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Abstract

People diagnosed with neuropsychiatric disorders such as depression, anxiety, addiction or 

schizophrenia often have dysregulated memory, mood, pattern separation and/or reward 

processing. These symptoms are indicative of a disrupted function of the dentate gyrus (DG) 

subregion of the brain, and they improve with treatment and remission. The dysfunction of the DG 

is accompanied by structural maladaptations, including dysregulation of adult-generated neurons. 

An increasing number of studies using modern inducible approaches to manipulate new neurons 

show that the behavioral symptoms in animal models of neuropsychiatric disorders can be 

produced or exacerbated by the inhibition of DG neurogenesis. Thus, here we posit that the 

connection between neuropsychiatric disorders and dysregulated DG neurogenesis is beyond 

correlation or epiphenomenon, and that the regulation of adult-generated DG neurogenesis merits 

continued and focused attention in the ongoing effort to develop novel treatments for 

neuropsychiatric disorders.

By 2020, neuropsychiatric disorders are predicted to be the second highest cause of global 

disease burden1. Current treatment for disorders such as major depressive disorder (MDD), 

bipolar disorder, schizophrenia, post-traumatic stress disorder (PTSD) and substance-related 

or addictive disorders includes pharmacological intervention, which provides relief for many 

people. However, these therapies are ineffective for as many as 30% of individuals, and they 

are often accompanied by substantial side effects2–4. Equally concerning is that a high 

percentage of treated individuals relapse5–8. These facts call for aggressive expansion of the 

current neuropsychiatric-disorder treatment toolkit.

Clues to treatment and understanding of neuropsychiatric disorders come from the fact that 

many symptoms of these disorders are reminiscent of abnormal DG function. Similarly to 
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the hippocampus that surrounds it, the DG has a role in memory and mood regulation, and it 

is also instrumental in the processing of contextual similarities and differences known as 

‘pattern separation,’ as well as the processing of intrinsically positive or rewarding stimuli 

(Box 1)9–16. The DG is also highly sensitive to stressful experiences, and baseline DG 

function can be enhanced or inhibited by stress (Box 1)17–19. Illustrative of aberrant DG 

function, many people diagnosed with MDD, bipolar disorder, schizophrenia, PTSD or 

substance-related or addictive disorders have memory dysfunction and mood fluctuations or 

abnormalities20–22. Humans diagnosed with MDD, PTSD or schizophrenia show aberrant 

pattern separation22–24, whereas those diagnosed with MDD, bipolar disorder, schizophrenia 

or substance-related and addictive disorders have abnormal processing of rewarding 

stimuli25.

Furthermore, in humans and animal models, stressful experiences can enhance the 

susceptibility to and severity of these disorders and their symptoms18,22,26,27, which also 

suggests a role for the DG in these disorders (Table 1). Finally, successful treatment of these 

disorders in humans and the application of similar therapies in animal models normalize or 

enhance DG function (Fig. 1). For example, brain-stimulation therapy is commonly applied 

to brain cortical regions to ‘jump start’ or recalibrate brain circuitry in MDD28. However, 

stimulation of the entorhinal cortex (Ent), a brain region functionally upstream from the DG 

(Box 1), improves memory in both humans and mice29,30.

One aspect of DG physiology that has offered hope with regard to the normalization of DG 

function in neuropsychiatric disorders is its ability to give rise to new neurons throughout 

life (Fig. 1). These new neurons are found in the DG of mammals ranging from rodents to 

humans31, and work in mice shows that new neurons are able to wire and fire correctly 

within the DG (Fig. 1a)27,32–35.

New DG neurons are dynamically regulated by environmental and physiological 

factors32,36–40. Notably, the number of new neurons is increased by neuropsychiatric 

medications such as antidepressants and altered by drugs of abuse41,42, and this correlative 

link between new DG neurons and neuropsychiatric disorders is a well-established concept 

(Table 1)18,26,43–50.

