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Abstract

Clathrin-mediated endocytosis in yeast is driven by a protein patch containing close to 100 

different types of proteins. Among the proteins are 5000-10,000 copies of polymerized actin, and 

successful endocytosis requires growth of the actin network. Since it is not known exactly how 

actin network growth drives endocytosis, we calculate the spatial distribution of actin growth 

required to generate the force that drives the process. First, we establish the force distribution that 

must be supplied by actin growth, by combining membrane-bending profiles obtained via electron 

microscopy with established theories of membrane mechanics. Next we determine the profile of 

actin growth, using a continuum mechanics approach and an iterative procedure starting with an 

actin growth profile obtained from a linear analysis. The profile has fairly constant growth outside 

a central hole of radius 45-50 nm, but very little growth in this hole. This growth profile can 

reproduce the required forces if the actin shear modulus exceeds 80 kPa, and the growing 

filaments can exert very large polymerization forces. The growth profile prediction could be tested 

via electron-microscopy or superresolution experiments in which the turgor pressure is suddenly 

turned off.

PACS numbers

87.16.A-; 87.16.D-; 87.16.Ka; 87.17.Aa

I. Introduction

Endocytosis is a key cellular process by which cells ingest nutrients from outside the cell 

and recycle membrane components [1]. The process occurs on a submicron length scale, 

smaller than that of other ingestion processes such as pinocytosis and phagocytosis. During 

endocytosis, the cell membrane first forms a shallow dimple. The dimple becomes a tubule, 

and the tubule is pinched off to form a vesicle that travels into the cytoplasm. Yeast has been 

a preferred model system for studying this process because of the ease of genetic 

manipulation and fluorescent labeling. Major driving forces for endocytosis in yeast include 

curvature-generating proteins and actin polymerization at the cell membrane [2], which 

causes the actin network to grow.

The clathrin-mediated variant of endocytosis (CME) has been studied extensively in yeast. 

The classic curvature-generating protein in CME is clathrin, which spontaneously forms 

cages and appears early in the process. Other established and putative curvature-generating 

proteins include Bzz1 and Ede1, which arrive early, and Rvs161/167, which arrives later. 
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However, polymerization of actin is often required for successful endocytosis both in yeast 

and mammalian cells. In mammalian cells with membrane tension increased by 

hypoosmotic treatment, suppression of actin polymerization reduces the rate of endocytosis 

[3]. In yeast, actin polymerization is required for endocytosis under normal conditions [4, 5]. 

This requirement is lessened under conditions of reduced turgor pressure [6, 7] and 

conversely becomes more stringent when turgor pressure is increased [7]. Finally, correlative 

light- and electron-microscopy measurements indicate that membrane bending is always 

preceded by actin polymerization [8], although this finding has been disputed by electron-

microscopy studies using other methods [9].

Several modeling studies [10–12] have explored endocytic dynamics driven by assumed 

distributions of actin forces. However, the mechanism by which actin network growth exerts 

pulling forces to drive invagination is not definitively established. Mechanisms based on 

filaments growing inwards in the plane of the membrane [13], and growing perpendicular to 

the membrane [14–16], have been proposed. We have previously compared these models 

[16], and found that particularly in the early stages of invagination, the inward-growth 

scenario would involve an extremely large force per filament tip. Therefore we focused on 

the perpendicular-growth scenario, in which polymerization of filament tips at the 

membrane pushes the actin filament network away from the membrane into the cytoplasm. 

The inward-moving network is in turn attached to adapter proteins such as Sla2 [17–19] at 

the center of the endocytic protein patch, which are dragged into the cytoplasm and pull the 

membrane along. We found that a ring-shaped distribution of actin growth can lead to 

focused pulling forces over a small region of the membrane, having a distribution 

qualitatively correct for endocytosis.

Here we build on this work by asking more precisely what spatial distribution of actin 

growth, in conjunction with contributions from curvature-generating proteins, would 

reproduce the force distribution required to overcome opposing forces from membrane 

bending and turgor pressure in the early stages of endocytosis. We calculate the distribution 

of actin growth in several steps.

i. Evaluate the force densities from turgor pressure and membrane bending from 

measured membrane profiles using the “Helfrich” continuum theory [20] of 

membrane elasticity, evaluate the force density from curvature-generating 

proteins by treating them as a “fuzzy” disk on the membrane, and evaluate the 

force density from the cell wall using a continuum-mechanics approach. We use 

a single, averaged membrane profile because we treat the actin growth 

distribution in the early stage of endocytosis, just after the membrane leaves the 

cell wall, rather than trying to calculate the dynamics of the actin network during 

the entire process.

ii. Evaluate the required actin-growth force density using the constraint of force 

balance at all points on the membrane, extending previous calculations of the 

total actin force [6, 11].

iii. Use simulations of a continuum-mechanics model of a growing hemispherical 

actin network, along with an initial distribution of actin growth coupled with an 
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iterative correction method, to find a distribution of actin growth that yields the 

required forces. We begin with a trial distribution based on linear elasticity 

theory.

We find that actin growth occurs in a ring-shaped region, with a hole of diameter 45-50 nm 

around the endocytic site, and the growth rate is fairly constant inside this region. The hole 

diameter is larger than we assumed in our previous simulations [16], but otherwise the shape 

is similar. This profile can generate the required forces if the actin network is very stiff 

(shear modulus 80 kPa or greater), and the growing filaments have a larger stall force than is 

generally assumed.

II. Model

In this section we present models for the forces generated by the actin network and 

curvature-generating proteins (CGP), the forces due to the membrane deformation, and the 

forces acting between the cell wall and the membrane. We focus on the initial stage of 

endocytosis, when the membrane first separates from the cell wall. The main elements of the 

model shown in Fig. 1a are the actin network, membrane, CGP (not shown but taken to 

reside at the membrane), and cell wall. The scenario leading to pulling forces in this model 

is as follows. Polymerization occurs in a ring-shaped region near the membrane-actin 

boundary. The actin network thus pushes up against the membrane, and by Newton's Third 

Law the membrane pushes down on the actin network in the ring region. This force is 

transferred to the central region of the actin network, which moves down, pulling the 

membrane with it.

The free-body diagram in Fig. 1b highlights the forces involved in the process. We assume 

local force balance on each point of the membrane. The force densities fA generated by the 

actin and the CGP (fCGP) must overcome the turgor pressure P0, the membrane bending 

force density fM, and the reaction force fW from the wall to the membrane being pushed into 

it by the turgor pressure. The deformation is slow, usually developing a tubule on the order 

of seconds [8]. Therefore, we assume that the force due to the actin growth is quasi-static in 

the sense that the membrane deformation equilibrates instantaneously after an increment of 

growth.

The local force-balance equation then becomes

(1)

The forces in Eq. 1 act on the membrane and are taken to be along the z-direction, since we 

consider only the initial stage of bending where the membrane is nearly flat. We thus ignore 

radial force components. The positive force direction is taken to be pushing into the cell wall 

(up in Fig. 1). The model includes no external forces except for those acting on the cell wall. 

