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Abstract

Kohn–Sham density functional theory has been tremendously successful in chemistry and physics. 

Yet, it is unable to describe the energy degeneracy of spin-multiplet components with any 

approximate functional. This work features two contributions. (1) We present a multistate density 

functional theory (MSDFT) to represent spinmultiplet components and to determine multiplet 

energies. MSDFT is a hybrid approach, taking advantage of both wave function theory and density 

functional theory. Thus, the wave functions, electron densities and energy density-functionals for 

ground and excited states and for different components are treated on the same footing. The 

method is illustrated on valence excitations of atoms and molecules. (2) Importantly, a key result is 

that for cases in which the high-spin components can be determined separately by Kohn–Sham 

density functional theory, the transition density functional in MSDFT (which describes electronic 

coupling) can be defined rigorously. The numerical results may be explored to design and optimize 

transition density functionals for configuration coupling in multiconfigurational DFT.

Graphical abstract

ORCID 
Jiali Gao: 0000-0003-0106-7154

ASSOCIATED CONTENT
Supporting Information
The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jpclett.7b02202.

Summary of the relationships between the transition density functional and Kohn–Sham density functional correlation 
energies for spin multiplet components (PDF)

The authors declare no competing financial interest.

HHS Public Access
Author manuscript
J Phys Chem Lett. Author manuscript; available in PMC 2018 January 31.

Published in final edited form as:
J Phys Chem Lett. 2017 October 05; 8(19): 4838–4845. doi:10.1021/acs.jpclett.7b02202.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://orcid.org/0000-0003-0106-7154
http://pubs.acs.org
http://pubs.acs.org/doi/abs/10.1021/acs.jpclett.7b02202
http://pubs.acs.org/doi/suppl/10.1021/acs.jpclett.7b02202/suppl_file/jz7b02202_si_001.pdf


Kohn–Sham density functional theory (KS-DFT) and time-dependent density functional 

theory (TDDFT) are widely used to study the structures and properties of ground and excited 

states of atoms, molecules and condensed-phase systems.1 In principle, in the absence of an 

external magnetic field, the ground-state energy of a many-electron system, irrespective of 

its degeneracy, is solely determined by its exact charge density, ρ.2 However, KS-DFT,3 on 

the basis of a single Slater determinant, is incapable of describing the zero-field degeneracy 

of spin-multiplet components, ultimately limiting its application to modeling low-spin states 

in transition metal chemistry, bond dissociation and photochemistry.4 For example, whereas 

the high-spin components of a triplet diradical can be adequately modeled by KS-DFT, the 

Ms = 0 component is of two-configurational character, which needs to be treated by 

multiconfigurational approaches beyond the Kohn–Sham density functional approximation.5 

For the open-shell singlet state, spin-polarized DFT is typically used,6 in which the 

approximate exchange-correlation functional is dependent on both the spin-up (ρα ) and 

spin-down (ρβ) densities. In this case, the single determinant representation of the singlet 

state is spin-contaminated, and a weighted broken-symmetry scheme is often used to 

estimate the singlet–triplet energy splitting.7 The latter approach only works well for simple 

situations.8 Analogously, excited states of open-shell systems from unrestricted TDDFT can 

be heavily spin-contaminated, and spin-adapted (SA) TDDFT approaches9–11 should be 

used to correctly yield excitation energies.12,13 Therefore, there is urgency and it is 

significant to develop DFT-based methods to overcome these difficulties.

In this Letter, we first describe a multistate density functional theory (MSDFT)14–16 for 

representing spin-multiplet components and for determining high and low-spin energy gaps 

of open-shell systems. Then, we show that, for spin-multiplet systems examined in this 

work, the transition density functional in MSDFT, characterizing the electronic coupling of 

spin-localized configurations, can be rigorously defined for a given density functional 

approximation.

