the neocortex,9,12 
cortical tau burden is a better indicator of the clini-
cal progression of AD.13,14 In addition, in contrast to 
the limited number of Aβ-related diseases, the exis-
tence of a wider clinical spectrum of tauopathies has 
necessitated the development of molecular imaging 
biomarkers for tau protein.15

The development of the first tau-selective radio-
tracer, 18F-THK523, in 2011 was another major break-
through.16 Although this PET radiotracer is currently 
no longer used for clinical research due to serious 
drawbacks that occurred in human studies,17 it en-
couraged the development of better tau PET radio-
tracers that are now used in clinical research (Fig-
ure 1).

Over recent years, clinical tau PET studies have 
primarily focused on the AD spectrum. Tau PET al-
lows clear visualization of AD tau pathology with a 
high selectivity for PHF-tau18,19 and is now general-
ly accepted as a useful imaging biomarker for assess-
ing the pathological and clinical progression of 
AD.20-22 In contrast to AD, postmortem autoradiog-
raphy and a smaller number of in vivo tau PET stud-
ies in non-AD tauopathies have consistently report-
ed weaker radiotracer binding to non-AD tau than 

Figure 1. Structures of tau-selective radiotracers.
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to PHF-tau in AD.18,19,23-32

In this review, we focus on recent progress in the 
knowledge of tau-selective tracers and clinical tau 
PET studies in degenerative parkinsonisms, such as 
Parkinson’s disease (PD), dementia with Lewy bod-
ies (DLB), progressive supranuclear palsy (PSP), cor-
ticobasal syndrome (CBS), and multiple system at-
rophy (MSA).

CHARACTERISTICS OF TAU- 
SELECTIVE RADIOTRACERS

18F-THK series (18F-THK-523, 18F-THK-5105, 
18F-THK-5317, and 18F-THK-5351)

The first tau-selective radiotracer, 18F-THK523, ex-
hibited a 10-fold stronger binding affinity to patho-
logical tau protein than to Aβ fibrils in vitro, selective 
binding to PHF-tau pathology in autoradiography 
studies with postmortem AD tissue, and stronger 
uptake in the brains of tau transgenic mice when 
compared to the wild-type or APP/PS1 transgenic 
mice.16 In contrast to these promising results, subse-
quent in vivo human PET studies with 18F-THK523 
were quite disappointing due to high levels of white 
matter binding and low standardized uptake value 
ratio (SUVR) values, even in AD patients.17 Region-
al differences in 18F-THK523 binding in AD were only 
discernible with partial volume correction of the 
PET images. This regional difference was almost 
eliminated without the correction. Therefore, 18F-
THK523 has been deemed unsuitable for clinical 
tau PET imaging studies.17 To overcome these is-
sues, improvements to the 18F-THK series have fo-
cused on reducing white matter binding, and the 
second generation of the 18F-THK series, namely, 
18F-THK-5117, 18F-THK-5317, and 18F-THK-5351, 
have exhibited much lower white matter binding 
than their predecessor. The most recently devel-
oped radiotracer in the 18F-THK series is 18F-THK- 
5351, which has a higher affinity for PHF-tau and 
more rapid washout from white matter than the pre-
vious version, 18F-THK-5117.33 For this reason, 18F-
THK-5351 PET achieves higher contrasts between 
true binding and background and a much lower de-
gree of white matter binding than 18F-THK-5117 
and is now considered a useful imaging biomarker 
for AD.

Even with these positive findings for 18F-THK- 
5351, white matter binding is still a significant issue 

in comparison to other tau-selective radiotracers.17 
High white matter binding may mask small increas-
es in 18F-THK-5351 binding in the gray matter due 
to an overflow of PET signals from the adjacent 
white matter. Likewise, 18F-THK-5351 PET still ex-
hibits elevated binding in the pons. This may affect 
accurate determination of tau pathology in the brain-
stem. Additionally, similar to 18F-flortaucipir, off-
target binding to the basal ganglia, even in healthy 
elderly individuals, is another common issue for the 
18F-THK series.

