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Impairments in response inhibition and salience attribution (iRISA) have been
proposed to underlie the clinical symptoms of drug addiction as mediated by
cortico-striatal-thalamo-cortical networks. The bulk of evidence supporting
the iRISA model comes from neuroimaging research that has focused on cor-
tical and striatal influences with less emphasis on the role of the thalamus.
Here, we highlight the importance of the thalamus in drug addiction, focusing
on animal literature findings on thalamic nuclei in the context of drug-seeking,
structural and functional changes of the thalamus as measured by imaging
studies in human drug addiction, particularly during drug cue and non-
drug reward processing, and response inhibition tasks. Findings from the
animal literature suggest that the paraventricular nucleus of the thalamus,
the lateral habenula and the mediodorsal nucleus may be involved in the rein-
statement, extinction and expression of drug-seeking behaviours. In support of
the iRISA model, the human addiction imaging literature demonstrates
enhanced thalamus activation when reacting to drug cues and reduced
thalamus activation during response inhibition. This pattern of response was
further associated with the severity of, and relapse in, drug addiction.
Future animal studies could widen their field of focus by investigating the
specific role(s) of different thalamic nuclei in different phases of the addiction
cycle. Similarly, future human imaging studies should aim to specifically
delineate the structure and function of different thalamic nuclei, for example,
through the application of advanced imaging protocols at higher magnetic
fields (7 Tesla).

This article is part of a discussion meeting issue ‘Of mice and mental
health: facilitating dialogue between basic and clinical neuroscientists’.

The Impaired Response Inhibition and Salience Attribution (iRISA) model
of drug addiction proposes that reduced response inhibition and excessive
salience attribution to drug cues, along with reduced salience attributed to non-
drug rewards, are core clinical symptoms observed in drug addiction in human
populations [1,2]. These impairments have been found to map onto dysfunctions
of both the prefrontal cortex (PFC) and the striatum. The PFC shows enhanced
activation with acute drug intake and exposure to drug-associated cues, but
reduction in activation during higher-order emotional and cognitive processing,
especially during protracted abstinence. The thalamus is integral to the circuits
that underlie the reward [3] and response inhibition processes mediating salience
and control processes in goal-oriented behaviours [4-7].

This review aims to highlight the importance of the thalamus as a central
structure within the cortico-striato-thalamo-cortical loops that are central to
addiction and study the fit of the thalamus into the iRISA model of addiction.
After providing a brief overview of the cortico-striato-thalamo-cortical reward
circuit and the pertinent anatomical connections of the thalamus within this
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Figure 1. A simplified schematic of thalamus connections relevant to drug addiction. LHb, lateral habenula; MD, mediodorsal nucleus; PVT, paraventricular nucleus
of the thalamus; Pf/CM, parafascicular/centromedian nuclei; VL/VA, ventral lateral/ventral anterior nuclei; GP, globus pallidus; LPFC, lateral prefrontal cortex; MPFC,

medial prefrontal cortex; OFC, orbitofrontal cortex.

circuit, this review highlights animal research investigating
the role of the thalamus in drug-seeking behaviours, focusing
on the paraventricular nucleus of the thalamus (PVT), the
lateral habenula (LHb; a part of the epithalamus) and
the mediodorsal (MD) nucleus, followed by reviewing struc-
tural and functional changes observed in the thalamus based
on human imaging studies in drug addiction, with a particu-
lar focus on thalamic responses to drug cues, non-drug
reward processing and response inhibition. Animal and
human studies have inherent differences in the approaches
used, with animal studies most often precisely targeting thal-
amic nuclei, whereas human studies are looking at thalamus
activation more globally. Animal studies are further able to
investigate the behavioural effects of disruption to thalamus
activity using lesion and deep brain stimulation methods.
Human studies are able to better examine the relationship
between the thalamus and systems level changes across the
whole brain in addiction. Detailed study selection criteria
are presented in electronic supplementary material, table S1
(for animal studies) and electronic supplementary material,
table S2 (for human imaging studies).

2. Addiction circuitry and the thalamus

Drugs of abuse increase dopamine in the reward circuit
(which is important for initiating and maintaining motivated
behaviours) comprise the midbrain dopamine areas (includ-
ing the ventral tegmental area (VTA) and substantia nigra),
the ventral (including the nucleus accumbens (NAc)) and
dorsal striatum (including the caudate and putamen) and
the PFC (including the medial PFC, orbitofrontal cortex and
lateral PFC). Both the neuroanatomy of the reward circuit
and the involvement of reward circuit regions in addiction

have been extensively reviewed elsewhere [1,2,8—11]. Here,
we focus specifically on the connections and the role of the
thalamus within this circuit (figure 1).

The striatum receives major dopaminergic projections
from the midbrain, as well as afferent connections from the
cortex, primarily the frontal cortex. The striatum projects
via the globus pallidus to the thalamus, which then projects
back to the frontal cortex. Nuclei within the thalamus func-
tion as both input and output structures within this circuit,
with the MD nucleus and ventral lateral thalamic complex
(including the ventral lateral and ventral anterior nuclei)
serving as the final subcortical structures of this circuit,
prior to projecting back to the frontal cortex [12].