However, in the past decade, new technologies have emerged that enable inducible 

manipulation of new DG neuron number, morphology or activity in mice and rats. As 

highlighted in Table 2 (full details in Supplementary Table 1), studies that employ these 

modern approaches indicate a role for new DG neurons in memory, mood, pattern separation 

and reward29,51–68. In addition, studies using animal models of depression coupled with 

these new technologies show that behavioral symptoms can be produced or ameliorated by 

select manipulation of new DG neurons. On the basis of this recent work in mice and rats, 

we posit that the connection between neuropsychiatric disorders and dysregulated DG 

neurogenesis is beyond correlation or epiphenomenon, and that the regulation of new DG 

neurons merits continued and focused attention in the ongoing effort to develop novel 

treatments for neuropsychiatric disorders.
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Adult DG neurogenesis

Adult DG neurogenesis in laboratory animals and humans shares common features69–71. For 

example, new DG neurons occur throughout the hippocampal DG, from the dorsal (or 

septal) to the ventral (or temporal) DG (mouse DG shown in Fig. 1a), albeit with distinct 

functional contributions along the DG longitudinal axis72–75. Also, as with the process of 

embryonic neurogenesis, adult DG neurogenesis in humans and mice and rats is a process, 

not a timepoint, with maturing cells proceeding through “stages” (Fig. 1a)27,71. In general, 

the proliferation, differentiation and eventual survival to maturity of new DG neurons takes 

2–4 weeks in mice and rats (Fig. 1a), but weeks longer in primates and humans, as revealed 

by postmortem studies31,76. New DG neurons in both rodents (mice, rats) and humans do 

not replace existing embryonic-generated DG neurons, but rather contribute to the ongoing 

turnover (addition and subtraction) of newborn neurons in a restricted part of the DG (Fig. 

1a)9,71,77–80.

In contrast to these shared traits, most of what is known about the specific development and 

afferent input of new DG neurons is understood in mice and rats. Once mature, new DG 

neurons become glutamatergic granule neurons that receive glutamatergic input from the 

upstream Ent and inhibitory GABAergic feedback from DG interneurons81 and project to 

the downstream hippocampal CA3 region (Box 1)16. In this sense, fully mature adult-

generated DG neurons are indistinguishable from embyronic-generated DG granule neurons. 

However, as they mature, new DG neurons receive specialized inputs and outputs and 

dynamically express key intrinsic ion channels and neurotransmitter receptors (Fig. 

1a,b)32,82,83. For example, younger new DG granule neurons receive direct innervation from 

mature DG granule neurons and downstream hippocampal cornus ammonis region 3 (CA3) 

pyramidal neurons84, and these inputs disappear as the new neuron matures. In addition, 

younger new DG granule neurons neither receive nor send feedback inhibition81, whereas 

older new DG neurons do. The location of inputs to new DG neurons is crucial for 

determining their influence on new neuron function33,35,83. For example, most glutamatergic 

inputs are on the dendritic tree of new neurons, whereas inhibitory inputs are on or near the 

soma (Fig. 1a)33,35. These inputs form gradually over the >4 weeks that it takes for new 

neurons to mature (Fig. 1b), with nonsynaptic, ambient GABA as the first input and synaptic 

glutamate from Ent as the last33,35,83. Taken together with the fact that new neurons have a 

lower threshold for firing relative to embryonic-generated neurons and that they are sensitive 

to activity-dependent regulation36,85–87, the emerging view is that immature adult-generated 

DG neurons are distinct from mature adult-generated and all embryonic-generated DG 

neurons in that they are “young and excitable”88, function independently of inhibitory 

GABA circuits89 and receive direct innervation from their glutamatergic “elders”84. In fact, 

some work suggests that adult-generated neurons remain functionally distinct from their 

embryonic-generated counterparts90.

Neuropsychiatric disorders and adult DG neurogenesis

It has long been known that the development of new neurons is regulated by antidepressants 

and drugs of abuse41,42. In fact, treatments for neuropsychiatric disorders (including 

antidepressants, electroconvulsive treatment, antipsychotics and mood stabilizers, all of 
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which can improve DG functional output in humans diagnosed with or animal models of 

neuropsychiatric disorders) act on many of the very neurotransmitter systems that regulate 

new neurons (Fig. 1b)26,91. Such studies raise the idea that neuropsychiatric disorders are 

linked with fewer new DG neurons, and that treatment or remission is linked to more or a 

normalized number of new DG neurons.