The local force balance allows us to calculate fA from the other force densities, as described 

in detail below. We obtain fM and fCGP from experimentally measured membrane 

displacements using a theoretical analysis based on the bending rigidity of the membrane 
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and CGP layer, and the spontaneous curvature of the CGP layer. We obtain fW using a 

simulation in which the deformed membrane is embedded into a the cell wall, described by 

an elastic model. Finally, the turgor pressure is taken to supply a uniform force density P0.

There are also several integrated force-balance relations that simplify the calculation of the 

forces. The actin network moves very slowly, and is in the limit of low Reynolds number. 

The net force on the network from the membrane, which equals the drag force, may thus be 

obtained by the Stokes relation as fdrag = 6πηRv = 0.3 × 10−3pN, where the viscosity η = 

8.9 × 10−3N · s/m2 is taken as ten times the viscosity of water, R = 100 nm is the radius of 

the actin network, and v = 20 nm/sec [21] is the velocity of the motion into the cell. Since 

fdrag is so small, we take the actin force to vanish when integrated over the surface of the 

actin network. The total force due to membrane bending vanishes because it is an internal 

force. The membrane is the only agent acting on the CGP, and the total force on the CGP 

must vanish. Therefore, by Newton's third law, the total force from the CGP onto the 

membrane must also vanish. Finally the total force from the cell wall onto the membrane 

must be balanced by the force from the turgor pressure. This holds because the total actin 

force and the total CGP force onto the membrane are zero, and the total force on the 

membrane must be zero.

A. Membrane

Here, we describe our model for estimating membrane bending forces and our method for 

estimating the membrane profile from experimental data. In calculating the membrane 

forces, we treat the membrane as an infinitely thin sheet described by a tension and a 

bending modulus, in the spirit of the “Helfrich” model [22]. Below, in Section IIC, we 

model the membrane as an elastic material with a finite thickness in order to calculate 

interaction forces with the cell wall. However, this model is not used to calculate forces 

resulting from bending or stretching of the membrane.

1. Membrane Bending Force—As in Refs. [10] and [11], we use a Helfrich-type model 

to calculate the force density fN due to membrane bending. We use the axisymmetric 

implementation of Ref. [12], which treats local variations in parameters such as the 

concentration of CGP. The z-direction force is given by

(2)

where n = − sin(ψ)er + cos(ψ)k is a vector normal to the membrane surface, ψ is the angle 

of the normal away from the z-direction, er is a unit vector in the radial direction, k is a unit 

vector in the z-direction, and s is the arc length coordinate in the radial direction. The mean 

curvature is defined as

Tweten et al. Page 4

Phys Rev E. Author manuscript; available in PMC 2018 May 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(3)

The strain energy density function for the membrane is given by

(4)

where κB is the membrane bending modulus. H0 is the preferred curvature, which vanishes 

for the bare membrane.

Note that we have left out the Gaussian curvature contribution to the forces, because it does 

not contribute here: For the membrane, the spatial variation of the Gaussian bending 

modulus is probably very weak. Therefore the Gaussian curvature energy [23] is 

proportional to the integral

(5)

where the surface S is a portion of the membrane large enough that the the endocytic forces 

cause no deformation at its boundary ∂S, while C1 and C2 are the principal curvatures of the 

membrane. The Gauss-Bonnet theorem [24] states that

(6)

where χ is the Euler characteristic of S (determined by its topology) and kg is the geodesic 

curvature of ∂S. Then I, and thus the Gaussian curvature energy, are independent of 

deformations at the endocytic site because they do not change the topology of S nor the 

geodesic curvature at its boundary. Thus the Gaussian curvature causes no forces in the 

endocytic region.

Bending of the cell membrane can in principle change the tension σ [25]. We have ignored 

this effect because the resulting forces are very small in comparison to the other forces. For a 

50 nm × 50nm patch of curvature-generating proteins, similar to the size treated here, Ref. 

[25] obtained tension changes less than 10−3pN/nm. For the early stages of indentation that 

we consider, the force density is approximately σ∇2w [26], where w is the membrane 

displacement. For a 10 nm indentation of radius 30 nm, ∇2w ≃ 10nm/(30 nm)2 = 0.01nm−1. 

The corresponding force density, for σ = 10−3pN/nm, is 10−5pN/nm2 = 10Pa. This is four 

orders of magnitude smaller than the net force density from the other contributions, 

calculated below. Therefore it is legitimate to ignore the coupling between bending and 

tension.
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2. Extracting Membrane Profiles from Experimental Data—Kukulski et al. [8] 

measured the membrane displacement at a number of stages of endocytosis in S. cerevisiae 
cells. EM images from an early stage of endocytosis in which the membrane resembles a 

dimple are shown in Fig. 2a. Membrane profiles were also estimated by fitting points from 

the EM with a second-degree polynomial.

We selected membrane profiles from Ref. [8] to estimate a mean membrane profile during 

the initial stage of endocytosis. Selected profiles were required to have both small 

displacements and symmetrical profiles. Profiles that had invaginations of about 11 nm or 

less were initially collected. From this set, we selected profiles which had a clear axis of 

symmetry so that the peak displacement was apparent. These selection criteria resulted in 

seven experimental profiles, which are plotted in Fig. 2b (note that they are flipped in the z-

direction relative to the profiles given in Ref. [8]).

To find a mean profile, the axis of rotation is taken to be the minimum (most negative) 

displacement value. An averaged profile is obtained by combining the data on either side of 

the minimum. Outliers among the axisymmetric profiles are rejected (please see the 

discussion in the Appendix). The remaining profiles are normalized by the respective peak 

invaginations, interpolated using a cubic spline along a common grid, and averaged. The 

invagination depth of the resulting mean profile, shown in Fig. 2c, is the mean depth of the 

original profiles.

Finally, the mean experimental profile is fitted in both spatial coordinates (r and z) and arc 

length coordinates (s and ψ(s)). In the spatial coordinates, the mean profile of the membrane 

displacement w is least-squares fit to the Gaussian function

(7)

where A is the depth of the invagination, β is a shape parameter, and B accounts for the fact 

that we have data only over a finite range of r. After the mean profile is fitted, the parameter 

B is discarded so that w(r → ∞) = 0. The arc length is calculated by numerically 

differentiating both r and z to find the discrete step in arc length, taking

(8)

and numerically integrating. The azimuthal angle is calculated from

(9)

Because we consider the early stage of invagination, we assume that ψ is small, so that cosθ 
≃ 1. The angle coordinates are fit to an odd-order polynomial expansion using constrained 
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least squares. We chose a polynomial fit for mathematical convenience in applying boundary 

conditions and for numerical convenience in finding the membrane force at r = 0. In 

addition, the integrated polynomial fit is a close match to the Gaussian fit in the spatial 

domain (see Appendix). Eliminating even-power terms from the polynomial ensures that it 

satisfies the boundary conditions (12) that ψ(s) and the second derivative of ψ(s) with 

respect to s must be zero at s = 0. We chose odd polynomial of order 11, which results in a 

total of 6 fitting parameters. This number of parameters resulted in a good fit and avoided 

unphysical oscillations in the fitted curve.