In wave function theory (WFT), there is a well-established, systematic route to treat the 

electronic structure of open-shell systems with inclusion of both static and dynamic 

correlations. In DFT, multiconfigurational approaches have been explored,5,14–23 but they 

have yet gained widespread applications. A most effective method for predicting singlet–

triplet splitting, both in WFT and DFT, is the spin-flip (SF) method,24–27 which describes 

both closed and open-shell singlet states by electronic excitation with an α → β spin 
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inversion, starting from a high-spin reference state (e.g., the triplet state). However, the SF 

approach does not deal with the general question of multiplet degeneracy. For a given spin-

multiplet component Ms, the density variables ρα and ρβ are dependent on the projection of 

the total spin S with a spin density of QMS = {MS/S}QS, where QS is that of the highest 

component. Although the ground-state energy depends only on the total density that is 

identical for all components, an Ms-dependent functional is currently not available in the 

framework of KS-DFT. The general approach to this problem is to transform the spin-

dependent densities into spin-independent variables. This was first described by using the 

Ms independent on-top pair density (along with ρ) as the DFT input instead of the spin 

polarization,5 and an alternative transformation of the total density and the density of 

effectively unpaired electrons has been made to replace ρα and ρβ.28 It is important to note 

that the first method employs a multiconfiguration self-consistent field (MCSCF) reference 

wave function, such as the complete-active-space self-consistent field (CASSCF), to yield 

the on-top pair density, whereas single determinants that differ only in spin orientations of 

unpaired electrons are used in the latter case to model their energy degeneracy. As in 

standard KS-DFT, the determinant to yield the transformed densities does not model the 

correct symmetry and corresponds to mixed pure spin states.28

Multistate density functional theory (MSDFT)14,16 is a hybrid approach that combines 

advantages of both WFT and DFT, and it belongs to the “dynamic-then-static” (DTS) ansatz 

for treating electron correlation.29,30 There are two computational steps: (1) the construction 

of an active space consisting of Np states {ΨA; A = 1, …, Np}, in which dynamic correlation 

is first modeled into each constituent configuration, and (2) diagonalization of the 

configuration interaction (CI) Hamiltonian or MCSCF optimization of the wave function to 

include static correlation. In other words, DFT is used as an effective Hamiltonian to define 

the Np electronic configurations in the active (primary) space, which, by construction, 

includes dynamic correlation in the first place. Then, WFT is employed to yield the wave 

functions and energies of the adiabatic states, especially for systems with strong static 

correlation caused by near degeneracies of the ground and low-lying excited states. Other 

approaches with similar spirit include multireference CI based on Kohn–Sham orbitals 

(DFT/MRCI)19 and spin-restricted ensemble DFT.18,31

In MSDFT,16 the wave function ΦI, electron density ρI, and energy density-functional 

 for the adiabatic ground state (I = 0) and excited states (I < Np) are given as follows

(1)

(2)
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(3)

where aAI is a configuration coefficient for state I, satisfying the normalization condition 

 with SAB being the overlap between determinants ΨA and ΨB. The 

electron density  of configuration A (A = B), and the transition density ρAB(x) 

between basis configurations A and B are expanded over a set of m atomic orbital basis 

functions {χμ(x), μ = 1, …, m}:

(4)

where x specifies the spatial (r) and spin (σ) coordinates, and DAB is the density matrix 

defined by two (in general) nonorthogonal determinants ΨA and ΨB.14,32–34 , 

which is the diagonal matrix element of the Hamiltonian, is the KS-DFT energy for state 

ΨA, and ETDF[ρAB(r)] is the transition density functional that defines the electronic 

coupling between ΨA and ΨB.

The superscript KS in eq 3 emphasizes that MSDFT is built up on KS-DFT and makes use 

of the wide range of exchange-correlation functionals that have been developed, such as 

local density approximation (LDA), generalized gradient approximation (GGA) and hybrid 

functionals. The superscript TDF specifies a new class of correlation functionals with the 

transition density from multiconfigurational methods as input. We note that ρAB satisfies the 

symmetry, rank, and generalized idempotency conditions,14 though it can be nonpositive or 

even complex (for further details, see ref 16).