Although this correlative relationship between new DG neurons and neuropsychiatric 

disorders relies on only a few human postmortem publications, there is much evidence in 

animal models that these disorders are linked to impaired generation or function of new DG 

neurons26,47. New DG neurons contribute to hippocampal volume and appropriate DG 

function and activity, and in humans, mice and rats, these disorders are also marked by 

impaired hippocampal volume and/or DG network activity (Table 1). For example, the 

relative activity between the DG and the downstream hippocampal CA1 region (Box 1) is 

decreased in stressed rats as compared to control rats59, which is notable, given that stress is 

a major precipitating factor in the exacerbation of neuropsychiatric symptoms. In animal 

models of bipolar disorder and schizophrenia, the stress- or novelty-induced activity of the 

DG is diminished92,93. Additionally, humans with PTSD have decreased hippocampus and 

amygdala activity relative to undiagnosed, trauma-exposed controls94. Finally, long-term 

cocaine users have decreased hippocampal gray matter, and abstinent heroin-dependent 

users have enhanced connectivity among hippocampus and reward-related brain regions 

relative to individuals who do not use drugs95,96.

Additional support for a correlation between the presence of fewer new DG neurons and the 

presence or exacerbation of neuropsychiatric symptoms comes from studies in both humans 

and rodents in which a decreased number of new neurons or lower DG volume is normalized 

or improved after treatment or during remission (Table 1). For example, postmortem studies 

show that chronic antidepressant treatment restores proliferation deficits in humans with 

MDD97. Chronic treatment with the mood stabilizer lithium increases new-neuron 

proliferation and differentiation in animal models, and the bipolar disorder medication 

valproate rescues aberrant DG activity and manic-like behavior in animal models98,99. 

Furthermore, anti-psychotic drugs, such as haloperidol, risperidone or clozapine, restore 

neurogenesis in animal models of schizophrenia, and antipsychotics can also ameliorate 

anxiety and restore new-neuron proliferation in an animal model of PTSD100,101.

Neuropsychiatric symptoms and neurogenesis—a causative relationship?

Recently, techniques have emerged that enable more focused exploration of the correlative–

causative relationship of neurogenesis and neuropsychiatric disorders (Table 2; see also 

Supplementary Table 1). These include studies in mice and rats that ablate new neurons at a 

specific ‘stage’ of their development, manipulate the number, structure or activity of new 

DG neurons, or couple ‘classic’ new-neuron deletion techniques, such as irradiation, with 

behavioral investigations that reflect modern understanding of new neuron function29,51–65. 

For example, by using retroviral-mediated gene transfer to express light-sensitive channels 

in proliferating precursors, researchers are able to control new neuron firing remotely52. 

Recently developed transgenic mouse lines also enable the targeting of new neurons56 or of 

mature DG granule neurons54 with these light-sensitive channels, and they enable inducible 
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gene expression or deletion selectively in new neurons53,56,62,63,65 or mature DG granule 

neurons54,55,57. The temporal control that researchers have over the firing of the targeted cell 

population in these optogenetic studies is ideal for behavioral investigations. As discussed 

below, most data are available for memory and mood, although studies have also confirmed 

a role for new DG neurons in pattern separation and reward29,51–65.

Memory

Neuropsychiatric disorders are accompanied by memory dysfunction20–22. Given that recent 

studies support the idea that manipulation of new neurons can alter memory, it is possible 

that the activation of new neurons might be useful for normalizing memory dysfunction seen 

in neuropsychiatric disorders. For example, studies in mice have found that the ablation or 

inducible silencing of new or mature DG neurons impairs aspects of memory 

function9,26,102, with some finding impairments in memory acquisition or the learning of a 

new memory52,56, and others finding impaired retrieval, or expression of the memory after it 

has been formed52,55. These studies, all of which manipulate adult or embryonic-generated 

neurons during or before learning, suggest that enhancing neurogenesis might improve 

memory.