A recent 18F-THK-5351 PET study reported seri-
ous problems relating to monoamine oxidase-B 
(MAO-B) binding.34 MAO-B is widely expressed in 
the brain, most prominently in the basal ganglia, 
followed by the insular cortex.35 This topographical 
pattern was replicated in several in vivo PET stud-
ies.36-38 In healthy controls and patients with mild 
cognitive impairment, AD, and PSP, one study con-
ducted three 18F-THK-5351 PET scans acquired be-
fore and after 10 mg of the MAO-B inhibitor, selegi-
line, was orally administered and again at 9–28 days 
after the selegiline treatment.34 Surprisingly, a single 
oral dose of selegiline dramatically reduced 18F-THK- 
5351 standardized uptake values by 37–52% across 
all regions, most prominently in the thalamus (52%) 
and basal ganglia (51%), and even in the cerebellar 
cortex (42%), which is generally used as a reference 
tissue. This suppressive effect was sustained until 
the third PET scan.34 Therefore, the MAO-B binding 
characteristics of 18F-THK-5351 may limit its applica-
bility in tau imaging.

18F-flortaucipir (formerly referred to as 
18F-AV-1451 or 18F-T807)

18F-flortaucipir has exhibited a 25-fold greater bind-
ing affinity to PHF-tau than to Aβ, and very low 
white matter binding in several in vivo human PET 
studies.39 As a result, 18F-flortaucipir PET enables 
high contrasts between binding and background, 
which are helpful for detecting small increases in 
cortical binding. Unlike the similar radiotracer, 18F-
T808, which shows a high skull uptake in some sub-
jects due to serious defluorination,40 18F-flortaucipir 
does not exhibit defluorination issues in human.39,41 
Due to these positive findings, 18F-flortaucipir has 
been most widely used for clinical tau imaging 
studies.

Autoradiography studies of postmortem tissues 



4

J Mov Disord  2018;11(1):1-12
JMD

have consistently reported a stronger binding affin-
ity of 18F-flortaucipir to PHF-tau in AD, in contrast 
to its much weaker binding affinity to straight fila-
ment tau in non-AD tauopathies.18,19 Therefore, 18F-
flortaucipir is better for tau imaging studies in AD 
rather than in various other non-AD tauopathies.

However, there are two significant issues with 18F-
flortaucipir. First, unlike the other types of tau-se-
lective radiotracers, which show stable SUVR val-
ues after a certain time point, 18F-flortaucipir has 
unstable kinetics, causing the SUVR values to steadi-
ly increase even after 60 mins.41 This characteristic 
can limit quantification attempts, especially in lon-
gitudinal studies,42 although data acquired 80–100 
mins post-injection can provide reliable SUVR val-
ues that correlate with the binding values deter-
mined by compartmental modeling.43,44 A second 
problem is the widely reported off-target binding. 
18F-flortaucipir also exhibits a high affinity for mel-
anin-producing cells, including the substantia nig-
ra, skin epithelium, retinal pigment epithelium, and 
melanomas. It, therefore, binds strongly to the sub-
stantia nigra, in which a high concentration of neu-
romelanin exists.18,45 18F-flortaucipir also strongly 
binds to the basal ganglia, even in healthy elderly in-
dividuals with an absence of tau pathology.18,45 One 
study showed a possible interaction with iron due 
to a correlation between age-related increases in bas-
al ganglial iron content and 18F-flortaucipir binding 
in the basal ganglia.46 Nigral and basal ganglial off-
target binding is problematic for tau imaging, espe-
cially in parkinsonisms. The choroid plexus is anoth-
er off-target binding site. Although one study found 
tangle-like structures that were immunoreactive to 
phosphorylated tau antibody in the epithelial cells 
in the choroid plexus,47 the exact mechanism of this 
off-target binding remains unknown. Off-target bind-
ing in the choroid plexus also disturbs the precise 
quantitation of underlying hippocampal binding and 
can be an obstacle to early detection of hippocam-
pal tau burden.

18F-flortaucipir binds to MAO-A with a high affin-
ity,48 but unlike 18F-THK-5351, there have been no 
reports to date of 18F-flortaucipir binding to MAO-B.

18F-MK6240
18F-MK6240 is the most recently developed tau-

selective radiotracer, and, thus, there is little infor-
mation about it. One autoradiographical PET study 

in monkeys reported a 5-fold higher binding poten-
tial of 3H-MK6240, no off-target binding, and no 
MAO-A binding when compared to 3H-flortaucip-
ir.48,49 In a small number of healthy elderly subjects 
and AD patients, 18F-MK6240 exhibited fast wash-
out, high binding to the cortical regions vulnerable 
to AD pathology, and a good correlation with the 
severity of cognitive impairment in AD.50 Larger 
clinical PET studies are needed to better character-
ize the 18F-MK6240 radiotracer.

