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Abstract

Objective—To evaluate whether exogenously-induced hyperinsulinemia may increase the 

development of atherosclerosis.

Approach & Results—Hyperinsulinemia, induced by exogenous insulin implantation in high 

fat fed (60% fat HFD) ApoE−/− mice, exhibited insulin resistance, hyperglycemia and 

hyperinsulinemia. Atherosclerosis was measured by the accumulation of fat, macrophage, and 

extracellular matrix in the aorta. After 8 weeks on HFD, ApoE−/− mice were subcutaneously 

implanted with control (sham) or insulin pellet, and phlorizin, a SGLT1/2 inhibitor, for additional 

8 weeks.

Intraperitoneal glucose tolerance test showed that plasma glucose levels were lower and insulin 

and IGF1 levels were 5.3 fold and 3.3 fold higher, respectively, in insulin implanted compared to 

sham-treated ApoE−/− mice. Plasma triglyceride, cholesterol and lipoprotein levels were decreased 

in mice with insulin implant, in parallel with increased lipoprotein lipase activities. Atherosclerotic 

plaque by en face and complexity staining showed significant reductions of fat deposits and 

expressions of VCAM-1, TNFα, IL6 and macrophages in arterial wall while exhibiting increased 

activation of pAKT and eNOS (p<0.05) comparing insulin implanted vs. sham HFD ApoE−/− 

mice. No differences were observed in atherosclerotic plaques between phlorizin treated and sham 

HFD ApoE−/− mice, except phlorizin significantly lowered plasma glucose and glycated 

hemoglobin levels while increased glucosuria. Endothelial function was improved only by insulin 

treatment through eNOS/NO activations and reduced pro-inflammatory (M1) and increased anti-

inflammatory (M2) macrophages, which were inhibited by eNOS inhibitor.

Conclusions—Exogenous insulin decreased atherosclerosis by lowering inflammatory 

cytokines, macrophages, and plasma lipids in HFD induced hyperlipidemia, insulin resistant and 

mildly diabetic ApoE−/− mice.
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Introduction

Hyperinsulinemia is associated with increased risk for cardiovascular diseases (CVDs) 1, 2 

which are the major causes of morbidity and mortality among people with insulin-resistance 

and diabetes. Hyperinsulinemia is present in systemic insulin resistance or exogenous 

insulin treatments3. The associations of systemic insulin resistance and endogenous 

hyperinsulinemia with elevated risk of CVDs have been consistently shown even in the 

absence of diabetes and hyperglycemia4, 5. Clinical evidence to support exogenous induced 

hyperinsulinemia’s role to increase CVD risk is still uncertain 6. Recent clinical studies 

suggest exogenous treatment with long acting insulin did not increase CVD events; yet, 

other studies indicated that improved glycemic control with insulin in type 2 diabetes (T2D) 

did not reduce CVD events7–9.

Experimentally, insulin at physiological and hyperinsulinemic levels can induce many 

actions on the vasculature which may have both anti- and pro-atherogenic effects10, 11. 

Insulin’s potential anti-atherogenic effects include activating endothelial NOS (eNOS) and 

regulating the expressions of vascular adhesion molecule-112 (VCAM-1) and antioxidant 

enzymes heme oxygenase-1 (HO-1)12–14. The pro-atherogenic actions of insulin may 

involve the expressions of PAI-1, endothelin-1 and the migrations and proliferation of 

smooth muscle cells15–17. Previously, we reported that inhibition of insulin’s actions by 

deleting insulin receptors on the endothelial cells accelerated atherosclerosis whereas its 

enhancement with IRS-1 expression prevented or delayed the development of 

atherosclerosis12, 18. Further, the induction of endogenous hyperinsulinemia in a mouse 

model of heterogeneous global deletion of insulin receptor did not alter the atherosclerotic 

process 19. The present study characterized the effect of exogenous insulin to induce 

hyperinsulinemia and determined its effect in a mouse model of atherosclerosis. Further, we 

determined whether the normalization of hyperglycemia alone, using sodium glucose co-

transporters 1 and 2 (SGLT(1/2)) inhibitor, in the presence of endogenous hyperinsulinemia, 

can also affect the atherosclerotic process.