Notably, understanding the timing of neurogenesis disruption is crucial to understanding the 

role of new neurons in memory. For example, disruption of neurogenesis after learning has 

taken place impairs memory retrieval, which suggests that new neurons are needed as well 

for ‘forgetting’66,67. Given that certain neuropsychiatric disorders (PTSD, substance-related 

and other addictive disorders) can be considered as being marked by aberrantly strong 

memories, it is feasible that postlearning enhancement of neurogenesis might help to drive 

the forgetting of such memories.

Also relevant to neuropsychiatric disorders is recent work showing that the ‘age’ or stage of 

new DG neurons determines whether the cells are involved in functional DG output52,56. For 

example, the stimulation of 4-week-old new DG neurons—but not of 2-week-old immature 

neurons or 8-week-old fully mature neurons—is required for memory retrieval52. This 

timing fits with that of new-neuron integration into DG-CA3 circuitry (Fig. 1a)32, and with 

the concept that there is a ‘critical period’ during which new neurons are needed for 

successful memory processing103.

Mood disorders

With regard to mood disorders, MDD, anxiety and PTSD are strongly linked to abnormal 

hippocampal structure and function, and impaired mood and greater anxiety are hallmarks of 

these human disorders18,26. Humans diagnosed with MDD often have an exacerbated or 

prolonged stress response and lack the typical hippocampal inhibition of the stress axis 

relative to individuals without depression, which again indicates that this mood disorder is 

linked to a dysfunctional hippocampus18. Notably, many correlative studies support the idea 

that rodents (mice and rats) exposed to chronic stress and humans diagnosed with MDD 

have decreased or dysfunctional neurogenesis, and that antidepressant treatment drives 

neurogenesis47,104. Techniques used to ablate new neurons led to a depressive-like 
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phenotype in mice and rats in some studies, but not others47,105. These mixed messages as to 

the role that new neurons have in depression raises concerns that neurogenesis is an 

epiphenomenon, and thus not a reasonable target for treatment106.

However, a relatively consistent conclusion from the recent studies in rodents is that new DG 

neurons are required for antidepressant efficacy58–61(Table 2; Supplementary Table 1). One 

clue to a potential underlying mechanism is that new neurons buffer the body’s stress axis 

responsiveness and associated behaviors62,107. For example, a loss of new neurons results in 

a hyperactive stress response in mice62. In fact, it is now hypothesized that having a 

decreased number of DG neurons contributes to the development of depressive-like 

behaviors particularly under stressful conditions, such as the psychosocial stress experienced 

during social defeat stress63. Indeed, increased DG neurogenesis in mice is sufficient to 

attenuate anxiety and depressive-like behavior under stress-like conditions in which the 

rodents are given the stress hormone corticosterone68. In further support of the role of new 

DG neurons in buffering the stress response, the positive effect on stress-induced anxiety of 

a neurogenic-compound-induced increase in neurogenesis is blunted by the ablation of 

neurogenesis108.

Current studies have manipulated new DG neurons or DG activity in the absence of 

substantial stress to address whether mood regulation is mediated by them. Notably, direct 

stimulation or inhibition of new DG neurons does not change anxiety behavior under basal, 

nonstressed conditions56. However, direct stimulation of mature DG granule neurons in 

either the dorsal or ventral DG has an innate anti-anxiety effect54. This fits with prior work 

showing that the dorsal DG is more linked to spatial or contextual functions, whereas the 

ventral DG is more linked to mood and related emotional functions72,74,75, and suggests that 

subregional targeting of DG activity is a potential intervention for mood disorders. This 

functional neuroanatomical gradient is also evident in studies in which neurogenesis is 

manipulated. For example, whereas reversible silencing or stimulation of new neurons in the 

dorsal—but not ventral—DG impairs memory acquisition and retrieval, direct stimulation of 

ventral DG granule cells—but not of new neurons—decreases anxiety in mice, as compared 

to controls54,56. Thus, acute stimulation of ventral DG granule neurons could be a very 

useful intervention for relieving anxiety.