The majority of projections from the globus pallidus to the
thalamus land in the ventral lateral thalamic complex and the
MD nucleus. The ventral and dorsal striatum receive projec-
tions from midline (including the PVT) and intralaminar
(including the centromedian and parafascicular nuclei) thal-
amic nuclei. In primates, the parafascicular nucleus projects
to the ventral and dorsal striatum and the centromedian
nucleus projects to the dorsal striatum [13-18], allowing
these nuclei to mediate both the motivational and goal-
oriented behaviour supported by the ventral striatum, and cog-
nitive processes thought to involve the dorsal striatum, such as
response and motor inhibition [9,19-22]. Recent rodent studies
have focused on the role of the PVT in addiction, probably due
to its extensive connections with the ventral and dorsal stria-
tum [23-27]. Although not a part of the thalamus proper,
nor an integral part of cortico-striato-thalamo-cortical loops,
the LHb has also become a major focus of investigation in
the rodent addiction literature due to its connections with the
VTA. The VTA sends dopaminergic projections to the LHb,
while the LHb sends inhibitory connections back to the VTA
[28-30]. This inhibitory projection to the VTA allows the
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Figure 2. Schematic of the relationship between animal drug-seeking behaviours in drug self-administration and conditioned place preference paradigms and

clinical symptoms of human drug addiction.

LHb to attenuate responses within the VTA and reduce the
potency of reward (including drug cue) signals. Unlike the
thalamus proper, which does not show evidence of having con-
nections between thalamic nuclei, the LHb sends efferent
connections to other thalamic nuclei, including the centrome-
dian, parafascicular and MD nuclei [31].

Most connections between the frontal cortex and the thala-
mus are reciprocal, allowing them to maintain the flow of
information between these regions. Nevertheless, there are
more extensive projections from the cortex to the thalamus
than those projecting back, as well as non-reciprocal cortico-
thalamic components, together supporting the notion that the
thalamus has a role in integrating information that goes
beyond functioning as a simple relay [3,32-36]. The ventral lat-
eral thalamic complex projects primarily to motor and premotor
regions of the PFC, as well as to the dorsolateral PFC [37-40].
Compared with the PVT and LHb, there has been less focus
on the MD nucleus of the thalamus in the rodent addiction lit-
erature, probably due to its extensive connections with the PFC,
which are less apparent in rodents than primates. Nevertheless,
the MD nucleus has a role in goal-directed behaviours and is
likely to play a part in the human addiction circuitry [4,41—
44]. The medial portions of the primate MD nucleus connect pri-
marily with the medial PFC and orbitofrontal regions and the
lateral portions of the MD connect primarily with the lateral
PFEC [39,45,46]. This connectivity pattern of the MD nucleus
allows it to mediate activity within the PFC, as well as integrate
incoming information from the basal ganglia. Therefore, the
MD nucleus may have a role in the cognitive and emotional pro-
cesses supported by the PFC, such as higher-order valuation/
motivation and cognitive control.

3. Animal studies of drug seeking

Our review of animal studies of drug-seeking behaviour is
restricted to studies that used drug conditioned place preference
(CPP) or drug self-administration paradigms, which elicit beha-
viours in animals that have some correspondence to clinical
symptoms seen in human drug addiction (figure 2). These para-
digms produce four distinct stages of behaviour: acquisition,
maintenance, extinction and reinstatement. Acquisition refers
to the ability to acquire CPP or drug self-administration behav-
iour and would be the equivalent of initiating the iRISA cycle in

humans. Maintenance is the period after acquisition when be-
havioural response has become stabilized and can roughly
correspond to the compulsive drug-administration/bingeing
stage observed in clinical manifestations of human drug addic-
tion, although it also probably involves craving/intoxication.
Despite being distinct concepts, acquisition and maintenance
are often tested together in drug self-administration paradigms
as reduced acquisition also results in lower maintenance levels
of drug self-administration. Extinction training involves sys-
tematically reducing drug-seeking behaviours by pairing a
drug cue with a context signalling lack of drug and would cor-
respond to the withdrawal (and craving) stage of iRISA. Finally,
reinstatement refers to a return of drug-seeking behaviours
by reintroducing the animal to the drug or a drug (or stress)-
associated cue or context. Reinstatement might correspond
to craving/bingeing/relapse, and thalamus activation associ-
ated with increased reinstatement behaviours may indicate
enhanced salience associated with drug cues.

(a) Paraventricular nucleus of the thalamus
involvement in reinstatement of drug-seeking