B. Curvature Generating Proteins

Since we treat only the initial stages of deformation, we assume for convenience a flat 

membrane profile, so H(s) = 0 in Eq. 2. This results in the CGP force

(10)

where κi is the spatial distribution of the bending modulus. The spatial variation of κi is 

assumed to result from the spatial distribution of the CGP proteins in a small patch. Note 

that a similar expression is obtained if a spatially varying spontaneous curvature is treated 

(see Appendix). As for the calculation of the internal membrane-bending forces, we do not 

include bending terms from the Gaussian bending energy in our CGP force calculation. 

Because of the spatial variation of κi, the Gaussian bending energy could in principle induce 

forces. However, this energy term is proportional to the product of the two principal 

curvatures [20]. Since the curvatures in the initial stage of endocytosis treated here are small, 

the Gaussian bending energy should be negligible relative to contributions from mean 

curvature.

We selected the following two distributions, which model the transition of the CGP bending 

modulus from its maximum value κcgp at the center of the patch to near zero at the edge:

(11)

(12)

where γ determines the rate of the transition, s0 is the center of the transition, and Δs adjusts 

the shape of the Gaussian curve. Figure 3 compares various possible profiles and their 

corresponding forces. Again, we assume that ψ is small and cos θ ≃ 1. We chose a value of 

Δs so that the peak force from the Gaussian transition, in Fig. 3b, would be comparable to 

the forces obtained by the tanh forms. For the narrower tanh distributions, fCGP has the form 
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of a force couple or bending moment at the edge of the distribution, with only weak forces in 

the center. This occurs because fCGP is proportional to the Laplacian of κi(s) (Eq. 10), which 

vanishes in regions where κi(s) is constant. The form of fCGP is consistent with the physical 

observation that bending a rod to a uniform curvature requires only bending couples at the 

ends, but no forces along the bulk of the rod. The proportionality to the Laplacian also 

implies that the maximum force appears near r = 0 for the transition from Eq. 12. We treat 

the transition radius of the preferred curvature s0 = 46 nm as a fitting parameter 

approximately equal to the transition radius of the wall force, calculated below. This choice 

of s0 minimizes the total force that actin polymerization must supply (see Appendix).

C. Cell Wall

We calculate the wall reaction force fW from the membrane bending profile in Fig. 2c. 

Consider Fig. 1 in which the turgor pressure is applied to the entire surface of the membrane, 

but fW acts only where the membrane and wall are in contact. We define fW as the elastic 

reaction force due to the displacement of the cell wall surface caused by the membrane 

pushing into it. We take the location of the separation point, or endocytic width RW, to be 

the point where fW=0. RW is crucial for estimating fA, and we estimate it from the 

experimental membrane profiles.

We created a second axisymmetric continuum mechanics model, shown in Fig. 4, to estimate 

fW. The cell wall and membrane are allowed to slide freely over each other. The bottom 

surface of the membrane is held rigidly in the shape of the mean experimental displacement. 

This rigid surface is displaced vertically, creating stresses in both the cell wall and 

membrane after contact. We increase this vertical displacement until the total force from the 

wall onto the membrane is balanced by the integrated turgor pressure (they do not balance 

point-by point), as discussed in connection with Eq. 1:

(13)

where fW is the Cauchy stress in the z-direction on the membrane surface in contact with the 

actin network and RA is the diameter of the actin network.

For both the cell wall and membrane we chose linear-elastic material models. For the cell 

wall, we chose material parameters of Young's modulus EW and Poisson's ratio νW. For the 

cell membrane, we chose material parameters of shear modulus μM and bulk modulus KM. 

Note that this membrane material model is only used to estimate the cell wall reaction force 

fW and is not used for the membrane bending forces. Although the model is approximate in 

that it ignores the liquid-like nature of the lipid bilayer for in-plane motions, we feel that it is 

sufficiently accurate for calculating the out-of-plane interaction forces with the cell wall.

This response of the model was found by finite-element (FE) simulation using COMSOL 

Multiphysics software (V.5.1) [27] to perform a 2D axisymmetric simulation. All geometry, 

moduli, and forces were non-dimensionalized using a length parameter of R0 = 25 nm and 

κ0 = 20kBT. The cell wall and membrane are initially separated with the contacting surfaces 
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modeled as a frictionless pair. A frictionless BC with zero displacement in the z-direction 

was applied to the top surface of the cell wall. Similarly, a frictionless BC with zero 

displacement in the radial direction was applied to the outer radii of both the cell wall and 

the membrane. The cell wall domain was discretized into 5192 triangular elements, and the 

membrane domain was discretized into 386 triangular elements, using quartic interpolation 

functions for the displacement field. The size of the elements on the contacting surfaces 

were equivalent to 2 nm. The stationary studies were solved using the COMSOL parallel 

sparse direct algorithm with relative tolerance < 10−3. We compared solution results of 

various mesh sizes, interpolation functions, and tolerances to confirm the robustness of the 

results.

D. Growing Actin Network

The actin network is modeled as an elastic material initially having the shape of a 

hemisphere. Actin growth is concentrated near the boundary with the membrane since the 

nucleators of actin polymerization in endocytosis are membrane-bound [28]. We calculate 

the effects of inhomogeneous actin growth by FE simulation of a continuum mechanics 

model, as shown in Fig. 5. The initial configuration of the actin network is a hemisphere 

with radius RA. After each step of growth, material is added, and the actin network deforms 

to satisfy elastic equilibrium. Deformations from the growth result in a stress fA at the 

network-membrane interface. We assume that the actin network always remains attached to 

the membrane. We ignore the effect of the small initial membrane bending on the shape of 

the actin network, keeping the membrane-bound surface flat. This is legitimate, because the 

forces induced by the bending are much smaller than those induced by the actin growth. We 

thus apply a boundary condition (BC) at the network surface that prevents displacement in 

the z-direction. We do, however, allow free motion in the r-direction. In addition, the actin 

network is likely highly permeable to the osmolytes creating the turgor pressure, so a zero-

force BC is imposed on the cytosolic boundary of the actin network.

1. Growth Methodology—We treat the growth mechanics as in our previous model [16]. 

The total deformation tensor (including growth and elastic deformation) is defined as

(14)

where X⃗ is the initial location of a particle and x⃗ is the location of the particle after 

deformation [29]. Total deformation results from a combination of both growth and elastic 

strain. The relationship between these tensors is

(15)
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where the hat indicates a tensor, F̂
e is the elastic deformation, and Ĝ is the growth tensor. In 

the special case in which no elastic deformation occurs, the total deformation is equal to the 

growth tensor. The elastic strains [29] are given by

(16)

The growth distribution is built up gradually using a fictitious time variable t:

(17)

Here r is the radial coordinate along the membrane and z is the distance from the membrane. 

We focus on z-direction growth, as in our previous work [16]. The Gaussian decay factor 

implements our assumption that growth occurs near the membrane. The term g(r) gives the 

radial dependence of the estimated growth distribution, and the parameter Zp is the width of 

the growth zone away from the membrane. The growth distribution g(r) = 1 gives growth 

that is uniform across the z = 0 surface of the actin network. Then the network simply moves 

backwards with essentially zero force, because the viscous drag force is very small.