Materials and Methods

Materials and Methods are available in the online-only Data Supplement.
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Results

Effect of exogenous hyperinsulinemia on atherosclerosis in Apolipoprotein E deficient 
mice (ApoE−/−) mice on high fat diet (HFD)

Consistant with previous reports18, both sham treated (ApoE−/−) and insulin-implanted 

ApoE−/− mice, fed on HFD for 16 wks, increased body weights greater than RD-control 

mice (1.8 fold), similarly, (p<0.01, Fig. 1A). Systemic insulin resistance as assessed by 

IPITT, were elevated equally by HFD in ApoE−/− or insulin implanted ApoE−/− mice 

compared to RD fed mice (Fig. 1B, p<0.05). No differences were observed between sham-

control and insulin-implanted ApoE−/− mice on HFD in fat distribution which was increased 

vs. RD fed mice (Suppl. Fig. I. A). However, insulin-implanted HFD ApoE−/− mice 

exhibited significant lowered fasting plasma glucose (Suppl. Fig. I. B) (87mg/dL vs. 205mg/

dL), respectively, elevated fasting plasma insulin (2.6 fold) and IGF-1 levels (2.7 fold), 

compared to control ApoE−/− mice fed on HFD at 16 weeks (Fig. 1C and Suppl. Fig. I. C). 

However, insulin-treated HFD ApoE−/− mice showed reduction in plasma cholesterol levels 

by 33% (p<0.05), but had similar triglyceride levels (TG) compared to ApoE−/− mice on 

HFD (Suppl. Fig. II).

The severity and complexity of atherosclerotic lesions in the aortic roots and descending 

aorta were analyzed by multiple methods20. After 16 weeks Sudan IV en face staining in 

HFD sham-treated mice was increased by 6.7 fold (p<0.001), (Fig. 1D) and by 5 fold 

(p<0.0001) in insulin-implanted HFD vs. RD fed controls. However, the extent of fatty 

lesions were decreased by 20% (p<0.05) in insulin-implanted, compared with sham-treated 

HFD-fed ApoE−/− mice (Fig. 1D). Analysis of serial sections throughout the aortic root 

showed that insulin-implanted ApoE−/− mice exhibited a significant reduction in lesion area 

stained for collagen (Trichrome) (15%, p<0.05), and macrophage content (MAC2) (26%, 

p<0.05) compared to sham-treated ApoE−/− mice on HFD (Fig. 1E and F) but no difference 

was observed in SMC content. The protein expression of VCAM-1 levels a marker for 

atherosclerosis and down regulated by insulin12, 1821 were increased in the aorta of HFD-

ApoE−/− mice by 307±47% vs. RD fed mice (p<0.01, Fig 1G), which was reduced in the 

insulin-implanted ApoE−/− mice by 37% (p<0.01) vs. HFD-sham ApoE−/− mice (Fig. 1H).

Effect of lowering glucose levels by phlorizin

To determine the effect of lowering plasma glucose on the extent of atherosclerosis, the 

action of sodium glucose co-transporters inhibitor (SGLT (1/2)), phlorizin were studied 

(Suppl. Fig. III). Glycated hemoglobin (HbA1c) and albumin levels in the plasma from 

HFD-ApoE−/− mice (Fig. 2A) were decreased by treatments with insulin or phlorizin equally 

(p<0.05) compared to HFD sham-treated mice, almost to the levels of RD mice. However, 

urinary glucose was increased only in phlorizin-treated ApoE−/− mice, compared to other 

groups of ApoE−/− mice fed on HFD (Fig. 2B). There were no differences in the body 

weights between phlorizin-treated or untreated HFD-ApoE−/− mice, although insulin-treated 

ApoE−/− mice weighed slightly more than other two groups of mice (Suppl. Fig. IV). IP-

GTT showed HFD treatment increased plasma glucose to > 400mg/dL at 30 min indicating 

mild diabetes. The incremental area under the curve and plasma glucose peak levels from 

insulin-implanted and phlorizin-treated ApoE−/− mice at both 1 and 2 hr were half as those 
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in the HFD-sham-treated ApoE−/− mice (P < 0.001) (Fig. 2C). After adding either sham or 

phlorizin in drinking water 8 weeks after the initiation of HFD, the extent of the 

atherosclerosis by en face assessment, macrophage and collagen content and plaque necrosis 

in the aortic root did not differ in HFD- ApoE−/− mice (Fig. 2D–G). However the severity of 

atherosclerosis and necrosis were significantly decreased in the insulin-treated ApoE−/− 

mice (p=0.039, p=0.017, respectively; Fig. 2D and 2F) comparing to sham-treated HFD-