behaviours

The PVT has been targeted in the reinstatement of drug-
seeking behaviours and in mediating associations between
drug and drug-related cues. Neural activation (measured as
c-Fos expression) has been found in the PVT after the reinstate-
ment of drug-seeking behaviour in rats, although this
activation was not seen immediately after the acquisition of
alcohol (and sucrose) and cocaine self-administration behav-
iour [47,48]. This suggests that, while the PVT appears to be
involved in reinstatement behaviours, it may have less involve-
ment in the acquisition of drug habits. The PVT also showed
differences in neuronal activation between rats with more
versus fewer reinstatement behaviours, and a positive corre-
lation between c-Fos expression and reinstatement behaviour
in the more severe group [49]. It was further found that greater
neuronal activation (measured as c-Fos expression) within the
PVT was correlated with more cocaine-seeking behaviour after
reinstatement following a drug cue, but not after the reinstate-
ment of behaviour conditioned to a palatable food reward [50],
suggesting that the degree of neuronal activation within the
PVT is behaviourally relevant.
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Disruption of neural activity in the PVT (with a low-dose
baclofen/muscimol solution that disrupts neuronal firing, or
tetrodotoxin—a sodium channel blocker) attenuated drug,
cue- or context-induced reinstatement, while further disrupting
neural activity in the PVT with a higher solution dose comple-
tely abolished reinstatement of drug-seeking behaviours in rats
previously trained to self-administer cocaine [51-53]. Similarly,
disruption of the posterior PVT abolished reinstatement of
cocaine-seeking behaviour, but only attenuated renewal of
food-seeking behaviour in rats [54], suggesting that PVT neur-
ons may preferentially mediate behaviours associated with
drugs of abuse, although drugs of abuse recruit the reward
system, which also mediates food rewards [55-57].

One mechanism in the PVT that may have a role in mediat-
ing reinstatement of drug seeking appears to act through
orexin/hypocretin signalling [58]. Orexin/hypocretin (and
cocaine- and amphetamine-regulated transcript (CART)) are
neuropeptides associated with appetite control-, reward- and
motivation-related behaviours [59]. Neurons within the PVT
that were activated after the reinstatement of ethanol-seeking
behaviour appeared to be surrounded by CART or orexin
immunoreactive terminals [60]. The CART and orexin fibres
within the PVT also exist in close proximity to neurons that
project to the NAc, thereby allowing these neuropeptides to
mediate the PVT-NAc projections [61]. Importantly, injection
of orexin/hypocretin peptides into the PVT reinstated cocaine
self-administration behaviours after extinction, similar to an
acute injection of cocaine [62].

Neurons within the PVT that project to the NAc may consti-
tute another mechanism underlying the reinstatement of drug-
seeking behaviours, by mediating drug self-administration and
withdrawal. Reinstatement of ethanol-seeking behaviours in
rats led to greater activation of neurons within the PVT that pro-
ject to the NAc [51]. Optogenetic activation, which involves
using light to trigger neuronal firing after genetically modifying
neurons to express light-sensitive ion channels, of the PVT-NAc
projection has been shown to be aversive [63]. Selective dis-
ruption of PVT neurons projecting to the NAc attenuated
acquisition of cocaine self-administration behaviour, but had
no effect on incubation of craving [64], an effect whereby
drug-seeking behaviour increases during extinction [65]. Simi-
larly, optogenetic disruption of PVT neurons projecting to the
NAc reduced withdrawal-induced place aversion and somatic
signs of opiate withdrawal [63]. Taken together, disruption of
the PVT-NAc projection appears to attenuate drug self-adminis-
tration and the aversive effect of drug withdrawal (but not
craving-induced drug-seeking behaviour), suggesting that
PVT neurons that project to the NAc may mediate reinstate-
ment by influencing aversive processing (e.g. the expression of
withdrawal symptoms during abstinence).

(b) Lateral habenula involvement in extinction and
reinstatement of drug-seeking behaviour

The role of the habenula in drug addiction has recently been
extensively reviewed [66]. Here, we focus on studies investi-
gating the relationship between the LHb and drug-seeking
behaviours. In rodents, the LHb (in addition to the PVT)
has shown more neuronal activation (measured as c-Fos
expression) after cue- and drug-induced reinstatement of
drug-seeking behaviours [67,68]. Lesioning the LHb increased
ethanol-seeking behaviour [69] during the acquisition/main-
tenance phase of a self-administration task, but had no effect

on heroin- [70] or cocaine-seeking behaviour in rats, although
it did disrupt the ability of rats to correctly inhibit behaviour
based on a cue indicating cocaine absence [71]. By contrast,
lesioning the LHb reduced combined cue and yohimbine
(a stimulant) induced reinstatement of ethanol and cocaine-
seeking behaviours [69,72]. Lesioning the LHb appeared to
have different effects on extinction behaviours depending on
when the lesion occurred. While lesioning the LHb prior to
extinction training prevented complete extinction of cocaine-
seeking behaviours in rats [73], behaviour did not change
when the lesion was made after extinction training was com-
plete [72]. Lesion studies suggest that the involvement of the
LHD in drug seeking is complex, with results depending on
which phase of the self-administration cycle the lesion occurred.

This complexity further extends into deep brain stimulation
studies of the LHb, which showed some results that were con-
sistent, and others that were inconsistent with lesion studies.
During the acquisition/maintenance phase, low-frequency
deep brain stimulation increased, while combined high- and
low-frequency deep brain stimulation reduced drug self-
administration behaviours [73]. Combined frequency deep
brain stimulation in the LHb in rats during extinction showed
enhancement (faster time to reach extinction threshold) of
extinction effects, a result that was inconsistent with lesion
studies, while deep brain stimulation reduced drug-induced
reinstatement of cocaine-seeking behaviours, which was con-
sistent with lesion effects [73,74]. Disruption of the LHb may
impact drug-seeking behaviour via its dopaminergic con-
nections. Injection of a D; receptor antagonist into the LHb
showed a dose-dependent reduction in cue-induced re-
instatement of nicotine-seeking behaviours in rats [75]. LHb
involvement in drug seeking appears to be complex, with
lesion and deep brain stimulation studies showing differing
effects during acquisition/maintenance and extinction. These
differences may be attributable to when lesions are applied,
and on frequencies used during deep brain stimulation. Never-
theless, both deep brain stimulation and lesion studies suggest
that interrupting LHDb function reduced pharmacologically
induced reinstatement of drug-seeking behaviours.