Pattern separation

Pattern separation is a computational term often applied to the DG to explain how cortical 

inputs representing spatial and contextual information converge onto the DG yet diverge into 

distinct outputs in the downstream CA3, a hippocampal region involved with the 

complementary function of pattern completion109. However, pattern separation is also a very 

relevant concept in neuropsychiatric disorders because overgeneralization (impaired pattern 

separation) is a barrier to symptom relief and is seen in many individuals with 

neuropsychiatric disorders22. For example, humans diagnosed with PTSD have diminished 

pattern separation; they generalize cues associated with a traumatic memory (crime 

victimization or war, for instance) to nonthreatening contexts, which thus drives fear and 

anxiety in these nonthreatening contexts22. Notably, this deficit is apparent in tests of pattern 

separation unrelated to the particular trauma: humans diagnosed with PTSD or related 
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anxiety disorders perform poorly on neuropsychological tests of pattern separation22. By 

contrast, some humans diagnosed with autism spectrum disorder have enhanced pattern 

separation and note even slight differences in contexts or routines110. In PTSD, the severity 

of symptoms is correlated with a smaller and less active DG, as compared to healthy 

controls. These connections raise the possibility that the normalization of pattern separation 

will be accompanied by normalization of DG activity and diminished symptom severity.

Indeed, targeting new neurons in rodents can mimic these findings in humans: inhibition or 

ablation of new neurons impairs pattern separation, whereas stimulation of mature DG 

neurons or inducible enhancement of new neurons enhances pattern 

separation53,56,57,68,111,112 (Table 2 and Supplementary Table 1). In fact, when 

computational models of DG pattern separation account for the addition of new DG neurons, 

there is reduced overlap of activated GCs by previous memories, and thus improved pattern 

separation as compared to controls27. As with learning and memory, the ‘stage’ of the new 

neurons matters in regard to pattern separation. For example, pattern separation is reliant on 

young new neurons (just integrated into DG circuitry) but not on older mature new neurons 

or embyronic-generated DG neurons113. These aspects will be useful for guiding and fine-

tuning potential future new-neuron-based therapies for pattern separation.

Reward

With regard to reward, the ablation of new DG neurons in rats increases cocaine drug-taking 

and drug-seeking, as compared to controls, which suggests that decreased adult neurogenesis 

is a vulnerability factor in a rat model of cocaine addiction64 (Table 2 and see also 

Supplementary Table 1). Given work showing that environmental-enrichment- or running-

induced increase in adult neurogenesis correlates with a reduction of addictive-like 

behaviors in rats and mice114,115, it would be interesting to selectively and inducibly 

increase the number of new DG neurons or stimulate existing new DG neurons to test 

whether this would diminish drug-taking or drug-seeking in animal models of addiction. 

However, the only other study that has inducibly manipulated new neurons and examined 

reward-based hedonic behavior found the opposite result: the deletion of new DG neurons 

decreases a mouse’s preference for a rewarding substance, in this case, sucrose62. Given that 

it is challenging to compare an animal model of cocaine addiction with oral sucrose intake, 

more studies are warranted to see how the manipulation of new neurons influences reward 

processing.

Harnessing the DG to treat neuropsychiatric disorders

Given the above studies, it is intriguing to consider targeting new neurons to recalibrate 

dysfunctional DG activity to treat neuropsychiatric disorders. For example, in contrast to the 

healthy DG wherein Ent projections to the DG and its new neurons drive memory processes, 

mood regulation, pattern separation and processing of rewarding stimuli (Fig. 2a)9–16, this 

functional output is disrupted in neuropsychiatric disorders, which perhaps leads to or 

exacerbates symptoms (Fig. 2b). Regardless of whether the dysfunctional DG is due to 

changes in Ent input, the number of new DG neurons, regulation of DG activity, or some 
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other parallel process, we propose two putative approaches for targeting new DG neurons as 

a way to normalize DG activity and functional output (Fig. 2c).