ApoE−/− mice with and without phlorizin. However, macrophage proliferation (Ki67 

staining) and apoptosis (TUNEL) were not changed by insulin treatment in the aortic wall 

vs. other conditions (Suppl. Fig. V. C and D)

Effect on plasma lipoproteins and inflammatory cytokines

Changes in lipoprotein levels were studied18, 22 and no significant difference in total plasma 

cholesterol and TG levels between phlorizin-treated or sham-treated HFD-ApoE−/− mice 

was observed. However, insulin-implanted ApoE−/− mice exhibited reduced total plasma 

cholesterol by 43% (p<0.05) but not in TG levels (Fig. 3A and B). Lipoprotein profile did 

not differ between phlorizin-treated or sham-treated HFD-ApoE−/− mice. Insulin-implanted 

ApoE−/− mice exhibited greater elevation of HDL and diminished levels of VLDL and LDL 

(Fig. 3C, Suppl. Fig. VI. A and B). Further, LPL activity relative to plasma volume were 

significantly higher in insulin-implanted ApoE−/− mice than phlorizin-treated or sham-

treated HFD-ApoE−/− mice (P < 0.05; Suppl. Fig. VII. A and B). In subcutaneous white 

adipose tissue (scWAT) and liver, exogenous insulin treatment increased the level of Lpl 
mRNA, which were not altered by phlorizin-treated or sham-treated HFD-ApoE−/− mice 

(Suppl. Fig. VII. C and D).

Proinflammatory cytokines, interleukin 6 (IL6), and tumor necrosis factor alpha (TNFα) 

levels in the plasma and aorta were reduced in insulin-implanted ApoE−/− mice by 42%, and 

38%, respectively (P<0.001) compared with sham-treated ApoE−/− mice 23–25. Phlorizin 

treated HFD-ApoE−/− mice did reduce plasma IL6 and TNFα levels although their levels 

trended lower (Fig. 3D and E). Expression of Il6, Tnfα and Vcam-1 mRNA levels in the 

aortic roots were also elevated in HFD sham-treated ApoE−/− mice compared to RD fed 

mice, but they were not reduced in phlorizin-treated HFD-ApoE−/− mice (Fig. 3F–G). 

Interestingly, Akt activation (pAkt) were significantly increased in insulin-implanted vs. 

HFD sham-treated and phlorizin treated ApoE−/− mice (Fig. 3H and I) (p<0.01, p<0.01 & 

p<0.01) respectively. Since nitric oxide (NO) can be induced by insulin and pAkt26, we 

assessed the activation of eNOS in the aorta, which were increased in insulin-implanted 

ApoE−/− compared to phlorizin-treated and sham-treated HFD ApoE−/− mice (Fig. 3J and K) 

(p<0.01).

Changes in circulating and tissue monocytes and macrophages polarization

Similar to previous reports, 27–30 circulating Ly6C+/CCR2+ monocytes, as measured by 

fluorescence-activated cell sorting (FACS) analysis, were significantly increased by 34% in 

HFD-sham-treated compared with RD-ApoE−/− mice (p<0.01). However, there were no 

differences in circulating Ly6C+/CCR2+ monocyte levels amongst HFD-ApoE−/− mice with 

sham, phlorizin and insulin treatments (Suppl. Fig. VIII). FACS analysis of isolated aortic 

cells showed that the levels of inflammatory aortic macrophages (F4/80+/CD45+) were 
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significantly elevated by 3.7 fold (p<0.01) in HFD-sham-treated vs. RD-ApoE−/− mice, 

which were decreased by 47% in insulin implanted ApoE−/− mice (p<0.01, Fig. 4A). No 

differences in macrophages were noted between phlorizin-treated and sham-treated HFD-