(c) Disruption of the mediodorsal nucleus attenuates
expression of drug-seeking behaviours

Rats with lesions to the MD nucleus, compared with sham
lesions, showed attenuation of cocaine self-administration be-
haviour, expressed as less frequent responding, and self-
administration of lower doses of cocaine after reaching main-
tenance levels [76]. Furthermore, in rats already trained to
prefer drug-associated locations, reversible inactivation of the
MD nucleus (with lidocaine), which allows temporally sensi-
tive disruption of neurons, prior to testing (but not before or
right after training) disrupted CPP for a methamphetamine-
paired location, although CPP recovered after 24 h [77]. This
finding suggests that the MD nucleus may be preferentially
involved in the expression of habitual drug-taking behaviours,
which may translate to the compulsive drug intake as seen
during bingeing in humans.

(d) Widespread thalamic involvement during drug-
seeking behaviour in primates

Compared with rodents, primates have a more complex cortex,
including PFC, with more structurally and functionally distinct
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subregions [78]. As the thalamus has extensive, reciprocal con-
nections with the cortex, there are likely differences in how the
thalamus responds to drug self-administration between
rodents and primates. To date, relatively few studies have
examined thalamic effects of drug self-administration in
primates, although studies examining glucose utilization
(measured with 2-[**C]deoxyglucose) find widespread thal-
amic activation, as has been suggested by rodent studies that
examined c-Fos expression throughout the thalamus [48,49].
In rhesus monkeys trained to self-administer cocaine, exposure
to cocaine cues after the acquisition of drug-seeking behaviours
was associated with higher metabolism in multiple regions of
the thalamus, including the ventral anterior thalamus, MD
thalamus, midline thalamic regions, parafascicular/centrome-
dian nuclei and habenula [79]. Nevertheless, it is clear that this
relationship is not linear as suggested by studies using
exposure to cocaine cues where 30-day abstinence was associ-
ated with higher metabolism in one study [80] and decreased
metabolism in another study that also showed decrea-
sed metabolism after exposure to cocaine cues after a more
protracted 90-day abstinence [81].

4. Thalamus in human drug addiction

Both rodent and non-human primate literature suggests that
the thalamus, as a structure within the reward circuit, has
an important role in drug self-administration behaviours.
Indeed, animal studies investigating thalamic involvement in
reinstatement of drug-seeking behaviours showed increased
thalamic activation with reinstatement, which may translate
to increased response to salient drug cues in the human litera-
ture. The more widespread involvement of the thalamus seen
in non-human primates is likely to extend to the human neuroi-
maging literature, although these studies could be confounded
by the comparatively lower spatial resolution used to investi-
gate brain structure and function in humans. In addition,
animal studies typically focus on a single region within the
thalamus (e.g. the PVT), while human imaging studies more
often use whole brain analyses. While focusing on a single
region of interest (e.g. one thalamic nuclei) (known as region
of interest (ROI) analyses in neuroimaging studies) allows for
the discovery of more subtle effects, and are often necessary
for the investigations conducted in animal research
(e.g. lesion studies), investigating whole brain changes allows
for the discovery of systems level effects, such as investigat-
ing brain regions that co-activate, or are correlated, with the
thalamus. The human neuroimaging literature also allows us
to better investigate the role of the thalamus in specific cogni-
tive processes underlying clinical symptoms observed in
drug addiction.

(a) Structural and functional integrity of the thalamus
in addiction

Neuroimaging methods allows us to measure both the struc-
tural and functional integrity of the whole brain, providing
important insight into the effects of drug addiction on different
brain regions at once (without the need to preselect and exclu-
sively focus on a priori regions of interest). Grey matter volume
measures the amount of grey matter between the pia mater and
grey—white matter interface of the brain and is an in vivo
measure of grey matter structural integrity [82]. Diffusion

tensor imaging captures structural connectivity in vivo using “

water diffusion to measure white matter tracts (composed of
axonal projections) that connect brain regions to one another
[83]. Resting state connectivity measures the integrity of func-
tional networks at rest and uses co-activation between brain
regions as an indicator of shared neuronal activity [84]. Finally,
task-related
responses to behavioural manipulations. While disagreements
between structural and functional neuroimaging methods exist

functional neuroimaging measures brain

[85,86], structural and functional neuroimaging results are
associated [87-91].