First, eqs 1 through 3 represent a departure from conventional KS-DFT, in that there is a 

multiconfigurational wave function for each adiabatic state in MSDFT, which defines the 

corresponding total electron density as a sum of the weighted KS densities and transition 

densities. The latter emphasizes the importance of configuration coupling, which is lacking 

in ensemble density functional theory.35 Furthermore, the electronic coupling can be used to 

estimate the transfer integral needed to compute the rate of electron transfer and excited 

energy transfer processes.15 Note that the energy density-functional in MSDFT does not 

explicitly use the total electron density as an input for an exchange-correlation functional, a 

fundamental difference from other multiconfigurational density functional approaches.23 As 

discussed in ref 16., when Np = 1, MSDFT reduces to the conventional KS-DFT, and when 

Np = Nf, the full configurational space, MSDFT is equivalent to full CI. In approaching the 

latter limit, a second-order perturbation-based scaling can be made to convert the diagonal 

DFT energies into pure determinant energies.16 Thus, MSDFT is a hybrid WFT and DFT, 
bridging the two branches of electronic structure theory for molecular systems.
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Second, the wave function (eq 1) and energy density-functional (eq 3) can be obtained either 

with the orbitals held fixed for each configuration, involving only one diagonalization of the 

Hamiltonian (which is used in this study), or by variational optimization of both the 

configurational and orbital coefficients of all states as in an MCSCF calculation, such as 

CASSCF. As shown previously, MSDFT provides a natural approach to define electronic 

diabatic states directly, called diabatic at construction (DAC),36 for nonadiabatic processes. 

In this regard, the basis configurations, {ΨA; A = 1, …, Np}, used in the former approach 

are called the variational diabatic configurations (VDC), and in the latter, the consistent 

diabatic configurations (CDC).37

Third, the introduction of transition densities, which is natural in a multiconfigurational 

approach, and of transition density functional ETDF[ρAB (r)], which is beyond the Kohn–

Sham approximation, represent the key concept of MSDFT. A rigorous definition of ETDF 

can be made for certain special situations that are examined here in association with a given, 

approximate exchange-correlation functional developed in KS-DFT. This is the key result of 

this work (below).

The transition density functional (TDF), representing the electronic coupling between 

configurations ΨA and ΨB, includes two components, the contribution identical to that in 

standard WFT, 〈ΨA|H|ΨB〉, and a dynamic correlation functional, , involving 

the external space:16

(5)

where H is the electronic Hamiltonian. The first term in eq 5 is the electronic coupling 

between, in general, two nonorthogonal determinant configurations,32 including correlation 

within the active space, which has been used in the MOVB (mixed molecular orbital and 

valence bond) approach.33,34 An approximation to resolve double counting of electron 

correlation in the active space was given in ref 16, and an alternative approach has been 

suggested by Savin and co-workers.38 Since the number of configurations in this study is 

small, and mostly degenerate, such a static correlation is not included in KS-DFT, which 

captures dynamic effects of the external space in the present systems. The second term in eq 

5 is a transition density contribution, representing dynamic correlation not included in the 

first term.16

As noted above, there is no correspondence in KS-DFT for , and 

approximations such as overlap or 〈ΨA|H|ΨB〉 weighted correlation energies have been used 

previously with encouraging results.14,15,39,40 Grimme proposed to scale 〈ΨA|H|ΨB〉 by an 

exponential function to approximate HAB.19 Importantly, the multistate density functional 