We incorporated growth into FE simulations of the axisymmetric model using COMSOL 

Multiphysics software (V.5.1) [27]. All geometry, moduli, and forces were non-

dimensionalized using reference values of R0 = 25 nm for lengths and κ0 = 20kBT for the 

curvature modulus. The simulations for the linear growth models were run until a maximum 

strain of 0.1 was reached. The simulations for the fully nonlinear models were run until the 

peak stress reached the required peak stress estimated from the experimental data. 

Simulations were performed with the domain discretized into 2298 triangular elements with 

a size equivalent to 2 nm or less on the membrane boundary, using quartic interpolation 

functions for the displacement field. The quasi-static, time-dependent studies were solved 

using the COMSOL backward differentiation formula algorithm with absolute error 

tolerance less than 10−5 and relative tolerance less than 10−6. We compared solution results 

for various mesh sizes, interpolation functions, and tolerances to confirm the robustness of 

the results.

2. Actin Material Model—We use a slightly compressible, hyperelastic [29] material 

model for the actin network. Hyperelastic models describe materials that respond elastically 

under large deformations. Their constitutive laws take into account both material 

nonlinearity and nonlinearity due to changes in shape, in contrast to linear elastic models, 

which capture neither effect. Soft tissue and gels are commonly modeled with this approach 

[29]. We model the the actin network as a hyperelastic material because we expect it to 

undergo large deformations during endocytosis. We use a Fung-type variant [30, 31] as a 

general framework to us to describe a variety of nonlinear material behaviors. When the 

parameter α is very small (0.01) the Fung model behaves similarly to the classical Neo-
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Hookean material model, which is widely used to model isotropic soft tissues, gels, and 

rubber [29]. The strain energy density function is as follows:

(18a)

(18b)

(18c)

where  is the elastic, right Cauchy-Green deformation tensor and Je = detF̂
e is the 

elastic volume ratio [29]. The actin shear modulus μA, bulk modulus KA, and nonlinearity 

constant α are the key parameters. The strain energy is quadratic for small deformations, and 

increases exponentially for large deformations. The actin force density fA is then obtained as 

the z-direction stress at the membrane-bound surface of the actin network at the end of the 

simulation run.

E. Parameter Values

The parameter values are given in Table I. The cell wall thickness hW and Young's modulus 

EW are the lower values measured by Smith et al. [32]. For the cell wall Poisson's ratio νW 

we chose 0.49 which corresponds to a slightly compressible material. We chose a membrane 

thickness hm used in our previous study [16], which is consistent with measured values [33]. 

We chose a membrane shear modulus μM larger than previously used [16], to improve the 

simulation efficiency. The ratio KM/μM = 2 for the membrane is typical for close-packed 

materials. For membrane tension σ we selected 1 × 10−4 N·m−1, which is the largest value in 

the range given by Liu et al. [10]. The bending modulus of the bare membrane κB is the 

middle of the range of 10kBT to 30kBT measured by Rawicz et al. [34]. The values for the 

bending modulus of the curvature-generating proteins, κCGP, and the preferred curvature of 

CGP, H0, come from the experimental study by Jin et al. [35]. We selected the actin shear 

modulus μA and bulk modulus KA from our previous growth study [16]. The growth depth 

Zp was chosen as a the smallest value compatible with computational efficiency. The turgor 

pressure selected is near the middle of the range of literature values [36–40].

III. Results

A. Distribution of Actin Force Required to Drive Membrane Bending

Figure 6a shows the combination of turgor pressure and wall force, − (P0 + fW), estimated 

from the model of Fig. 4, as well as the combination −(P0 + fW + fM), where fM is obtained 

from Eq. 2. The shape of −(P0 + fW) reveals a balance of forces from turgor pressure and 

cell wall at large r, while at small r the turgor pressure force dominates. The difference 
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induced by including fM is small. Figure 6b shows the total actin force density fA = −P0 – fW 

– fM – FCGP obtained by combining the forces from Fig. 6a with the forces generated by the 

different CGP coat transition profiles from Fig. 3, using Eq. 10. The shape of fA is on the 

whole quite similar to that of −(P0 + fW), with a transition from negative (tensile) to a 

positive (compressive) force density near the point where the membrane separates from the 

cell wall. The maximum required pulling force is very close to P0, about 500 kPa. This 

shape is consistent with the “vertical distributed load” model considered in Ref. [12]. The 

actin force integrates to zero over the area of the actin network. Therefore, since the tensile 

force acts over a smaller area than the compressive force, the tensile force density is larger 

than the compressive force density. Fig. 6c compares fA with and without CGP. We selected 

the transition described by Eq. 11 with parameter γ = 0.10 nm−1 for the fCGP in this 

comparison as well as the following plots. It is seen that fCGP makes noticeable, but not 

dominant, corrections, reducing marginally the maximum force density that the actin must 

supply.

B. Calculation of Actin Growth Profile

As a starting point for calculating the actin growth distribution that generates the required 

forces, and as a tool for obtaining improved growth profiles by iteration, we use a simplified 

approach based on linear elasticity. We analyze growth at the flat boundary between a semi-

infinite elastic medium described by a bulk modulus K and a shear modulus μ, 

corresponding to the actin network, and an infinitely hard solid, corresponding to the 

combination of the cell wall and membrane. The boundary is at z = 0. The growth of the 

actin network is taken to be along the z-direction. For simplicity we take the growth to be 

completely localized z = 0. This is an approximation, since growth in the simulations is 

distributed over a distance Zp away from the boundary. The approximation should be 

accurate since Zp is much smaller than the actin network thickness. We denote the total 

extent of growth by , where we have assumed circular symmetry and r 
= [x2 + y2]1/2. The growth imposes a displacement uz(r) = h(r) at the boundary of the actin 

network. The relationship between uz (and thus h) and the force density fA is given by 

elasticity theory [41]:

(19)

where the integral is independent of the orientation of r⃗; r⃗ and r⃗′ are two-dimensional 

vectors in the plane of the boundary. Since g has circular symmetry and the two-dimensional 

Fourier transform of 1/r is 2π/k, the Fourier transform of this equation is

(20)
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where . We use this result, together with our estimates of fA(r) and a 

numerical Fourier transform, to calculate h(r). We then take g(r) in Eq. 17 to be proportional 

to h(r) in our initial estimates and iterative improvements of our growth profiles.

Note that in Eq. 20, uniform growth corresponds to k = 0. Inverting Eq. 20 shows that f̃A(k) 

is proportional to kh̃(k), which vanishes as k → 0. Therefore uniform growth produces no 

forces. This is consistent with the physical picture that uniform growth of the actin network 

gives uniform retrograde motion of the network, which requires essentially no force because 

of the small velocity and physical size of the network. The prediction of Eq. 20 is 

approximate in two ways. First, it is based on a semiinfinite actin network, as opposed to the 

hemispherical network in our simulations. Second, it is valid only for sufficiently small 

amplitudes of growth and force that small-strain approximations of linear elasticity are 

accurate.