ApoE−/− mice (Fig. 4A). FACS analysis of the proportion of macrophages exhibiting pro-

inflammatory M1 (CD206−/CD80+) or anti-inflammatory M2 (CD206+/CD80−) cell surface 

markers showed HFD increased M1 pro-inflammatory macrophages and decreased M2 anti-

inflammatory macrophages in the aorta. In contrast, exogenous insulin treatment shifted the 

macrophage population away from M1 towards M2 subtype, but phlorizin was ineffective 

(Fig. 4B). In addition, insulin treatment decreased the expression of Ccr7, Cxcl10 and iNos 
in M1 macrophages (Fig. 4C) and increased M2 related genes such as Arg1, Ccl17 and 

Cd206 (Fig. 4D). To identify the source of circulating TNFα and IL6, gene expression of 

Tnfα and Il6 in white adipose tissue (WAT) and brown adipose tissues from the HFD-ApoE
−/− mice were studied. Tnfα and Il6 mRNA expressions in subcutaneous WAT (scWAT) was 

inhibited by exogenous insulin treatment but not by phlorizin treatment (Suppl. Fig. IX). In 

addition, MAC2-DAB+ and F4/80+ immunostaining macrophages (M1) were abundant in 

scWAT from both HFD-ApoE−/− mice in the absence or presence of phlorizin treatment but 

they were decreased in insulin-treated HFD-ApoE−/− mice (Fig. 4E). Flow cytometry 

showed that M1 subtypes were reduced and M2 subtypes were increased in stromal vascular 

fraction (SVF) cells isolated from exogenous insulin treated HFD-ApoE−/− mice compared 

to other groups of mice (Fig. 4F).

Endothelial function and eNOS/NO signaling on M1/M2 polarization

To determine directly whether NO can affect M1/M2, nitric oxide donor, S-

Nitrosoglutathione (GSNO) was added to THP-1 cells in the presence and absence of LPS 

and interferon-ᵞ(IFN-ᵞ). FACS analysis showed that LPS/IFN-ᵞ treatment increased CD80+/

CD206− sub-population, which were inhibited only by GSNO, while insulin or phlorizin’s 

have no effect (Fig. 5A–C). Moreover, qRT-PCR analysis of pro-inflammatory genes (Tnfα 
and Il6) and M1 polarized genes (iNos and Ccr7) expression also supported that GSNO 

inhibits LPS/IFN-ᵞ mediated inflammation and increased in M2 polarization (Fig. 5D and 

E). To explore the relationship between endothelial eNOS/NO signaling and changing M1 

and M2 phenotype, we co-cultured primary lung endothelial cells from ECIRS1 mice which 

exhibited increased Akt/eNOS signaling and enhanced NO production with THP-1 cells. 

The induction of M1 (CD80+/CD206−) was decreased and M2 (CD80−/CD206+) was 

enhanced in EC from ECIRS1 mice after insulin stimulation compared to control EC (Fig. 

5F–H). However, the addition of an inhibitor of eNOS activities, L-NAME attenuated the 

decrease M1 and increase in M2 polarization, suggesting that enhancing eNOS/NO activity 

in EC can decrease M1/M2 ratio in the aorta (Fig. 5F–H).

Discussion

Hyperinsulinemia due to either endogenous origin such as insulin resistance or exogenous 

sources as in insulin therapy, has been implicated clinically to enhance the development of 

atherosclerosis5, 31, 32. Previously we have reported that the severity of atherosclerosis was 

not affected by endogenously induced hyperinsulinemia in the absence of systemic insulin 

resistance19. In contrast, we reported here that the effect of exogenously applied insulin 
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decreased the severity of atherosclerosis in ApoE−/− mice on HFD which generated 

hyperinsulinemia, insulin resistance and hyperglycemia. Unlike the endogenously generated 

hyperinsulinemic ApoE−/− model, the present study was performed in ApoE−/− mice on 

HFD which induced weight gain, insulin resistance, elevated levels of abdominal and 

visceral fat, hyperglycemia and hyperinsulinemia, which were elevated further (2x) by 

insulin implants. The implanted insulin improved glucose tolerance tests and significantly 

increased IGF1 levels, but did not affect weight gain or fat mass. The inability of 

endogenously derived hyperinsulinemia to affect the atherosclerosis in ApoE−/− mice with 

IR partial deletion, as reported previously, suggests that doubling of plasma insulin levels 

were not adequate to affect the atherosclerotic process19. The elevation of IGF-1 levels was 

unlikely to affect the atherosclerotic process since the IGF-1 levels attained by insulin 

treatment only returned them to normal and physiological levels.