(eq 3) needed for determining the energy of a low-spin component can be obtained 

rigorously by making use of the energy degeneracy condition of a given (high) spin 

multiplet, an idea that has been explored.41,42 This is straightforwardly illustrated by 

considering the Ms = 0 component of the ground state of carbon, which is a triplet 3P state.
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Here, both the Ms = 0 component of the 3P ground state (denoting the pure spin state that is 

both eigenfunction of Ŝ2 and of Ŝ z by |S,Ms〉, i.e., |1,0〉) and the first, singlet 1D excited 

state (|0,0〉) of carbon result from spin-coupling interactions of the determinants 

and , where the superscript C indicates carbon atom, c specifies all doubly 

occupied core orbitals (which will be omitted below throughout for simplicity) and the bar 

denotes an electron withβ spin in a valence orbital. These two determinant configurations 

fully define the active space (Np = 2 in eq 1) for the spin-multiplet states |1,0〉 and |0,0〉. In 

general, the dimension of eq 1 is the number of spin components in consideration. For C, as 

well as for O, there are three spin-coupled pairs, whose combinations yield three low-spin 

components of the 3P term, and three of the five components of the 1D state (the other two 

come from coupling among the three doubly occupied, closed-shell p-orbitals). 

Diagonalization of the 2 × 2 Hamiltonian matrix yields their wave functions with in-phase 

(positive) and out-phase (negative) combinations, respectively, and their energies.

(6a)

(6b)

For a given exchange-correlation functional used to compute the diagonal matrix terms, 

 and , where  and  are used as Kohn–Sham 

determinants for the respective configurations, we make use of the condition that the 

energies of the high spin component from a single-determinant restricted open-shell KS-

DFT calculation, , and of the low spin component from MSDFT 

using  are identical in the absence of an external magnetic field:41–43

(7)

Then, the correlation energy of the TDF can be uniquely determined by

(8)

where  is the energy difference between KS-DFT and 

Hartree–Fock theory using the Kohn– Sham determinant ΨA. Note that 

 for the two single-determinants of mixed states. The correlation 

energy defined in eq 8 for the transition density functional also leads to the energy for the 1D 

singlet state (eq 6b). Together, they yield the singlet–triplet (S-T) energy splitting ΔEST = ES 

(|0,0〉)−ET (|1,0〉) (of course, we have ET (|1,1〉) = ET (|1,0〉)).
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Equation 8 is generally applicable to molecular diradicals for determining ΔEST. One simply 

replaces the atomic orbitals by the corresponding MOs, and this is used in the AH2 isovalent 

electron cases and ortho, meta, and para-didehydrotoluene (DHT), two systems that have 

been extensively used for validation of theory.25,27,44

For interactions involving nondegenerate orbitals, the TDFs can be similarly determined. 

This is illustrated by the low-energy states of boron (Figure 1). In this case, transition from 

the doublet ground-state (2P) to the 2s12p2 configuration yields its lowest excited state, a 

quartet (4P) state, and three doublets, 2D, 2S, and 2P, in order of increasing energy (2P is 

above the ionization limit). The  component of the 4P state, , of single-

determinant character, can be conveniently approximated by RO-KS-DFT, whereas the 

active space that defines the  component and the 2D and 2P multiplets consists of 

three low-spin determinant configurations: , , and . The wave 

function for the MS = 1/2 component of the quartet state from MSDFT is given by

(9)

Then, the condition

after solving the secular equation leads to the TDF correlation energies as follows:

(10)

(11)

where the numbers in the subscript specify the determinant configurations of the basis states 

 that have been defined above. Notice that for B, .

In addition to the low-spin component of the 4P state, the TDF couplings given in eqs 10 and 

11 also determines the energies of the 2D and 2P states:

(12a)
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(12b)

It is interesting to note that the configuration  in fact involves a two-electron 

transition of the ground state , 2px → 2py and 2s̅ → 2p̅x, not included in conventional 

TD-DFT. Of course, they are treated properly in SF-TDDFT by double SF45 and SA-TD-

DFT approaches.9,12,13

Illustrative examples are presented to show the ability of MSDFT for representing spin 

multiplet components and for determining energy gaps of high and low spin multiplets. We 

have selected a series of atomic energy levels of first-row elements. These systems are 

chosen because there is no ambiguity for comparison with experimental data associated with 

the geometries and zero-point energies of different adiabatic states of molecules. To further 

demonstrate its applicability to molecular systems, the energies of low-lying states in the 

isovalent electron system of CH2, NH2
+, SiH2, and PH2

+, and of three isomers of 

didehydrotuluene (DHT) are computed. These compounds exhibit different degrees of 

diradical character. The hybrid PBE0 and M06-HF functionals are used in the present work, 

along with the PBEC functional, which, as M06-HF, uses 100% Hartree–Fock exchange. 