The resulting growth profile shown in Fig. 7 is normalized by its maximum value to 

facilitate convenient comparisons between multiple growth profiles. We incorporated this 

growth profile into our fully nonlinear FE simulations and calculated the resulting force 

distribution. In Fig. 8a, these simulation results are compared to the “estimated” forces 

obtained from Eq. 1, with both forces normalized by their largest magnitude. The force 

distribution from the simulations is reasonably close to the estimated one.

But a much closer estimate of the growth distribution can be achieved by making iterative 

corrections to the original estimate. First, the difference between the normalized simulated 

and estimated actin forces is found by

(21)

where  is the simulated force and fA is the estimated force. Second, the differential 

growth distribution Δg needed to account for Δf is estimated from Δf using the LGT. Next, 

the adjusted growth profile is calculated using

(22)

where A is a fitting parameter. Finally, the adjusted growth profile g′(r) is normalized before 

being implemented in the growth simulation. We repeated the correction process twice to 

achieve a better fit. Fig. 7 shows the profiles g and g′, with g′ and the difference term Δg 
both obtained from the second correction. As seen in Figure 8b, applying multiple 

corrections to the growth profile gives close agreement between the force obtained from the 

FE simulations and the experimentally estimated profile. Thus an iterated solution based on 

a linear starting point can closely reproduce the shape of the required actin force density fA. 

However, the magnitudes of the force densities obtained by the linear theory are too small. 
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To obtain a force density with the correct magnitude an iterative approach with a more 

accurate starting growth profile is required.

To develop such an approach to matching both the shape and magnitude of fA, we used an 

initial guess to the growth distribution, followed by an iteration procedure based on the 

linear theory. To obtain an accurate force density, it was necessary to increase the actin shear 

modulus by a factor of four, to 0.08 MPa. We started by implementing a number of arbitrary 

growth profiles in the FE simulation and comparing the simulated actin forces at full 

magnitude with the estimated actin force. The best results came from using a growth profile 

of

(23)

where r0 = 52.5 nm is the transition radius and η = 0.16 nm−1 determines the slope at r0. 

This profile was then corrected using the LGT as in Eq. 22. The correction process was 

repeated three times resulting in the corrected growth profile g(r) in Fig. 9a. The linearly 

corrected growth profile g′(r) from Fig. 7 is included for comparison, and the two growth 

profiles are notably different. Figure 9b shows a close agreement between the actin force 

density estimated from the experimental profile and that simulated using the nonlinear-strain 

growth model.

Since we found that the turgor pressure P0 is the main factor opposing the initial stages of 

endocytosis, we studied the effect of varying P0 from 0.25 to 2.0 MPa. We expected these 

changes to affect both the total actin pulling force FA, which must be supplied by actin 

polymerization, and the point RW at which the membrane separates from the cell wall. FA is 

found by integrating fA from r = 0 to RW. Note that FA corresponds to the point force 

assumed in other models [11] required to initiate endocytosis and RW is nearly the point at 

which the membrane separates from the cell wall. As shown in Table A4, turgor pressures 

between P0 = 0.25 MPa and P0 = 1.0 MPa result in FA values ranging from 1500 pN to 5000 

pN. Such a large variation is expected because the turgor pressure directly opposes 

invagination. The FA values are larger than we found previously [16], most likely because in 

our previous work the crossover to actin occurred at a smaller radius. RW is relatively 

insensitive to P0. Since the width of our calculated polymerization hole is mainly determined 

by RW, this means that the shape of g(r) is insensitive to the turgor pressure that is assumed.

IV. Discussion

The general shape of the growth distribution g(r) shown in Fig. 9a is similar to that assumed 

in our earlier study [16]. The main difference is that the transition in the current g(r) occurs 

at larger r (45-50 nm vs 30 nm). The width of the transition is quite similar to the earlier one; 

in both cases taking g(r) from 20% to 80% of its maximum value requires an increase of 

about 30% in r. Our finding that g(r) in Fig. 9a generates the forces required to overcome 

turgor pressure and membrane-bending forces supports the general picture of endocytic 
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invagination being driven by a ring of rapid growth around a central core where growth is 

slower. This finding relies on two key assumptions:

• That F-actin at endocytic sites in yeast has a shear modulus much higher than 

cortical actin networks in other cell types. This is supported by the high density 

of F-actin and crosslinkers in the patches. If we assume a hemispherical patch of 

radius 0.1 μm [16], the volume of the patch is (2π/3)(0.1μm)3 = 2.1 × 10−3μm3. 

If we assume 6000 F-actin molecules in this patch [42], the actin concentration is 

4700μM. Previous measurements [43] of the Young's modulus of branched actin 

gels at a density of 170μM obtained values of about 5 kPa. If we assume that the 

Young's modulus is proportional to the density, the resulting Young's modulus for 

the endocytic actin patch is 140 kPa, substantially higher the the value of 80 kPa 

required for invagination in our model. Simple theoretical estimates give similar 

values. Each actin subunit has a length increment of 2.7 nm, so the total length of 

F-actin is 19 μm. Treating the filament as a cylinder of radius 2.5 nm taken as the 

average of the minor and major radii [44], we find a total actin volume of 3.7 × 

10−4μm3, giving a packing fraction of 18%. If we assume that the network 

deforms affinely under shear deformations, the deformation of the individual 

actin filaments is the same as that bulk deformation. Then the Young's modulus 

of the network is the Young's modulus of the material constituting an actin 

filament (estimated at 2.6 Gpa in Ref. [44]) times the packing fraction, or 470 

kPa. The assumption of affine deformation is supported by the high density of 

crosslinkers - one molecule of the crosslinker fimbrin for approximately every 

ten molecules of polymerized actin [45]. These will tend to inhibit sliding of 

filaments parallel to each other. Thus both experimental measurements and 

theoretical estimates suggest that the high densities of F-actin and crosslinkers 

can produce a Young's modulus high enough to drive membrane invagination.

• That actin network growth can proceed against the very large opposing forces 

resulting from the turgor pressure. We find that even after the forces from the 

curvature-generating proteins are accounted for, the total pulling force required 

from the actin network (obtained by integrating the portion of Fig. 6 where fA is 

negative) is 2800 pN. This value is consistent with Ref. [11]; Ref. [6] obtained a 

smaller value of 900 pN for a very narrow mature pit, but indicated that the force 

could be much larger for the initial indentation. The number of growing 

filaments is 100-150 [46], so forces on the order of 15 pN per growing filament 

are required. Within the Brownian-ratchet theory [47], the stall force estimated 

for a 2 μM free actin concentration A [46] is only fstall = (kBT/δ) ln (A/Ac) ≃ 
5pN [48], using a critical concentration of 0.1μM [49] and a polymerization step 

size δ = 2.7nm. One possibility for making up the missing 10 pN of force per 

filament is that type-I myosins enhance force generation [6]. They could bind the 

filaments to the membrane and move to the growing tips of the actin filaments 

after each polymerization event. This would keep them far enough from the 

membrane that new subunits can be added freely [21] despite the opposing force. 