Despite some negative findings [92-95], lower thalamic
grey matter volumes in drug-dependent individuals, across
drugs of abuse including alcohol, cocaine, nicotine, meth-
amphetamine, opioids, cannabis and synthetic cannabinoids
[95-107], have been reported. Such decreased grey matter
volume in the thalamus (as well as the amygdala and cortical
regions including the PFC) is associated, for example, with
increased craving for methamphetamine [102], more lifetime
tobacco use [108], more years of substance use in polysubstance
users [109], and shorter abstinence length in alcohol users [110].
A recent meta-analysis supported the conclusion that chronic
cigarette smoking was associated with grey matter volume
decreases in the thalamus (as well as the insula, cerebellum,
parahippocampal gyrus and multiple PFC regions) [111].

When examined using diffusion tensor imaging, reduced
white matter integrity (as measured by fractional anisotropy
where greater water diffusion within white matter bundles
suggests lower white matter integrity) in tracts through,
and around, the thalamus have been reported in addiction to
alcohol, cocaine, methamphetamine, opioids and cannabis
[112-117]. A recent systematic review of white matter micro-
structure in adolescent substance users reported that out of
10 studies, five showed reduced fractional anisotropy in
white matter projections from the thalamus [118]. Of these,
two studies found lower fractional anisotropy with higher
alcohol use. A recent longitudinal study showed that cannabis
using adolescents had a less positive fractional anisotropy
change at a 2-year follow-up in anterior thalamic radiations
when compared with non-cannabis using controls [115].
These studies indicate that substance use during adolescence
is likely to influence (and possibly predate abnormalities in)
white matter development, which may lead to functional
changes in thalamo-cortical circuits associated with an
enhanced predisposition to transition from substance use and
abuse to drug addiction in these vulnerable individuals.

Drug addiction is also associated with local functional
changes within the thalamus at rest. Along with changes
in local metabolism and cerebral blood flow, local thalamus
activation during rest can be measured with magnetic reson-
ance imaging using fractional amplitude of low-frequency
fluctuations (fALFF), which has been suggested as a measure
related to spontaneous neuronal activity [119], and regio-
nal homogeneity, which is a measure of the coherence of
local spontaneous fluctuations [120]. Using a more objective
measure of neural activity, the thalamus showed lower glucose
metabolism (as measured by [18F]deoxyglucose positron
emission tomography (PET)) in individuals with both past
and current opiate dependence undergoing methadone main-
tenance treatment compared with healthy individuals, with
the lowest metabolism observed in the currently dependent
individuals [121]. Compared with healthy individuals, canna-
bis-dependent individuals showed lower increases in thalamus
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glucose metabolism (measured with ['*F]deoxyglucose PET)
after acute methylphenidate administration [122]. In addition,
acute nicotine administration in short-term abstinent cigarette
smokers decreased regional cerebral blood flow (measured
with [M'CJH,O PET) within the thalamus compared with
placebo [123]. But, acute administration of lorazepam (a benzo-
diazepine), which has a calming, rather than stimulating effect
increased glucose metabolism (measured with ["*F]deoxyglu-
cose PET) [124]. Examining thalamus function with magnetic
resonance imaging techniques showed that in short-term absti-
nent cigarette smokers, increased thalamic regional cerebral
blood flow was associated with increased subjective nicotine
craving in short-term abstinent cigarette smokers (measu-
red with arterial spin labelling) [125]. In studies examining
thalamus function during resting state, cocaine-dependent
individuals showed increased thalamus function compared
with healthy individuals, measured as fALFF [100]. Heroin
administration in treatment-seeking heroin-dependent indi-
viduals also increased fALFF and regional homogeneity in
the thalamus compared with placebo [126]. By contrast,
heroin-dependent individuals on methadone maintenance
treatment showed decreased regional homogeneity within
the thalamus compared with healthy individuals [127]. Objec-
tive measures of thalamus metabolism (measured with PET)
suggest decreased thalamus activation in addicted individuals
that can be further decreased with acute administration of
stimulants. In comparison, investigations using magnetic res-
onance imaging methods found increased thalamus function
in addicted individuals, suggesting that associations between
the magnetic resonance imaging measures and metabolic
function within the thalamus require further investigation.
Thalamic resting state connectivity is also altered in
drug-addicted individuals [128]. Compared with healthy
individuals, alcohol-dependent individuals showed decreased
connectivity between seeds in the NAc and subgenual anterior
cingulate cortex, and the thalamus [129]. Cocaine-addicted
individuals also showed decreased connectivity between the
thalamus and anterior cingulate cortex [130], as well as the
midbrain [131]. The latter result was corroborated by a more
recent study reporting reduced connectivity between the thala-
mus and both the putamen and the midbrain’s VTA, with the
strength of the VTA-thalamus connectivity being negatively
associated with years of cocaine use in cocaine-addicted indi-
viduals [132]. Cigarette smokers similarly showed reduced
connectivity between the thalamus and the anterior cingulate
cortex, with findings also showing reduced connectivity with
the caudate and the dorsolateral PFC; the strength of the dorso-
lateral PFC-thalamus connectivity was negatively associated
with severity of nicotine dependence [133]. Counterintuitively,
a positive correlation between dorsal anterior cingulate cortex-
thalamus connectivity strength with both nicotine dependence
and risk taking behaviour in a Balloon Analogue Risk Task
was reported in cigarette smokers, though this study used
ROI to ROI rather than seed to whole brain connectivity as
most other studies did, which may bias the results based on
ROI selection [134]. Compared with healthy individuals, keta-
mine-dependent individuals showed reduced connectivity
between the PFC, the motor/supplementary motor area, and
posterior parietal regions and the thalamus, with connectivity
between the posterior parietal cortex and the lateral dorsal
thalamus correlated negatively with ketamine craving [135].
A study found that, compared with healthy individuals,
abstinent heroin-dependent individuals showed increased