The aug-cc-pVQZ basis set is used for the atoms and AH2 hydrides, and cc-pVTZ for the 

DHT isomers; these basis functions are sufficiently large, as shown in previous studies for 

these systems.25,27 The MSDFT calculations are performed using a modified version of 

GAMESS.46 We have used restricted open-shell (RO) KS-DFT to model the high-spin 

components, which are adequately represented by single determinant, and their orbitals are 

used in the low-spin multiconfigurational calculations.

For atomic systems, the orbital basis functions are partitioned into four blocks: three of px, 
py, and pz symmetry, and the fourth including the rest of the core and valence s electrons. 

Without sacrificing generality here, we use the real atomic orbitals instead of spherical 

harmonics with specific magnetic quantum numbers. For the diradical series AH2 (A = C, N, 

Si, and P), the molecular orbitals (MO) are divided into three blocks, corresponding to pz 

(perpendicular to the molecular plane), nx (an sp2-type hybrid orbital in the orientation (x) 

bisecting the two chemical bonds), and the remainder of orbitals (which are doubly occupied 

MOs). This may be generalized to other open-shell diradical cases such as DHT, of three 

orbital blocks consisting of two singly occupied MOs and the rest of doubly occupied 

orbitals. In each case, the orbitals for the Ms = S state are optimized using RO-KS-DFT, and 

its energy is denoted by E(|S,MS = S〉). These orbitals are then used to construct 

configurations in the active space for the lower spin components of S, and its lower spin 

multiplets. However, for the AH2 series, the two closed shell determinants for the ã1A1 and 

c ̃1A1 states, corresponding to the configuration |cnxn̅x| and its double excitation to |cpzp̅z|, 
are optimized separately—a situation that is different from the SF approaches.

The computed atomic valence-excitation energies for Be through O are listed in Table 1 

along with the specific pure spin states indicated by |S,Ms〉 (negative Ms components are 

omitted). The corresponding linear combinations of determinant configurations are given in 
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the Supporting Information along with energies from unrestricted calculations for open-shell 

systems. Note that each |S,MS〉 state in Table 1 has been explicitly constructed, and they are 

shown to emphasize that the energies of multiplet components are exactly degenerate. For 

each configuration, only the highest spin component is of single-determinant character, 

while all other states are multiconfigurational. States that are of single-determinant character 

are determined by RO-KS-DFT. Thus, the results for the high-spin states reflect the accuracy 

of the exchange-correlation functional used for these cases, i.e., excitation energies. The 

computed energies for all valence excited states in Table 1 are reasonable in comparison 

with experiments, with the mean-unsigned-deviations (MUD) being 0.42, 0.48, and 0.53 eV 

for PBE0, PBEC, and M06-HF density functionals, respectively, without inclusion of the 

two highly excited states (1S of C and O, 3P of Be, and 2P of B). If one only considers the 

spin-multiplet energy splittings for C, N, and O, the MUD errors are 0.33, 0.04, and 0.30 eV 

using PBE0, PBEC, and M06-HF. Not surprisingly, Table 1 shows that the MUD errors are 

noticeably larger for results with the MOVB method, which does not include dynamic 

correlation. Nevertheless, the main purpose of this study is to show that MSDFT can be used 

to treat both high and low-spin states as well as their individual components with the correct 

symmetry and energy degeneracy exactly.