The force-generating capability of yeast type-1 myosins is not known, but 

mammalian type-1 myosins can generate up to 5 pN of force per molecule [50]. 
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The number of type-I myosins is about 150 [46], comparable to the number of 

growing filaments. If each actin filament tip has a myosin aiding its 

polymerization by supplying 5 pN of force, a total force of 10 pN per actin 

filament could be achieved. Note that the actin filaments will not buckle even at 

this high a force. Quantitative fluorescence measurements [51] suggest that the 

actin network contains 300 filaments (capped plus force-generating; taken as the 

number of Arp2/3 complexes). Then 7000 actin subunits corresponds to an 

average filament length of l = 7000 × 2.7nm/300 = 63 nm. The Euler buckling 

force [52] for a filament of this length is fB = π2kBTl0/(2l)2 = 38 pN, where lp ≃ 
15μm is the persistence length of actin filaments [44].

The fractional discrepancy between the 10 pN estimate and the 15 pN required to 

overcome turgor pressure is smaller than the fractional error in the turgor 

pressure, whose measured values have ranged from 0.2 MPa to 1.0Mpa. Recent 

experiments [40] using rapid indentation to avoid the confounding effects of 

osmoregulation suggest that the lower end of the range may be more accurate. 

Finally, the turgor pressure at the endocytic site may not be as large as is 

generally believed. Channel clusters [53] might occur at the endocytic site and 

thereby reduce turgor pressure by the local release of osmolytes [16, 54]. Thus 

10 pN of force per filament may well be enough to drive invagination.

We also found that turgor pressure makes the dominant contribution to the force distribution 

that actin growth must overcome, if commonly accepted estimates of turgor pressure are 

used. In Fig. 6, it is clear that the baseline turgor pressure force is an order of magnitude 

larger than either the membrane bending force or the CGP force. This finding is consistent 

with those of Refs. [11] and [6], but disagrees with the findings of Ref. [12], who used a 

much lower turgor pressure and found that the membrane bending forces played a large role. 

Finally, we found that the forces generated by the CGP profiles with a sharp transition from 

patch to bare membrane, as in Eq. 11, produce a force couple as shown in Fig. 3b. These 

forces tend to “round-off” the sharp transitions in the actin force where the membrane 

separates from the wall. This effect lowers the overall required forces and may aid the actin 

by allowing a smoother growth distribution at the membrane surface. They reduce the total 

pulling force required from actin, but do not have a large effect at the center of the 

invagination.

How could the distribution of actin growth be measured? One possible approach is based on 

the fact that the shape of the actin network should closely reflect the growth profile, if 

external stresses on the surface of the network are absent. Since the turgor pressure causes 

the dominant opposing force, eliminating the turgor pressure would eliminate most of the 

external stresses. Thus, in principle, one could measure the growth profile as follows. One 

first allows actin to polymerize up to a point where the membrane is about to detach from 

the wall, and then abruptly reduces or eliminates the turgor pressure by adding osmolyte to 

the medium. Alternatively, simply waiting for a short time before freezing in an electron 

microscopy study might allow a drop in turgor pressure. The three-dimensional shape of the 

actin distribution after the turgor pressure is reduced would then be nearly that dictated by its 
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growth. The shape could be measured by either electron tomography or 3D superresolution 

microscopy measurements of the actin distribution.

We have evaluated the robustness of our results by performing a number of studies to 

determine the effect of changes in the model parameters on both the simulated and estimated 

actin forces. As discussed above in Results, changes in the turgor pressure affect the 

magnitude of the required actin pulling force, but do not strongly impact the shape of the 

growth distribution g(r). For the simulated actin force we varied the parameters RA, α, and 

Zp. We found that the quality of fit of the model was sensitive only to values of Zp smaller 

than 25 nm (see Table A2), which is likely due to the increased distortion of elements at the 

actin surface for a smaller Zp. We found that large percentage changes in the parameters EW, 

νW, κCGP, s0, and H0 relative to our baseline model resulted in relatively modest changes in 

FA and RW (see Tables A3 and A4).
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Appendix

Fitting Membrane Profiles to Experimental Data

We selected membrane profiles from the experimental study by Kukulski et al. [8] to 

estimate a mean membrane profile during the initial stage of endocytosis. Profiles that had 

invaginations of 11 nm or less and a clear peak were initially collected. These profiles were 

labeled by the authors of the experimental study [8] as 120, 1013, 1014, 1017, 1018, 1021, 

and 1023. The maximum invaginations of each profile are listed in Table A1. Three of these 

profiles are clearly symmetrical (profiles 120, 1014, and 1017), and this set of profiles is 

referred to as the “Symmetric Selection” set in Table A1. Of the remaining profiles, one side 

or the other (from the peak displacement) fits the general shape of the Symmetric Selection 

set. We refer to the set of profiles including both the Symmetric Selection set and the partial 

profiles as the “Outlier Rejection” set. Table A1 indicates which sides of the profiles are 

included in the Outlier Rejection set.

To find a mean profile, the profiles are flipped vertically to follow the convention shown in 

Fig. 2b, and the axis of rotation is taken to be the maximum displacement point. Before 

averaging, profiles are normalized by their respective peak invaginations and interpolated 

using a cubic spline along a common grid. The invagination depth of the resulting mean 

profiles, shown in Fig. A1a, is the mean depth of the original profiles. The mean profiles 

from the Outlier Rejection and Symmetric Selection sets are similar.
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Sensitivity Studies

In this section, we discuss a number of parameter studies we performed to assess the effects 

of parameters on the growth simulations and the estimated actin force.

1. Fitting of Membrane Profile

Figure A1b shows a Gaussian fit (see Eq. 7) of the two mean profiles from Fig. A1a. The 

Symmetric Selection set results in a displacement profile with a slightly narrower dimple. 

Note that the fitting parameter B from Eq. 7, which does not affect the curvature, has been 

discarded in both cases. The resulting force densities −(fW + P0) from the FE simulations for 

both the Outlier Rejection and Symmetric Selection sets are compared in Fig. A1c. The 

force density from the Symmetric Selection set is about 4 nm narrower at the point 

(defined here as the location where fW + P0 = 0) than for the Outlier Rejection set. This 

indicates that  is not particularly sensitive to the selection criteria of the membrane 

profiles.

In the spatial domain (r and z), we fit the mean displacement profile from Fig. 2c using a 

Gaussian function. A Gaussian curve provides a continuous fit to the full radius of the actin 

patch (100 nm or more). Since the mean data from Fig. 2 is continuous to about 46 nm, a 

Gaussian fit is more convenient than a polynomial fit for the full actin patch. We chose a 

polynomial fit in the arc length coordinates (s and ψ(s)) for convenience in implementing 

the boundary conditions for Eq. 2. For the polynomial fit, the BCs could be met by 

constraining the odd terms to vanish. In order to compare these two fits, we transformed the 

polynomial fit into the spatial domain by numerically integrating the following two 

relationships:

(A1)

(A2)

where S is the maximum curve length (S ≈ 46 nm). For the integration constant z0 in Eq. 