\Lo See 1

L R

Figure 3. Peak thalamic coordinates from fMRI and PET studies using drug
cue (red) and non-drug reward (pink) paradigms and response inhibition
tasks (blue). See table 1 for list of papers included.

connectivity between the amygdala and the thalamus,
though this study used ROI to ROI rather than seed to whole
brain analyses [136]. By contrast, acute heroin administration
in addicted individuals reduced connectivity between the
thalamus and frontal, parietal and temporal cortices compared
with placebo [126]. Consistent with the findings of reduced
grey and white matter integrity, most of these studies indicate
that the thalamus shows reduced resting state functional con-
nectivity with frontal and striatal regions in drug addiction.
Furthermore, several of these studies showed that reduced
thalamic connectivity was associated with increased craving
and other measures of severity of drug dependence.

The thalamus shows both reduced structural grey and
white matter integrity, reduced thalamus metabolism and
reduced functional connectivity with striatal and frontal
regions. This reduction in structural and functional integrity
of the thalamus and its connectivity was associated with
greater severity of addiction.

(b) The impairments in response inhibition and salience
attribution model

At the core of drug addiction in humans is a conditioned
response to stimuli associated with drugs that develop in habit-
ual users along with an inability to inhibit these responses,
despite adverse consequences and the decrease in the pleasure
that is derived from the drug. These processes and their associ-
ation with the clinical symptoms of drug addiction are
encompassed by the iRISA model [1,2]. The iRISA model pro-
poses that in drug addiction, attribution of primary salience to
drug cues occurs at the expense of salience attributed to other
reinforcers (such as food or money). The thalamus is a part of
the cortico-striato-thalamo-cortical circuits underlying both
reward and motivated behaviours [9] and cognitive control
processes [137]. Here, we review studies with 15 or more
subjects per group that show thalamic response in drug-
dependent compared with healthy individuals to salient
drug cues and non-drug reward, and during tasks requiring
response inhibition. In addition, we review studies that did
not include a healthy control group if they examine associ-
ations between task-related thalamus activation and severity
of addiction, relapse, abstinence or stress. Figure 3 and
table 1 show the distribution of peaks of activation in the thala-
mus from imaging studies comparing addicted and healthy
individuals using drug cue exposure, non-drug reward and
response inhibition paradigms in human addiction.
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Table 1. Table showing coordinates of peak activation for thalamic clusters in papers finding thalamic activation in addicted compared with healthy individuals in drug
cue, non-drug reward and response inhibition tasks. Only studies reporting thalamus coordinates in MNI or Talairach space significant at cluster level (converted to MNI
for presentation purposes) and located within the thalamus were included. Abbreviations are as follows: IAPS, international affective picture system; MID, monetary

incentive delay; dwStroop, drug word stroop task; cwStroop, colour word stroop task; MNI, Montreal Neurological Institute coordinate system.

addiction paradigm
drug cues
Li et al. [138] heroin Cue reactivity
Wang et a/.» [139] hgroin cue reactivity
Filbey et al. [140] cannabis Cue reactivity
non-drug reward » ‘ ‘
Asensio et al. [141] cocaine IAPS
inhibition
Tomasi et al. [130] cocaine dwStroop
Miiche" ei al. [142j ‘ cdcaine‘ ‘ cwStroop

(c) Salience attribution

Although negative results have been reported (in a study that
included both moderate and heavy smokers) [143], in com-
parison to healthy individuals, increased drug-cue-related
thalamic activation is commonly reported (in conjunction
with activation in both ventral and dorsal striatum, as well as
the PFC) in drug-addicted individuals encompassing chronic
cocaine smokers [144], treatment-seeking heroin-dependent
individuals [138], methadone-treated heroin-dependent indi-
viduals [139] and regular cannabis users [140] (see electronic
supplementary material, table S2).

Stress may enhance the salience of drug cues in addicted
individuals. In studies examining only addicted individuals,
cigarette smokers showed greater MD thalamus activation
and greater anti-correlation between ventral striatum and the
thalamus to drug compared with neutral cues after being
exposed to psychosocial stress induced by a difficult mental
arithmetic task [145]. Along with acutely induced stress, studies
find that individual differences in lifetime stressors also result in
greater thalamic responding to drug cues. Compared with
addicted individuals without a history of abuse, cocaine-
addicted individuals with a history of physical, sexual or
emotional abuse showed greater MD thalamus activation to
drug compared with neutral cues [146]. Alcohol-dependent
individuals showed a positive association between thalamic
activation and drug cues with both the Beck Depression Inven-
tory and Beck Anxiety Inventory scores [147], suggesting that
individual differences in depression and anxiety enhance
thalamic drug cue reactivity in susceptible individuals.