11C-PBB3
Unlike 18F-labelled compounds with longer half-

lives (109 mins), the shorter (20 mins) half-life of 
11C-labelled compound permits two PET scans in 
the same day. Therefore, 11C-labelled compounds 
are suitable for research-based PET, while 18F-labelled 
compounds are suitable for clinical PET scans. 11C-
PBB3 is the only 11C-labelled tau-selective radiotrac-
er that has an approximate 50-fold higher affinity for 
PHF-tau than that for Aβ.51 An in vivo 11C-PBB3 PET 
study also exhibited high tracer binding to the corti-
cal regions of AD, similar to other types of tau-selec-
tive radiotracers.51 More importantly, PBB3 also has 
a higher affinity for 4-repeat (4R) or 3R tau than 18F-
flortaucipir and is considered to be a tau PET tracer 
specific for a broader range of tau.52 However, 11C-
PBB3 is rapidly metabolized in plasma, and radio-
active metabolites that enter into the brain can con-
taminate PET signals. This problem makes 11C-PBB3 
unsuitable for quantification.53,54 In addition, high 
tracer retention in the venous sinus in all human sub-
jects may contaminate PET signals around the ve-
nous sinus.51

LEWY BODY DISEASES

PD with normal cognition (PDNC), PD with mild 
cognitive impairment (PDMCI), PD with dementia 
(PDD), and DLB all share common clinical charac-
teristics and neuropathology and are now consid-
ered to be part of the Lewy body diseases (LBD) spec-
trum.55,56 In addition to the well-known α-synuclein 
pathologies presenting as Lewy bodies and Lewy 
neurites, AD-type pathologies containing Aβ and 
PHF-tau are also found in LBD.57,58 Although the 
prevalence of Aβ-positivity seen in the 11C-PIB PET 
studies of LBD, can be highly variable,59-64 a clearly 
increasing trend for the overall prevalence of Aβ-
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positivity within the LBD spectrum (5% in PDM-
CI, 34% in PDD, and 68% in DLB) has been ob-
served.65 Therefore, a similar increasing trend of 
cortical binding in tau PET studies can be expected.

All 18F-flortaucipir PET studies in PD patients to 
date have consistently shown no increased binding 
in the basal ganglia or in the cerebral cortex.25,66-69 
PD patients exhibited approximately 13% lower 18F-
flortaucipir binding in the substantia nigra com-
pared to controls,25,66,67 due to off-target binding of 
18F-flortaucipir to neuromelanin pigment, which 
normally exists in the substantia nigra and is lost in 
PD (Figure 2).18,19 Reduced 18F-flortaucipir binding 
was more prominent in the lateral part of the sub-
stantia nigra than in the medial part. However, ni-
gral 18F-flortaucipir binding did not correlate with 
the motor severity of PD and did not reflect clinical 
asymmetry.25,66

DLB is positioned at the end of the LBD spectrum 
and can, therefore, be expected to exhibit the great-
est cortical 18F-flortaucipir binding. The first 18F-flor-
taucipir PET study in a small number of patients 
within the LBD spectrum [7 DLB, 8 PD with cogni-
tive impairment (PDCI), and 9 PDNC] showed an 
increasing trend of cortical 18F-flortaucipir binding.68 
18F-flortaucipir binding was increased in the inferi-
or temporal and precuneus cortices in DLB and in 

the same area in PDCI, with a lower level of statisti-
cal significance. The binding in the inferior tempo-
ral and precuneus cortices correlated with the sever-
ity of cognitive impairment only in the composite 
group with DLB and PDCI.68

The second 18F-flortaucipir PET study involved 
19 DLB and 19 AD patients.70 Compared to the con-
trols, the DLB patients showed greater binding in 
the posterior temporo-parietal and occipital corti-
ces, in which 18F-flortaucipir binding correlated with 
the global cortical 11C-PIB binding. Interestingly, the 
medial temporal regions were relatively preserved 
in the DLB patients when compared to the AD pa-
tients, and for this reason, medial temporal 18F-flor-
taucipir binding may be useful for differential diag-
nosis between DLB and AD. However, they found 
no correlation between the 18F-flortaucipir binding 
and the severities of cognitive impairment and par-
kinsonian motor deficits.70