The isovalent series of CH2, NH2
+, SiH2, and PH2

+ molecules have been extensively studied 

experimentally and computationally, and they are popular choices for testing theory. The 

qualitative picture of their electronic structures has been lucidly summarized by Slipchenko 

and Krylov.44 In addition to the open-shell triplet and singlet states, resulting from 

configuration interactions of two singly occupied 3a1 and 1b1 (5a1 and 2b1 for the heavier 

hydrides) orbitals (simply denoted by pz and nx, where the latter is an spn hybrid orbital), 

there are two closed-shell singlet states. All three singlet states as well as the MS = 0 

component of the triplet state are muticonfigurational.

The configuration space for the hydride species in MSDFT calculations includes four 

determinant configurations, , and 

 (as usual, we have omitted core orbitals in the notation), and their linear 

combinations yield the four low-spin adiabatic states that are eigenfunctions of Ŝ2 and Ŝz. 

The TDF for the coupling between the two open-shell determinants was determined exactly 

for a given exchange-correlation functional. However, an exact expression for the coupling 

between two doubly occupied configurations (  and ) is not available. Here, we 

have used a weighted correlation energy to approximate the TDF dynamic correlation:

(13)

Computed excitation energies for the hydride series are given in Table 2 along with results 

from the SF approaches.27 The MSDFT results are compared with SF-CCSD(T) energies, 

which has a mean error of about 0.036 eV relative to the 7 available experimental data that 

have been corrected for zero-point vibrational energies.27 An MUD error of 0.136 eV was 

found for MSDFT over all 12 excitation energies, which is just slightly greater than that 

Grofe et al. Page 9

J Phys Chem Lett. Author manuscript; available in PMC 2018 January 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



from noncollinear (NC) SF-TDDFT, both using the PBE0 functional. Of the four S-T energy 

splittings, the relative errors are 0.045 and 0.057 eV for MSDFT and SF-TDDFT, 

respectively, with respect to CCSD(T) values. The PBE0 functional performs exceptionally 

well for S-T splitting in the NC-SF-TDDFT calculations, but other functionals show large 

fluctuations and even the opposite sign.27 This behavior was attributed to using the MS = 0 

component for the triplet-state, rather than the high-spin reference itself, which has a small 

amount of spin contamination. In MSDFT, however, we use restricted open-shell orbitals, 

which raises the energy for the triplet state by 0.07 eV (1.65 kcal/mol), which contributes to 

errors in the calculated S-T energies. For the two closed-shell singlet states (1A1), the 

resonance stabilization energy (their coupling) due to dynamic correlation (eq 13) is 

relatively small (0.02 eV) compared to that of the determinant contribution (0.23 eV) in eq 

5.

Figure 2 shows the adiabatic and “vertical” excitation energies of CH2 at the optimal 

geometries of the four states. Clearly seen is that the energy from MSDFT for each state is in 

its minimum at the optimal geometry. The trends can be rationalized by considering the 

Walsh diagrams.44 As the bending angle between the AH bonds reaches 180°, the closed-

shell (ã1A1) and the open-shell (b̃1B1) singlet states become degenerate, denoted by 1Δg. At 

170°, the optimal geometry of the c̃1A1 state, the energy difference between ã1A1 and b̃1B1 

states is 0.05 eV from MSDFT (Figure 2).

Didehydrotoluene (Scheme 1) has three isomeric structures (α-2, α-3, and α-4-DHT), which 

are examples of σ−π diradicals. Unlike the AH2 dihydride systems above, the closed-shell 

configurations correspond to π and σ localized zwitterions that do not have significant 

interactions and are much higher in energy (ca. 1.5 and 3.0 eV above the ground state, 

respectively). Therefore, the S-T energy gap is determined by spin coupling between the αβ 
and βα localized configurations, whose TDF is fully determined by the Mz = 0 degeneracy 

with the |1,1〉 component. MSDFT results are listed in Table 3 along with the SF 

benchmarks reported by Krylov and co-workers.27 The ground state of ortho- and para-DHT 

are triplet, whereas the singlet state was predicted to be slightly lower in energy than the 

triplet state in the meta-DHT isomer from the SF approaches.27 Overall, the S-T gaps are 

well described by MSDFT; however, the small stabilization of the singlet of α-3-DHT was 

not reproduced. Nevertheless, the trend of relatively smaller energy gap than the other two 

isomers is obtained. As noted by Bernard et al.,27 the seemingly good agreement between 