Since multiple metabolic parameters were changed with the insulin implant, due to the 

metabolic actions of hyperinsulinemia, the explanation for the decrease in atherosclerosis is 

likely to be complex. Major differences induced by the exogenous insulin implants 

compared to endogenous induced hyperinsulinemia were lowering of plasma glucose, 

lipoproteins and inflammatory markers. To test whether the singular effect of glycemic 

control by implanting insulin in this insulin resistant and diabetic model can affect 

atherosclerosis, glycemic control was improved using phlorizin, a selective inhibitor of 

SGLT(1/2), which enhanced glycosuria, decreased HbA1c and glycated albumin, without 

changes in lipoprotein profile33, 34. Interestingly, lowering plasma glucose alone, did not 

affect the severity of atherosclerosis in the HFD-fed ApoE−/− mice model. These results 

suggest that normalizing plasma glucose alone without decreasing fat composition and 

altering inflammatory process was inadequate to affect the atherosclerosis process in insulin 

resistance and diabetes. These findings in the ApoE−/− mice are consistent with clinical trials 

which have shown glycemic control alone may not decrease cardiovascular disease (CVD) 

in people with T2D2, 7–9. Our study supports Yoon et al who showed that chronic insulin 

treatment has beneficial effects on dyslipidaemia, IL6 levels and atherosclerosis in Ldlr−/− 

mice with diet-induced obesity and diabetes35.

Recently, EMPA-REG Outcome study reported that SGLT2 inhibitor treatment reduced 

cardiovascular mortality and heart failure in patients with T2D, although the incidence of 

fatal/nonfatal myocardial infarction and nonfatal stroke were not changed. This indicates 

that the beneficial effect of SGLT2 inhibitor was driven by improvement in the myocardial 

function, which occurred after a few months of treatments36, 37 rather than reversing 

atherosclerotic lesion, which will require years to occur38. Contrary to our study, Nagareddy 

et al39 has reported that lowering glucose levels by SGLT2 inhibitor decreased diabetes-

induced monocytosis and myelopoiesis in STZ-induced diabetic and Akita mice and 

decreased atherosclerotic lesions in STZ-induced Ldlr−/− mice. However, their study differed 

significantly from our study, since streptozotocin or Akita induced diabetes are insulin 

deficient models whereas our ApoE−/− mice have hyperinsulinemia and mild diabetes due 

high fat diet (60%), which mimics T2D40.

Another potential anti-atherosclerotic effect of hyperinsulinemia in the HFD fed ApoE−/− 

mice could be due to improvement in lipoprotein profile. Insulin implant significantly 
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lowered VLDL and LDL levels and decreased atherosclerosis in ApoE−/− mice41. 

Interestingly, the levels of atherosclerosis in insulin-treated ApoE−/− mice, was less than 

those in ApoE−/− mice fed Western diet (WD, 42% of Kcal) although there were no 

differences in plasma cholesterol levels between these two ApoE−/− models (Suppl. Fig. X). 

Exogenous insulin implant also significantly reduced various inflammatory circulating 

cytokines and their expression on the aorta including IL6, TNFα and VCAM-1. Besides the 

reduction of inflammatory cytokines, our results also suggested that exogenously-treated 

hyperinsulinemia decreased macrophages in the aorta, but did not affect systemic 

monocytosis induced by HFD. The improvements of insulin’s anti-inflammatory actions are 

likely to be mediated via several mechanisms such as decreasing VCAM-1 expression, 

activation of eNOS in the endothelial cells and altering the M1/M2 ratio toward the anti-

inflammatory profile.