A recent 18F-flortaucipir PET study in a larger num-
ber of patients within the LBD spectrum (18 DLB, 
22 PDCI, and 12 PDNC) showed a clearly increas-
ing trend of cortical 18F-flortaucipir binding within 
the LBD spectrum.69 In this report, 18F-flortaucipir 
binding was dependent on Aβ-positivity, as deter-
mined by 18F-florbetaben PET. Compared to the 
controls, the Aβ-positive DLB group showed signif-
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Figure 2. Different nigral 18F-flortaucipir binding in PD and PSP. A: Compared to the controls, 18F-flortaucipir SUVR 
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icantly increased binding in the sensorimotor, pri-
mary visual, and parieto-temporal cortices, and the 
Aβ-positive PDCI group showed slightly increased 
binding in the middle and inferior temporal and 
parahippocampal cortices without surviving multi-
ple comparisons. All Aβ-negative DLB, PDCI, and 
PDNC groups showed no increased binding in any 
of the cortical regions. In DLB, there was only a weak 
correlation between the severity of the cognitive im-
pairment and binding in the prefrontal, sensorimo-
tor, posterior cingulate, and occipital cortices.69

In summary, the cortical tau burden observed in 
the 18F-flortaucipir PET study increases within the 
LBD spectrum (Figure 3). DLB patients exhibit the 
greatest tau burden, with distribution patterns dis-
tinct from AD. Cortical Aβ accumulation may play 
a greater role in pathological tau accumulation than 

α-synuclein does. The future development of radio-
tracers targeting α-synuclein will be helpful in in-
vestigating the interaction between the three patho-
logical proteins, as well as for the differential diagnosis 
of LBD.

PROGRESSIVE SUPRANUCLEAR 
PALSY

Unlike the 3R and 4R tau isoform found in AD 
pathology, the 4R tau isoform is associated with 
PSP.15 In PSP, central subcortical gray matter struc-
tures, such as the globus pallidus, subthalamic nu-
cleus, and substantia nigra, are most vulnerable to 
the accumulation of pathological tau protein. In 
addition to these regions, the striatum, pontine nu-
clei, dentate nucleus, and cerebellar white matter 

Figure 3. Group-averaged 18F-flortaucipir PET images in various degenerative parkinsonisms. In LBD, 18F-flortaucipir PET shows an in-
creasing pattern of cortical binding with the advancement of the disease. In addition, different degenerative parkinsonisms show distinct 
patterns of 18F-flortaucipir binding; compared to the controls, lower binding has been observed in the substantia nigra in PD, in contrast to 
higher binding in PSP, as well as higher binding in the globus pallidus and dentate nucleus in PSP, asymmetrically increased binding in the 
basal ganglia, substantia nigra and white matter underlying the motor cortex in CBS, and asymmetrically increased binding in the putamen 
in MSA. Color bars represent SUVR values. LBD: Lewy body diseases, HC: healthy controls, PDNC: Parkinson’s disease with normal cog-
nition, PDMCI: Parkinson’s disease with mild cognitive impairment, PDD: Parkinson’s disease with dementia, DLB: dementia with Lewy 
bodies, AD: Alzheimer’s disease, PSP: progressive supranuclear palsy, CBS: corticobasal syndrome, MSA: multiple system atrophy, C/I: 
contralateral or ipsilateral to the clinically more affected side, SUVR: standardized uptake value ratio, PET: positron emission tomography.
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are the second most vulnerable regions. Tau pathol-
ogy is also frequently found in the frontal gray and 
white matter, predominantly in the posterior re-
gion, while tau accumulation in the parietal cortex 
occurs in severely affected patients.71,72 Although the 
pathological tau burden is most severe in the PSP-
Richardson’s syndrome compared to the PSP-par-
kinsonism and PSP-pure akinesia with gait freezing 
types, all PSP subtypes commonly feature the promi-
nent involvement of the central subcortical gray mat-
ter structures, and the clinical severity of PSP corre-
lates with pathological tau burden.72