A2, we chose the parameter A from the Gaussian fit in the spatial domain (see Eq. 7). Figure 

A2 provides a comparison of the Gaussian and integrated polynomial fits in the spatial 

domain. The comparison between the two fits is quite close, and the choice of two different 

fitting functions for the spatial and arc length coordinates appears reasonable.

2. Growth Parameters

For a numerical assessment of the agreement between the estimated and simulated actin 

forces, we use a normalized, absolute-mean error EA. This error is defined as
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(A3)

where  is the simulated actin force, fA(r) is the estimated actin force, and RA is the 

radius of the actin patch.

a. Effect of the Actin Network Radius on Calculated Growth Forces. We tried 

increasing the actin patch radius to 150 nm. The shape of the calculated force 

profile was similar to the 100 nm baseline case, as shown in Fig. A3. The 

compressive force density is lower for the actin radius of RA = 150 nm, as 

expected for the larger area. Table A2 shows that the actin radius has almost no 

effect on the agreement between simulated and estimated actin forces for 

simulations with linear or nonlinear strains.

b. Effect of the Parameter α in the Fung model. We ran growth simulations with 

α taking the values 0.001, 0.01, and 0.02, using the same growth profiles as in 

the baseline simulations. The change in α resulted in no appreciable difference in 

the simulated actin force density fA. Table A2 shows no significant changes in 

agreement between simulated and estimated actin forces due to changes in α.

c. Effect of the Polymerization Region Thickness. We ran growth simulations 

with polymerization region thicknesses of Zp = 20, 25, and 30 nm, again using 

growth profiles from the baseline simulations. The differences in fA for Zp = 25 

and 30 nm were insignificant as is apparent from Fig. A4 and Table A2. As seen 

in Fig. A4, the differences in fA between the simulations with Zp = 20 and 25 nm 

were more noticeable. Table A2 also indicates a poorer fit between simulated and 

estimated actin force for Zp = 20 nm. Thus the nonlinear-strain growth model is 

sensitive to Zp parameters below 25 nm, but it is not particular sensitive to larger 

values of Zp.

d. Effect of Shape of Growth Profile. Finally, we simulated the actin force density 

generated by several arbitrarily chosen growth profiles shown in Fig. A5a. We 

tried several parameters for the profile defined in Eq. 23 and a fitted profile based 

on our previous work [16]:

(A4)

It is clear that the different forms and parameters generate substantial differences 

in the calculated force densities. Thus the calculated actin force density is 

sensitive to the form and width of the growth profile. Therefore, a growth profile 

that generates the correct actin force density is likely to be reasonably correct.
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3. Cell Wall Parameters, Turgor Pressure and Geometry

a. Effect of Mechanical Model of Cell Wall. We modeled the cell wall as both a 

continuous material (using FE simulation; see Fig. 6) and with a linear-spring 

bed model (not shown), and calculated fW using each model. The spring bed 

model assumes that the displacement of the cell wall at any particular point along 

the wall is independent the displacements at other points. A comparison of the 

force −(fW + P0) between both models for a turgor pressure of P0 = 0.5 MPa is 

shown in Fig. A6a. The sharp transition that occurs at r ≈ 38 nm for the spring 

bed model is the location at which the membrane separates from the cell wall. 

The transition is smooth for the continuous material model because 

displacements at any particular point along the cell wall impact the 

displacements at other points.

The two cell wall models represent extremes in treating the cell wall as a 

continuous or spatially uncoupled material. We expect that the behavior of the 

cell wall to fall somewhere within these two approaches. To estimate the 

sensitivity to the mechanical properties assumed for the cell wall, we performed 

a sensitivity analysis using both cell wall models and three turgor pressures. We 

used an error propagation approach [55] to estimate the sensitivity to the two 

types of models. We define the standard error or sensitivity at a given r as

(A5)

where Pn = 0.25, 0.50, and 0.75 MPa are the three turgor pressures in the study, 

and N = 3 for three pressures. Figure A6 shows the force (fW + P0) ± αT for P0 = 

0.5 MPa. The largest sensitivities tend to occur at the transitions at r ≈ 38 and r ≈ 
58 which are the locations where the continuous assumption makes the largest 

impact. The sensitivity of  to the cell wall model is less than 6 nm. The term 

 is defined here as the location at which fW + P0 = 0, and is expected to be the 

location where the membrane separates from the cell wall. This indicates that the 

location at which the membrane separates from the cell wall is not particularly 

sensitive to the cell wall model chosen in the analysis.

b. Effect of Poisson's Ratio. In addition to comparing the different cell wall 

models, we also performed a study changing the Poisson's ratio in the continuum 

model of the cell wall. The baseline Poisson's ratio of ν = 0.49 assumes that the 

cell wall is nearly incompressible. For a turgor pressure of P0 = 0.5, we ran 

additional FE simulations for Poisson's ratios of ν = 0 and 0.3. For all three 

cases, the actin force fA was nearly identical. We also calculated the pulling force 

FA and location RW where fA crosses from positive to negative. For all of the 

following cell wall parameter studies we define the pulling force as the total actin 

force, fA, integrated over the area from r = 0 to r = RW. Table A3 shows only 

small variations in FA and RW due to large changes in the Poisson's ratio. Based 
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on these results, the main results of the continuum mechanics model of the cell 

wall are not sensitive to Poisson's ratio.

c. Effect of Young's Modulus. We varied the Young's Modulus EW of the cell wall 

to assess the effect on both FA and RW. Table A3 shows FA and RW for both the 

continuum and linear-spring bed models of the cell wall with Young's Moduli of 

E = 1/4 × 110, 1/2 × 110, 110, and 2 × 110 MPa. Based on this study, neither FA 

nor RW are particularly sensitive to the cell wall Young's modulus.

d. Effect of Actin Network Radius on on Force Profile Obtained from 
Experiments. The required actin force densities fA calculated for the actin 

network radii of RA = 100, 150, and 200 nm are shown in Fig. A7. Table A3 

shows the corresponding values of FA and RW for both the continuum and linear-

spring models for all three radii. The continuum model is insensitive to the width 

of the actin network, with almost no change in FA or RW for large changes in 

RA. The total pulling force FA for the linear-spring bed model is also insensitive 

to changes in actin network radius. The radius RW in the spring bed model does 

vary for different actin radii. However, with a maximum change of 8 nm for a 

300% increase in actin network area, this model does not appear to be 

particularly sensitive to the actin network radius.

e. Effect of Turgor Pressure. The turgor pressure study summarized in Table A4 is 

discussed in the main text describing the continuum model of the cell wall. The 

results for the spring bed model are similar.