In summary, this report demonstrated that exogenously induced hyperinsulinemia, even in 

the presence of insulin resistance, hyperglycemia and hyperlipidemia, can decrease the 

severity and complexity of the atherosclerotic process. The anti-atherogenic effect of the 

exogenously induced hyperinsulinemia is not due to the lowering of plasma glucose alone, 

but is also related to decreasing LDL and VLDL levels and reductions of inflammatory 

cytokines. The effect of insulin on improving lipid profile is probably related to its actions in 

the liver and the activation of lipoprotein lipase as previously reported42, 43. However, 

insulin also had significant anti-inflammatory actions of inhibiting VCAM-1 and activities 

eNOS in the endothelium to decrease monocyte uptake into the vascular wall and the 

expression of the various inflammatory actions. Clinical significance of these findings in 

rodent models of atherosclerosis and insulin resistance will need to be evaluated further.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Nonstandard Abbreviations and Acronyms

CVD Cardiovascular diseases

HFD High Fat Diet

ApoE−/− mice Apolipoprotein E deficient mice

SGLT (1/2) Sodium glucose co-transporters inhibitor (1/2)

eNOS Endothelial NOS

VCAM-1 Vascular adhesion molecule-1
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TNFα Tumor necrosis factor alpha

IL6 Interleukin 6
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Highlights

Lowering glucose using SGLT(1/2) inhibitor did not affect the severity of 

atherosclerosis in the fed ApoE−/− mice.

Insulin-implanted ApoE−/− mice exhibited greater elevation of HDL and 

diminished levels of VLDL and LDL.

Exogenous insulin treatment has no effect on circulating monocytes (CCR2/Ly6C) 

but decreases inflammatory macrophages (F4/80/CD45) in aorta of ApoE−/− mice 

fed an HFD.

Improved endothelial function through eNOS/NO activations reduced pro-

inflammatory (M1) and increased anti-inflammatory (M2) macrophages
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Figure 1. Effect of exogenous insulin implant-induced hyperinsulinemia on atherosclerosis and 
its complexity in the ApoE−/− mice fed on HFD
(A) Body weights of experimental animals during HFD feeding (n = 9 for control, n = 9 for 

insulin treatment). (B) Insulin sensitivity (IPITT) (C) Time course of plasma fasting insulin. 

(D) en face staining and quantification of aortas as percent of lesion area without or with 

insulin treatment (n = 10 per group). (E and F) Representative examples and quantification 

of cross-sections from the aortic sinus stained with trichrome (E) and MAC2(F). (G and H) 

Immunoblot and densitometry of VCAM-1 levels in aorta from control, insulin treated and 

phlorizin-treated ApoE−/− mice fed on HFD. All data are presented as mean ± SEM. *p < 

0.05, **p < 0.01. P-values for panels A, B, and C were computed using linear mixed effects 
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models to account for the repeated measures within animals over time. P-values for panels 

A, B, and C were computed using linear mixed effects models to account for the repeated 

measures within animals over time. P-values for panels D, E, F, and H were computed using 

general linear model (ANOVA). In all cases, post hoc t-tests with Tukey’s adjustment for 

multiple comparisons were conducted where overall F-tests were significant to ascertain the 

location of any significant pairwise differences.
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Figure 2. Effect of lowering HFD-induced plasma glucose levels on atherosclerosis
(A) Time-response curves for inhibitory effects of phlorizin on plasma HbA1c (Upper) and 

glycated albumin (Lower) from ApoE−/− and insulin treated ApoE−/− mice with feeding 

HFD. (B) Fasting plasma and urinary glucose measurements from control and insulin or 

phlorizin treated HFD-ApoE−/− mice. (C) Glucose tolerance test (IPGTT) (n = 8 for control, 

insulin treatment and phlorizin treatment). (D) Oil Red O staining (Upper) and 

quantification (Lower) of aortas as percent of lesion area from the same condition as A-C (n 