The first attempt at in vivo PET imaging of path-
ological tau protein in PSP was performed with 
2-(1-6-[(2-18F-fluoroethyl) (methyl) amino]-2-naph-
thylethylidene) malononitrile (18F-FDDNP) PET, 
which non-selectively binds to tau, as well as to Aβ.73 
In this study, PSP patients exhibited increased 18F-
FDDNP binding primarily in the subcortical regions, 
including the striatum, thalamus, subthalamic nu-
cleus, midbrain, and cerebellar white matter. How-
ever, PSP rating scale (PSPRS) scores correlated only 
with the binding in the frontal cortex.73

Following the development of the tau-selective 
radiotracers, six 18F-flortaucipir PET studies, in-
cluding one case report and one 18F-THK5351 PET 
study, were published in 2017.25,26,30-32,67,74 All of 
these studies commonly found highly increased ra-
diotracer binding in the globus pallidus and mid-
brain relative to controls. Five 18F-flortaucipir PET 
studies additionally found increased binding in the 
striatum,25,30-32,67 and four studies additionally ob-
served increased binding in the cerebellar dentate 
nucleus.25,30,32,67 Only one study showed additionally 
increased 18F-flortaucipir binding in the frontal 
cortex.32 No correlation between disease severity 
measured by the PSPRS scores and radiotracer 
binding in any regions was found in any of the 
three studies,25,30,67 while two studies found a weak 
correlation between the PSPRS scores and binding 
in the globus pallidus,31 or that in the midbrain, 
thalamus, dentate nucleus, precentral cortex, sup-
plementary motor area, middle frontal cortex, and 
inferior frontal cortex (Figures 2 and 3).32 It is very 
interesting to note that PSP patients can be dis-
criminated by the high 18F-flortaucipir binding in 
the globus pallidus with 93% sensitivity and 100% 
specificity.25 A recent large study including 33 PSP 
patients and 26 PD patients replicated this finding 

(85% sensitivity and 92% specificity).67

In contrast to the high in vivo 18F-flortaucipir 
binding and a high amount of hyperphosphorylat-
ed tau in the globus pallidus and midbrain, autora-
diography studies of postmortem tissues of PSP 
brains have shown weak binding of 18F-flortaucipir, 
as with other types of non-AD tauopathies.18,19,23,30 
It is still questionable whether high in vivo 18F-flor-
taucipir binding in the globus pallidus and mid-
brain in PSP is true specific binding with a weak af-
finity or a result of unknown off-target binding.

Although there has been some variability seen in 
tau PET radiotracer binding, increased binding in 
the globus pallidus and midbrain, which are the 
most vulnerable to tau pathology in PSP, is consid-
ered a characteristic tau PET finding in PSP (Fig-
ures 2 and 3). Tau PET may, therefore, be helpful 
for the differential diagnosis of PD and PSP.

CORTICOBASAL SYNDROME

CBS is a pathologically heterogeneous clinical 
syndrome characterized by parkinsonism, dysto-
nia, apraxia, alien hand phenomenon, and myoclo-
nus.75-77 Corticobasal degeneration (CBD) is a path-
ological diagnosis accounting for almost half of CBS 
patients.78-82 Considering the prevalence of other 
types of non-AD tauopathies in CBS, non-AD tau 
pathology can be found in over 70% of CBS pa-
tients.78-82 Tau pathology featuring the 4R-isoform is 
found most prominently in the superior frontal and 
parietal cortices, as well as the perirolandic areas 
and their underlying white matter, and subcortical 
gray matter structures.83,84

Excluding three CBS patients who showed asym-
metrically increased 18F-flortaucipir binding in the 
parietotemporal cortex due to AD,27,85 three 18F-flor-
taucipir PET studies including one pathologically 
confirmed CBD patient and one 18F-THK5351 study, 
have been reported.24,27,81,86,87 One autoradiography 
study with 3H-THK5351 showed strong 3H-THK5351 
binding in the frontal subcortical white matter, es-
pecially in the thread pathology.86 Moreover, bind-
ing intensity in the autoradiography results corre-
lated with the extent of tissue tau pathology.86 In 
contrast, another autoradiography study with 18F-
flortaucipir showed very weak binding in a small 
part of the basal ganglia in which the greatest tau 
pathology existed, but antemortem in vivo 18F-flor-
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taucipir PET binding correlated with tau burden, as 
measured by immunohistochemical stains of post-
mortem tissue.81