Abstinence may also influence thalamic responding to
drug cues in addicted individuals. The thalamus showed

thalamus
activation
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greater activation in short-term abstinent compared with
satiated cigarette smokers [148]. In regular cannabis users,
the thalamus showed an association between greater activation
and higher cue-induced craving [140]. The thalamus showed
different effects depending on the length of abstinence, with
heroin-addicted individuals having greater drug-related thal-
amic activation after short-term abstinence (mean one month)
but lower activation after a longer abstinence period (mean
13 months) [149], supporting the notion of cue-induced incu-
bation of craving [150-153]. Thus, long-term abstinence may
allow normalization of thalamic response to drug cues, poss-
ibly associated with a decrease in the salience attributed to
drug cues in addicted individuals.

Contrary to expectations, few neuroimaging studies find
significant thalamus activation differences between addicted
and healthy individuals. One study found that cocaine-depen-
dent individuals showed reduced thalamic activation to
pleasant versus neutral cues compared with healthy individuals
[141]. Two other studies have found associations between thala-
mus activation and treatment effects, though neither of these
studies found group differences between addicted and healthy
individuals at baseline. Treatment-seeking cocaine-dependent
individuals showed increased thalamic activation to the antici-
pation of a monetary reward 1 year after the initiation of
cognitive behavioural therapy treatment compared with base-
line [154], indicating that there is enhancement of thalamic
responses to non-drug rewards with long-term abstinence.
Contrary to iRISA model predictions, in treatment-seeking indi-
viduals with cocaine dependence, lower thalamic response to
the anticipation and delivery of a monetary reward at the
onset of treatment was associated with greater abstinence [155].
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In summary, thalamic responses to drug cues were consist-
ent with the iRISA model, with drug-dependent individuals
showing greater activation to salient drug cues compared
with healthy individuals. However, evidence of how thalamic
activation to non-drug rewards differs in drug addiction
is sparse, with all studies focusing on cocaine-dependent
populations. Short-term abstinence and stress may increase
drug-related thalamus response, while long-term abstinence
appeared to normalize thalamic response to drug cues, and
possibly non-drug rewards.

(d) Response inhibition

The thalamus has a role in mediating cognitive control through
its connectivity with the PFC [156], suggesting that it may be
involved in the abnormalities seen in response inhibition as
predicted by the iRISA model. Cognitive control, or response
inhibition, refers to the ability to stop behaviour that has
become habitual or to stop one’s behaviour after initiation.
Tasks commonly used to measure response inhibition are the
Stroop task, the go/no-go task and the stop signal task (SST).
In the Stroop task, conflict is created between an automatic/
habitual response (e.g. reading colour words) and a slower
response (e.g. naming of the colour in which the colour
words are printed), with both competing for the same
processing resources; the common comparison is between
responses and incongruent (e.g. the word blue printed in red
colour) versus congruent words (e.g. the word blue printed
in blue colour) (for both accuracy and reaction time). In the
go/no-go task, participants respond rapidly to a frequent
‘g0’ signal and withhold responses to a less frequent no-go’
signal; accurate no-go signals reflect an individual’s ability
to exert inhibitory control. The SST measures the ability to
stop a response that has already been initiated, with success-
ful stopping and the stop signal reaction time (SSRT) both
measuring response inhibition. Stop signal anticipation
(plstop]) is a measure of the likelihood of a stop coming up,
and can be estimated based on Bayesian modelling of stop
trial probabilities.

Compared with studies of non-drug reward, more studies
have examined thalamic responses during response inhibi-
tion tasks. One study found that, compared with healthy
individuals, cocaine-dependent individuals showed lower
Stroop-related thalamus (as well as the striatum and PFC)
activation to the incongruency effect on a colour word
Stroop task [157]. Other studies examined overall task acti-
vation during drug and colour word Stroop tasks and
found lower thalamus (along with PFC) activation, as well
as lower connectivity between the midbrain and the thalamus
[130], and lower intrinsic connectivity (a measure of connec-
tivity between each voxel and every other voxel in the brain)
in the thalamus (along with the dorsal striatum and PFC)
[142]. In alcohol-dependent individuals only, the thalamus
showed increased activation during successful response
inhibition after acute alcohol administration [158]. Acute
modafinil (a wakefulness-promoting drug) administration in
alcohol-dependent individuals resulted in greater increases
in thalamic activation in poor performing individuals (with
lower SSRT) on the SST [159]. These studies suggest that, in
conjunction with striatal and PFC regions, there is decreased
thalamus activation during response inhibition tasks in drug-
addicted individuals, and that acute drug administration
increased this activation.

Connectivity between the thalamus and PFC regions is
altered during tasks requiring response inhibition. Cocaine-
dependent individuals showed greater thalamic connectivity
with the ventromedial PFC compared with healthy individuals
during failed response inhibition, and this increased connec-
tivity was associated with inferior response inhibition (longer
SSRT) [160]. In a follow-up study by the same group, a larger
sample of cocaine-dependent compared with healthy individ-
uals showed increased frontoparietal network connectivity
with the MD thalamus and decreased functional connectivity
with the ventrolateral thalamus while performing the SST,
with the former associated with inferior response inhibition
(longer SSRT) in the cocaine-dependent, but not healthy, indi-
viduals [161]. These studies suggest that the connectivity
between the thalamus and cortex is disrupted in addiction
and that this difference in connectivity is linked to behavioural
manifestations of response inhibition.