SF-TDDFT/PBE0 with the CCSD-(T) results was in fact an artifact of spin contamination, 

which is not so lucky with other functionals. Of course, the results from MSDFT are pure 

spin states. Table 3 also lists the results from MOVB, which follows an identical procedure 

as MSDFT except that dynamic correlation is not included. Even for small S-T energy gaps 

of these σ−π diradicals, dynamic correlation still makes noticeable contributions.

Note that the computational accuracy of MSDFT on multiplet splitting is dictated by the 

specific functional used since the spin-coupling given by the transition density functional is 

uniquely determined for a given KS functional used to characterize the determinant states. In 

comparison with SF-TDDFT, the states from MSDFT are pure spin states, whereas the SF 

approach does not guarantee energy degeneracy of spin-multiplet components. This 

difference contributes to the difference in computational results in comparison with 
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experiments or high-level reference data. Another difference is the treatment of 

configuration coupling in that the TDF correlation energy in MSDFT is different from that 

in the NC-SF-TDDFT, whereas it is not present is conventional SF-TDDFT.

In summary, the multistate density functional theory (MSDFT) is extended to describe spin 

multiplets and excitation energies of atoms and molecules. In MSDFT, spin multiplet 

components are expressed as eigenfunctions of both Ŝ2 and Ŝz operators, and their energy 

degeneracy in the absence of an external magnetic field is exactly reproduced. MSDFT is a 

hybrid approach, taking advantage of both wave function theory and density functional 

theory. Consequently, the wave functions, electron densities and energy functionals for 

ground and excited states and for different spin multiplet components are treated on the 

same footing. Valence excitation energies of first row atoms, Be through O, and the isovalent 

hydrides, including CH2, NH2
+, SiH2, and PH2

+ molecules, have been evaluated using 

MSDFT along with the PBE0, PBEC and M06-HF density functionals. Energetic results are 

found to be in accord with experiments, and of comparable or better accuracy in comparison 

with SF-TDDFT for singlet–triplet energy splittings. Of the atomic states considered, the 

mean average deviation is about 0.4 eV from experiments, whereas it is 0.1 eV for the 

hydride states relative to the SF-CCSD(T) results. Importantly, a key result of this study is 

that for cases in which the high-spin component can be determined separately by KS-DFT, 

with a given exchange-correlation functional (LDA, GGA or hybrid), the associated 

transition density functional in the multistate approach, representing configuration coupling 

of spin-localized states, can be rigorously determined. This is possible by enforcing the 

energy degeneracy condition of spin multiplet components. Therefore, even though the exact 

functional dependency (ETDF[ρAB]) on the transition density ρAB is not fully known, its 

value that defines the energy of the low-spin components can be evaluated exactly based on 

the exchange-correlation energies of the relevant KS determinants. Therefore, the numerical 

results may be explored to design and optimize transition density functionals for 

configuration coupling in multiconfigurational DFT.
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Figure 1. 
Interaction diagram illustrating electronic coupling among the three determinant 

configurations for the excited 2s12p2 configuration of boron atom.
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Figure 2. 
Computed adiabatic and vertical excitation energies of CH2 at the four adiabatic geometries. 

The PBE0 exchange-correlation functional is used in multistate density functional theory 

along with the aug-cc-pVQZ basis set. Geometries were optimized using FCI/TZ2P from ref 

47.
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Scheme 1. 
Structures of α-2, α-3, and α-4-Didehydrotuluene (DHT)
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