The first approach—increasing Ent input to DG and thus increasing the activity of DG 

neurons—might be useful for disorders that have common traits of impaired learning and 

memory induced by hippocampal or DG dysfunction and Ent afferent dysfunction, such as 

MDD, PTSD and schizophrenia. In such cases, recalibration of DG functional output is 

feasible via the stimulation of upstream DG regions, such as deep-brain stimulation of Ent 

(Fig. 2d). Indeed, it has already been shown that Ent stimulation enhances neurogenesis in 

mice and improves memory in both humans and mice29,116. More recently, Ent stimulation 

is also able to activate a DG memory in a mouse model of Alzheimer’s disease117, although 

the role of new neurons is not assessed in that study. It remains to be tested, however, 

whether this upstream stimulation and the subsequent putative enhanced new neuron number 

or activity will have beneficial effects on mood, pattern separation or reward (Fig. 2d). 

However, given that lesioning of Ent impairs pattern separation in mice84, it is reasonable to 

hypothesize that Ent stimulation would improve pattern separation, and in turn, improve 

PTSD symptoms. Notably, whereas Ent-stimulation-induced memory improvement in mice 

acts via increased neurogenesis29, it remains unclear whether Ent-stimulation-induced 

improvement in DG function is always reliant on intact neurogenesis.

The second approach—increasing new DG neuron number or activity—builds off the unique 

physiology and positioning of new DG neurons and the many neuropsychiatric disorders that 

are linked with dysfunctional DG activity (Fig. 2e). Many studies support the idea that the 

ablation or silencing of new neurons impairs aspects of memory, mood, pattern separation 

and the response to rewarding stimuli (Table 2 and Supplementary Table 1). By contrast, 

inducible increase in the number of new DG neurons formed, or inducible modulation of 

their spines, improves pattern separation and cognitive flexibility, respectively, in mice57,118, 

and stimulation or induction of new or mature DG neurons decreases anxiety in mice54,68. 

These studies suggest that a therapy based on the induction of new neurons has the potential 

to boost pattern separation and normalize learning and memory deficits (Fig. 2e). However, 

the stimulation of new neurons or mature DG neurons can also inhibit DG function54,56. 

Although the discrepancies between studies that stimulate new neurons might be due to 

technical issues, this urges caution when developing and employing such new-neuron-based 

therapies.

Because new neurons are highly sensitive to activity-dependent regulation, a related 

approach would be to stimulate DG activity to subsequently stimulate new neurons. 

Intriguingly, ‘neurogenic’ compounds exist that drive neurogenesis and/or improve some 

aspect of DG functional output in an activity-dependent manner108,119. However, so far, no 

neurogenic compounds act directly and solely on new DG neurons. A major challenge is 

identifying specific receptors or proteins on new DG neurons that could be exploited for 

treatment purposes. This is a particularly problematic obstacle in that new DG neurons move 

through so many developmental stages (Fig. 1a,b). However, the fact that new neurons 

develop much more slowly in primates than in rodents76, yet a larger proportion of 

hippocampal neurons turn over in humans than in rodents31,120, raises the possibility that 

identifying a new-neuron target might be more feasible in humans.
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One final way to target new neurons would be to regulate their microcircuitry to normalize 

dysfunctional DG activity. For example, the activation of certain DG interneurons in rodents 

drives sparse encoding by feedback inhibition onto mature GCs81, which might improve 

pattern separation, as has been studied indirectly121. In addition, the stimulation of other DG 

interneurons in mice promotes progenitor survival and thus adult neurogenesis122, which 

might also enhance sparse encoding and pattern separation. Indeed, the regulation of any 

local mechanism that drives sparse encoding and the accompanying improvement in 

temporal precision of activation might be a candidate for this approach123. Such studies are 

not currently feasible in humans because of the limited knowledge of new-neuron 

microcircuitry in humans and the invasive nature of such approaches.

Conclusions and future directions

A dysfunctional DG is considered to be an endophenotype or biological correlate of most 

neuropsychiatric disorders22,24,59,61,124,125. The normalization or recalibration of aberrant 

DG function holds potential for treatment of these disorders. New DG neurons have unique 

connections and physiological properties that enable them to both sense and influence DG 

activity. Thus, we propose that targeting new DG neurons is one way of normalizing or 

recalibrating a dysfunctional DG (Fig. 2e). Another way of recalibrating a dysfunctional DG 

is upstream stimulation of the Ent (Fig. 2d). We think that both of these approaches merit 

consideration for therapeutic normalization of DG functional output, and we predict that—in 

animal models at least—this normalization occurs in part via the stimulation of new DG 

neurons.