= 11 per group). (E) Quantification of cross-sections from the aortic sinus stained for 

collagen (Upper) and macrophages (Lower). (F) Representative sections of hematoxylin and 

eosin-stained aortic root sections and quantification of necrotic area in a subgroup of 6 
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control lesions, insulin-treated lesions and phlorizin-treated lesions with statistically 

identical lesion area. All data are presented as mean ± SEM. *p < 0.05, **p < 0.01. P-values 

for panels A and C were computed using linear mixed effects models to account for the 

repeated measures within animals over time. P-values for panels B, D, E, F, and G were 

computed using general linear model (ANOVA). In all cases, post hoc t-tests with Tukey’s 

adjustment for multiple comparisons were conducted where overall F-tests were significant 

to ascertain the location of any significant pairwise differences.
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Figure 3. Effect of exogenous insulin and phlorizin on lipoprotein and inflammatory cytokine 
levels in plasma of HFD-ApoE−/− mice
(A and B) Total plasma cholesterol (A) and triglycerides (B) of HFD-fed control, insulin 

treated and phlorizin-treated ApoE−/− mice (n = 6, respectively). (C) Pooled plasma samples 

were subjected to fast performance liquid chromatography gel-filtration, and the fractions 

were assayed for cholesterol concentration. (D and E) TNF-α (D) and IL6 (E) plasma levels 

from all ApoE−/− mice. (F and G) The gene expressions of the inflammatory markers Il6 
mRNA (F) and Tnfα mRNA (G) were measured in pooled aortic arch from all ApoE−/− 

mice. (H and I) Immunoblot and densitometry of Akt and Erk activity, and VCAM-1 levels 

in aorta from all ApoE−/− mice. (J and K) Immunoblot and densitometry of eNOS activity in 
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aorta from all ApoE−/− mice. All data are presented as mean ± SEM and representative of 

three independent experiments. *p < 0.05, **p < 0.01. P-values were computed using 

general linear model (ANOVA). Post hoc t-tests with Tukey’s adjustment for multiple 

comparisons were conducted where overall F-tests were significant to ascertain the location 

of any significant pairwise differences.
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Figure 4. Effect of exogenous insulin and phlorizin on HFD-induced macrophge plasticity in 
aorta and subcutaneous white adipose tissue
(A) Total number of retrieved F4/80(+)/CD45(+) inflammatory macrophages per aorta in 

ApoE null mice fed on either RD or HFD in combination with insulin and phlorizin. (B) 

FACS analysis shows staining of CD80 (M1) or CD206 (M2) in aorta from the mice. Panels 

show dot plot, and representative percentages indicate each subset as a proportion of total 

F4/80+/CD11b+/CD45+ macrophages. (C and D) M1 (Ccr7, Cxcl10, and iNos) and M2 

(Arg1, Ccl17, and Cd206) genes expression in arota. Data show % in gene expression by 

RT-qPCR. (E) DAB and immunostaining of adipose tissue macrophages in scWAT. (F) 

FACS analysis shows staining of CD80 or CD206 in the SVF of scWAT from these mice. 
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Results are pooled from 3 independent experiments with 2–5 mice per group. All data are 

presented as mean ± SEM and representative of three independent experiments. *p < 0.05, 

**p < 0.01. P-values were computed using general linear model (ANOVA). Post hoc t-tests 

with Tukey’s adjustment for multiple comparisons were conducted where overall F-tests 

were significant to ascertain the location of any significant pairwise differences.
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Figure 5. Effect of endothelial function via NO production on M1 and M2 macrophagy 
polarization in vitro
(A) FACS analysis shows staining of CD80 (M1) or CD206 (M2) in THP-1 cells stimulated 

by LPS and IFNr with Phlorizin, insulin, or GSNO. (B and C) Quantification of FACS 

analysis for CD80+/CD206- (M1) and CD80−/CD206+ (M2) in THP-1 cells (A). (D) 

Inflammatory (Tnfα and Il6) and polarized M1 (Ccr7, Cxcl10, and iNos) gene in THP-1 

cells under the same condition as (A). (E) Polarized M2 (Arg1, Ccl17, and Cd206) genes 

expression in THP-1. (F) THP-1 cells were cocultured with EC from either Wt or ECIRS1 

mice, stimulated with insulin in the absence or presence of L-NAME treatment. (G and H) 

Quantification of FACS analysis for CD80+/CD206- (M1) and CD80−/CD206+ (M2). All 
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data are presented as mean ± SEM and representative of three independent experiments. *p 

< 0.05, **p < 0.01. P-values were computed using general linear model (ANOVA). Post hoc 

t-tests with Tukey’s adjustment for multiple comparisons were conducted where overall F-

tests were significant to ascertain the location of any significant pairwise differences.
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