The first tau PET study of 18F-THK5351 in five 
CBS patients revealed highly increased binding to 
the perirolandic cortical gray matter and underly-
ing white matter, as well as in the basal ganglia, that 
was predominant in the side contralateral to the 
clinically more-affected side.86 Likewise, two subse-
quent 18F-flortaucipir PET studies supported this 
finding.24,27 Interestingly, these 18F-flortaucipir PET 
studies commonly found a good correlation be-
tween the severity of parkinsonian motor deficit 
and 18F-flortaucipir binding in the internal capsule27 
or the precentral gray matter and underlying white 
matter.24

Tau PET distribution patterns in CBS patients 
are characterized by increased radiotracer binding 
predominantly in the motor cortex and the under-
lying white matter, as well as in the basal ganglia (Fig-
ure 3). Although 18F-flortaucipir binding is general-
ly much weaker in CBS compared to AD, cortical 
or parkinsonian motor deficits may be attributable 
to tau burden in motor-related cortical gray matter 
and white matter, and basal ganglia.

MULTIPLE SYSTEM ATROPHY

Glial cytoplasmic inclusion (GCI) containing 
α-synuclein is a pathological hallmark of MSA, and 
can, therefore, be considered a synucleinopathy.88 
Although co-localization of tau pathology in GCIs 
has been reported in some patients with MSA,89-93 
tau pathology was found to be very rare in a post-
mortem study with a large number of MSA pa-
tients.94 Therefore, it may be unlikely that there is 
increased 18F-flortaucipir binding in the putamen, 
where GCI pathology is most prominent. However, 
one 18F-flortaucipir PET study of four consecutive 
parkinsonian-type MSA patients clearly showed 
asymmetrically increased 18F-flortaucipir binding 
in the atrophic posterior putamen, which was more 
prominent in the side ipsilateral to the greater pu-
taminal atrophy, together with lower uptake of do-
pamine transporter PET contralateral to the clini-
cally more affected side.95 Considering the very low 
prevalence of tau pathology in MSA, it is unlikely 
that 18F-flortaucipir bound specifically to tau pro-
tein co-localized in the atrophic putamen. Instead, 

the unexpected results could be attributable to un-
known off-target binding.

In 18F-flortaucipir PET, basal ganglial off-target 
binding is commonly observed even in healthy el-
derly individuals.18,41,45 Interestingly, the topography 
of subcortical nuclei showing 18F-flortaucipir bind-
ing is similar to that of iron in the brain, although an 
autoradiography study failed to find a spatial match 
within each region.19 Greater iron content was dem-
onstrated in the putamen of the MSA brains,96-98 an 
effect that was replicated in quantitative MR imag-
ing studies of brain iron.99,100 A recent iron-sensitive 
quantitative magnetic resonance imaging and 18F-
flortaucipir PET study showed a direct correlation 
between age-related increases in basal ganglial iron 
content and 18F-flortaucipir binding.46 Therefore, 
there may be an in vivo interaction between 18F-flor-
taucipir and iron. Another possible mechanism for 
this unexpected binding can be explained by off-
target binding to the MAO-B expressed by reactive 
astrocytes, although 18F-flortaucipir binding to MAO-
B has not been proven.101 However, regardless of 
the nature of the putaminal 18F-flortaucipir binding 
in MSA, 18F-flortaucipir PET may be useful for the 
differential diagnosis of parkinsonism due to its 
binding topography in the basal ganglia (Figure 3).

CONCLUSIONS

Although 18F-flortaucipir is the most promising 
tau-selective radiotracer for imaging various tauop-
athies among the tau-selective radiotracers already 
validated by clinical PET studies, it has drawbacks: 
off-target binding, unstable kinetics, weak affinity 
to non-AD tau, and possible MAO binding. Never-
theless, 18F-flortaucipir binds in distinct patterns in 
different degenerative parkinsonisms and is, there-
fore, a potential imaging biomarker for the differ-
ential diagnosis of parkinsonisms. Next generation 
tau-selective radiotracers without the problems that 
are common for the first generation radiotracers 
will be more helpful for the visualization of tau pa-
thology in degenerative parkinsonisms, as well as 
in AD. Furthermore, tau PET will be a good imaging 
biomarker for monitoring the response to patholo-
gy-targeted immunotherapy in these tauopathies.
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