There are numerous knowledge gaps that remain. First, specific DG output circuits in mice 

and rats need to be thoroughly defined, as has been done in regard to the ventral 

hippocampus–nucleus accumbens circuits for mood regulation126, because incorrect 

neuroanatomical or functional targeting of a circuit might impair an already disrupted 

network127. This is feasible, given the next generation of functional neuroanatomical 

techniques, which employ genetic promoter enhancers with cell-specific genetic- and viral-

mediated, gene-transfer-induced labeling and lineage-specific transgenic lines128,129. 

Second, a broader scope of behaviors should be tested in mice and rats, particularly as new 

functions of the DG are recognized130. It is notable how few studies cross the ‘memory–

mood’ divide, or even consider other DG functions, such as reward. Here we have 

highlighted papers that examine both memory and mood53,54,65, mood and reward62, or 

memory, mood and pattern separation56,57. Given that neuropsychiatric disorders are marked 

by a dysfunctional DG, and that the DG has a range of functional output, we encourage 

researchers to more frequently and pointedly cross the memory–mood divide and to explore 

more work with animal models of neuropsychiatric disorders. Third, additional human and 

postmortem work is warranted, particularly with regard to development, regulation, and 

most ambitiously, in vivo imaging31,131. Finally, although neurogenesis does exist in the 

postnatal primate and specifically human DG31,131, the process is presumed to take much 

longer than in the mouse or rat, and it is more challenging to detect cells in select stages of 

neurogenesis, given the limitations of current markers and the modes of assessment of new 

neurons in the adult human. This is relevant because postmortem human neurogenesis 

studies most commonly measure proliferating cells, not immature or specifically new 
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neurons, because of technical obstacles. Should any future therapies emerge that, for 

example, normalize the proliferating cells that are reduced in humans diagnosed with either 

schizophrenia or MDD97,132, a post-treatment waiting period would be warranted to assess 

whether indeed the therapy has any influence on DG function. Therefore, although the 

common model of neurogenesis and its timeline (Fig. 1a) is a simplified representation of 

our current knowledge, it should continue to be rigorously tested and refined, particularly in 

regard to human neurogenesis.

We hope that this current view of new DG neurons and neuropsychiatric disorders will drive 

interest in testing the postulates put forth here. These recent studies underscore that the 

regulation of adult-generated DG neurogenesis merits continued and focused attention in the 

ongoing effort to develop novel treatments and to enable expansion of the toolkit available to 

treat neuropsychiatric disorders.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Box 1

The circuits and functional output of the hippocampal DG

The healthy hippocampal DG receives input (black lines) from the limbic system 

(Entorhinal cortex (Ent) via perforant path (PP), perirhinal cortex (PRH), medial septum 

and (not shown) contralateral DG and recurrent collaterals from hippocampal CA3) and 

midbrain and hindbrain modulatory regions (VTA/SN, LC, DR)16. Many other non-DG 

connections that might affect the DG indirectly are also indicated (gray lines). The DG 

and hippocampus are highly sensitive to stress (for example, physiological, 

environmental) owing to direct inputs from the hypothalamic–pituitary–adrenal axis 

(HPA, red lines, red shading) and putative, indirect effects from the HPA to Ent (red 

dotted line)17–19. In turn, the HPA axis is influenced by the DG in part through 

hippocampal, subicular and Ent projections to the HPA axis. Working in concert, these 

and other brain circuits contribute to functional DG output, which are shown in schematic 

form to represent memory, mood, pattern separation and reward. As discussed in the main 

text, neuropsychiatric disorders are marked by dysregulated memory, mood, pattern 

separation and reward processing, symptoms that are correlated with impaired DG 

function and/or impaired generation or function of new DG neurons which may be 

affected by stress (Table 1). CA1, cornu ammon 1; CA3, cornu ammon 3; DG, dentate 

gyrus; DR, dorsal raphe; Ent, entorhinal cortex; HPA, hypothalamic–pituitary–adrenal; 