Several lines of evidence suggest that response inhibition-
related activations within the thalamus are associated with sever-
ity of substance abuse. Greater thalamus connectivity with the
midbrain during a drug word Stroop task was associated with
fewer years of cocaine use in cocaine-dependent individuals
[130], and greater thalamic activation to successful response inhi-
bition on the SST was associated with fewer years of dependence
in alcohol-dependent individuals [162]. By contrast, in alcohol-
dependent individuals, more thalamic activation to stop signal
anticipation (greater p[stop]) was associated with greater alcohol
consumption in the preceding month (which is a more acute
measure of alcohol consumption), though this study did not
find group differences to stop signal anticipation in the thalamus
[163]. One study found that thalamic activation to prediction
error on the SST contributed to a model predicting indivi-
duals who progressed from occasional stimulant use to
problematic stimulant use 3 years later [164]. These studies
suggest that lower thalamic activation during response inhibition
is associated with more severe drug dependence.

Thalamic activation to inhibitory processes has also been
shown to be associated with relapse and abstinence. In a pro-
spective study examining only treatment-seeking cocaine-
dependent individuals, lower thalamic response to failed
response inhibition during the SST predicted an earlier time
to relapse [165]. By contrast, decreased intrinsic connectivity
within the thalamus (in a colour word Stroop task) prior to
treatment initiation was associated with greater abstinence
during treatment, though in this study, they examined the
overall task effect rather than specifically the inhibition effect
[142]. Prolonged abstinence has also been shown to alter thala-
mus activation during response inhibition tasks. The thalamus
showed lower activation to failed response inhibition during a
go/no-go task in former compared with current cigarette smo-
kers [166], and during failed response inhibition in the SST in
long-term compared to short-term abstinent cocaine-depen-
dent individuals [167]. These studies suggest that thalamus
activation during response inhibition processes both predicts
relapse, and is changed with long-term abstinence, though
how the thalamus might mediate these processes requires
further investigation.

In summary, as predicted by the iRISA model, the thalamus
showed lower activation during response inhibition tasks in
addicted individuals, with decreased thalamic activation
during inhibitory processes associated with more severe addic-
tion. Thalamus activation during response inhibition both
predict relapse and differ by length of abstinence.
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Studies in non-human animals showed that different
thalamic nuclei may be involved in different aspects of
drug addiction. There is evidence to suggest that the PVT
and LHDb are involved in reinstatement of drug-seeking beha-
viours, which may mimic increased salience of drug cues in
abstinent humans. The MD nucleus may be preferentially
involved in the expression of drug-seeking behaviours in ani-
mals conditioned to self-administer drugs, further indicating
that the thalamus mediates the association between drug cues
(or context) and drug-seeking behaviours. Interestingly, the
LHb shows some evidence of mediating inhibition of drug-
seeking behaviours in contexts that predict lack of drug avail-
ability, supporting its role in the behavioural inhibition
aspect of drug addiction.

In the human neuroimaging literature, the thalamus showed
a baseline reduction in structural grey matter volume and white
matter integrity coupled with a reduction in baseline thalamus
metabolism and functional connectivity at rest in addicted indi-
viduals. However, despite this baseline reduction in activation,
thalamus hyperactivity was observed when exposed to drug
cues, indicating that the thalamic response to salient drug
cues overcame a general reduction in thalamic activation. This
finding is predicted by the iRISA model of addiction, which
posits that the salience of drug cues to addicted individuals is
greatly heightened. Also consistent with the iRISA model, the
thalamus showed reduced activation during response inhi-
bition. In addition, thalamic response to drug cues and
response inhibition were associated with the severity of drug
addiction and showed reduced activation to failed response
inhibition after long-term abstinence, suggesting that this
change is behaviourally relevant. In addition, the human neu-
roimaging literature showed that the thalamus had similar
responses to those observed in the striatum and PFC to salient

drug cues and response inhibition in human drug addiction. [ 9 |

The iRISA model also predicts that in drug-addicted individ-
uals, salience of non-drug rewards is reduced. However, few
studies found thalamus activation differences between addicted
and non-addicted individuals, suggesting that the involve-
ment of the thalamus in non-drug reward processes requires
further investigation.

Animal studies could broaden their field of focus by
studying the role of different thalamic nuclei in the different
phases of the addiction cycle. Future studies in humans
should seek to better delineate the roles of different thalamic
regions in the cognitive processes underlying iRISA through
the application of advanced imaging protocols at higher mag-
netic fields (i.e. 7 Tesla). Both approaches may allow more
direct across-species comparisons.

This review highlights the importance of more investi-
gation into the role of the thalamus, as an integral structure
within the cortico-striato-thalamo-cortical loops that are cen-
tral to drug addiction. Furthermore, both animal and human
research suggest that the thalamus may be involved in
enhanced salience of drug-associated cues in addicted indi-
viduals (though based on current animal research, this
association can only be inferred from the involvement of
the thalamus in reinstatement behaviours).
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