LC, locus coeruleus; NAc, nucleus accumbens septi; PFC, prefrontal cortex; PP, perforant 

path; PRH, perirhinal cortex; SN, substantia nigra; VTA, ventral tegmental area.
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Figure 1. 
Neurogenesis in the DG and its sensitivity to neurotransmitter systems with relevance to 

common therapies. (a) In the adult mouse DG (a′ hippocampus in gray, dorsal DG in tan, 

main schematic in a is expanded view of red bar in the inset), new neurons are generated 

over time, depicted as green cells maturing through developmental ‘stages’ of proliferation, 

differentiation and survival, a process that takes ~4 weeks. Mature DG granule neurons 

(right, green cells) receive diverse input from other DG cells (Mossy Cells, blue; 

interneurons, red and pink) and other limbic (lateral and medial entorhinal cortex (LEnt, 

MEnt) in dark blue; medial septum in purple) and midbrain and hindbrain regions (ventral 

tegmental area/substantia nigra (VTA/SN), dorsal raphe (DR), locus coeruleus (LC) in 

orange). The main somatic input to new DG granule neurons is from inhibitory interneurons 

(red flathead lines; for example, DG basket cells). Late-stage differentiation and surviving 

cells are darker green, whereas proliferating cells are lighter green. (b) As new DG neurons 

develop, they are regulated by an increasingly diverse set of neurotransmitters. The first 

input is nonsynaptic (ambient) GABA (red bar) from DG interneurons (red input, a), which 

eventually transitions to include synaptic GABA as well (white gradient in red bar). The last 

being synaptic glutamate (bottom dark blue bar, b) from Ent neurons (dark blue arrows (a)). 

Treatments for neuropsychiatric disorders act on many of the neurotransmitter systems that 

regulate new neurons (b). Ach, acetylcholine; DA, dopamine; DG, dentate gyrus; DR, dorsal 

raphe; Ent, entorhinal cortex (LEnt, lateral Ent; MEnt, medial Ent); GABA, gamma-

aminobutyric acid; Glu, glutamate; LC, locus coeruleus; NE, norepinephrine/noradrenergic; 

SN, substantia nigra; VTA, ventral tegmental area.
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Figure 2. 
Proven and proposed approaches to targeting new DG neurons to recalibrate DG functional 

output in neuropsychiatric disorders. (a) In the healthy DG, input from the Ent into the DG 

drives new neurons and ultimately results in functional DG output, such as memory, mood, 

pattern separation and reward (green shaded triangle). When DG activity or function is 

aberrant, as is the case in many neuropsychiatric disorders (b, gray shaded triangle), new 

neurons are often decreased in number or function, perhaps in part owing to a dysfunctional 

upstream input from the Ent (indicated by a question mark (?)). (c) We propose that 

inducible increase in new neuron number, activity or DG activity can improve 

neuropsychiatric symptoms (blue box, arrow, green shaded triangle), whereas inhibition of 

new neuron number, activity or DG activity can block such improvement (gray box, flat 

head line, gray shaded triangle). Thus, targeting new neuron number, activity or DG activity 

might be a novel treatment for neuropsychiatric disorders. Recalibration of DG functional 

output is feasible via the stimulation of upstream DG regions (e.g., Ent, d) or increased 

number of new neurons or increased activity of new neurons or DG (e). For (d), it has 

already been shown in mice that Ent stimulation (blue box, bold font) enhances neurogenesis 

and improves learning and memory in both humans and mice (green shaded triangle, d). It 

remains to be tested whether this upstream stimulation and enhanced new neuron number or 

activity will affect mood, pattern separation or reward (indicated by question mark (?)). For 

(e), it has been shown in mice that direct stimulation or induction of adult neurogenesis (blue 

box) can improve memory, mood and pattern separation, although most of the work in this 

regard has shown the opposite (e.g., direct inhibition or suppression of adult neurogenesis 

impairs memory, mood and pattern separation). Although it has not been tested whether 

direct stimulation or induction of adult neurogenesis can improve reward, the converse has 

been shown: the suppression of adult neurogenesis enhances vulnerability in animal models 

of aberrant reward (e.g., addiction). DG, dentate gyrus; Ent, entorhinal cortex.
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