4. Membrane and CGP Parameters

a. CGP Bending Modulus. To observe the effect of changes in the CGP bending 

modulus on the actin force obtained from the growth simulations, we calculated 

the total actin force for several bending moduli: κCGP = 20kBT, 285kBT, and 

500kBT. Figure A8 shows that for a small bending modulus comparable to the 

bare membrane bending modulus κCGP = 20kBT, the CGP continue to generate a 

relatively small force. On the other hand, nearly doubling the CGP bending 

modulus to κCGP = 500kBT results in a noticeably more rounded actin force 

density. Further increases in CGP bending modulus result in an actin force that is 

no longer smooth at the transition point at s0 = 46 nm. Table A5 shows that the 

changes in CGP bending modulus have a minimal effect on both FA and RW. For 

all membrane and CGP parameter studies we define the pulling force as the total 

actin force fA, integrated over the area from r = 0 to r = Rw, where RW is the 

radial position at which fA = 0. On the whole, the results are not strongly 

sensitive to changes in κCGP.

b. Transition Radius. We treated the transition radius s0 of the preferred curvature 

of the CGP as a fitting parameter when estimating the total actin force. The 

transition radius was approximately equal to the radius where the first derivative 

of the force fW + P0 was maximized, which resulted in a transition radius of s0 = 

46 nm. In Fig. A9, actin forces with transition radii of s0 = 36, 46, and 56 nm are 

compared to highlight the effect of this parameter. Selecting a transition radius 
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larger or smaller than s0= 46 nm results in enhanced spatial fluctuations in the 

actin force density. In addition, Table A5 shows that the changes in transition 

radius have a minimal effect on both FA and RW. However, our chosen value 

minimizes the required force FA. Thus we feel that this choice of transition 

radius makes physical sense.

c. Preferred Curvature. We also considered the effect on the actin force of 

changing the preferred curvature H0 of the CGP. We observed the effect of a 

selected range of preferred curvatures (H0 = 0.016, 0.02, and 0.024 nm−1) on the 

estimated actin force. We found that for this range, the change in shape of the 

actin force was minimal. In addition, Table A5 shows that the changes in 

preferred curvature have a minimum effect on both Fa and RW.

d. Alternative CGP Patch Transition. Finally, an alternative approach to 

modeling the transition of the CGP patch is to vary the preferred curvature and 

keep the bending modulus constant. The CGP forces are then defined by

(A6)

where HC is preferred curvature of the CGP proteins. The preferred curvature is 

modeled with the tanh function:

(A7)

where H0 is the maximum preferred curvature. When the CGP forces are 

calculated using Eqs. A6 and A7 for the same baseline parameters, the resulting 

actin force is nearly identical to the baseline case which uses Eq. 11. Using the 

transition curvature in Eqs. A6 and A7 results in a pulling force and endocytic 

width of FA = 2800 pN and RW = 48 nm, respectively.
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Fig. A1. 
Comparisons of a) the mean profiles, b) Gaussian fits of the mean profiles, and c) the 

resulting wall reaction forces using the displacement sets defined in Table A1. The curves 

found using the “Outlier Rejection” displacement sets are represented by solid lines, and 

those found using the “Symmetric Selection” displacement sets are represented by dashed 

lines.
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Fig. A2. 
Comparison of the Gaussian fit of the mean displacement profile (see Fig. 2c) and the 

integrated polynomial fit of the mean displacement profile in the arc length domain. The 

integration of the polynomial fit is only continuous to a radius of r ≈ 46 nm.

Fig. A3. 
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Comparison of actin force fA obtained from growth simulations for increasing radii of the 

actin patch. a) Normalized actin forces for linear strains. b) Full-magnitude comparisons of 

actin forces for nonlinear strains.

Fig. A4. 
Comparison of actin force fA from actin growth simulations for nonlinear strains and 

polymerization region thicknesses of Zp = 20, 25, and 30 nm. The corrected growth profile 

g(r) from Fig. 9a was used for all three simulations. “Estimated” denotes force profile 

obtained from experimental data.
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Fig. A5. 
a) Growth profiles used for simulating actin forces. The tanh curves are defined by Eq. 23 

with parameter values of η = 0.16 nm−1 and r0 = 42.0, 52.5, and 63.0 nm. The atan curve is 

based on Eq. A4 with r0 = 39.5 nm, and 0.1r0 is replaced with a fitted value of 14.5 nm. b) 

Comparison of simulated actin force fA using the growth profiles from Fig. a) (broken lines), 

and the actin force density estimated from experiments (solid line).
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Fig. A6. 
a) Comparison between the cell wall reaction force and turgor pressure (fW + P0) using 

elastic continuum (solid line) and linear-spring bed (dashed line) models of the cell wall. 

The turgor pressure in both simulations was P0 = 0.5 MPa. b) Sensitivity analysis comparing 

the continuum and linear-spring bed cell wall models. The forces fW + P0 from the 

continuum model with P0 = 0.5 MPa (solid line) and (fW + P0) ± αT (dotted lines) are 

shown. The sensitivity αT is calculated from Eq. A5.
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Fig. A7. 
Comparison of actin force profiles fA estimated from experiments for increasing radii of the 

actin network. The model from Fig. 4 was used to estimate the actin force for RA = 100, 150 

and 200 nm with a matching cell wall and membrane radius in each case.
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Fig. A8. 
Study of the effect of the bending modulus κCGP on the actin force fA estimated from 

experiments. The CGP forces were generated from the hyperbolic tangent transition from 

Eq. 11 with γ = 0.1 and s0 = 46 nm.
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Fig. A9. 
Study of the effect of center of the transition radius s0 of the CGP on the experimentally 

estimated actin force fA. The CGP forces were generated from the hyperbolic tangent 

transition from Eq. 11 with γ = 0.1.

Table A1

Curves from the experimental study by Kukulski et al. [8] that have less than the maximum 

invagination of 11 nm and have a clear axis of symmetry. Profile numbers are those of Ref. 

[8]. The maximum displacement of the invagination at the axis of symmetry is given for 

each profile. For the “Outlier Rejection” set, the sides included in the averaged profile are 

indicated. The “Symmetric Selection” set includes both sides of the selected profiles.

Profile Maximum Disp. [nm] Outlier Rejection Symmetric Selection

120 7.5 left & right left & right

1013 6.9 left

1014 6.7 left & right left & right

1017 9.2 left & right left & right

1018 10.4 left

1021 10.8 left

1023 10.2 right
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Table A2

Effect of growth and material parameters on quality of fit. RA is the radius of the actin 

network, α determines the nonlinearity in the Fung model, and Zp is the width of the 

growing region of the actin network. For each set of parameters, the error EA between the 

simulated and estimated actin force is given. The error EA is the normalized, absolute-mean 

error integrated over the surface of the actin as defined by Eq. A3. Normalized forces are 

used to calculate EA for simulations with linear strains, and the full magnitude forces are 

used to calculate EA for simulations with nonlinear strains.

Section in Text Parameter
EA

Linear Strains Nonlinear Strains

2a

RA = 100 nm 0.05 0.11

RA = 150 nm 0.04 0.11

RA = 200 nm 0.04 -

2b

α = 0.001 0.05 0.12

α = 0.01 0.05 0.11

α = 0.02 0.05 0.11

2c

Zp = 20 nm 0.05 0.16

Zp = 25 nm 0.05 0.11

Zp = 30 nm 0.04 0.12

Table A3

Sensitivity of results to the cell wall Poisson's ratio νW, cell wall Young's modulus EW, and 

actin network radius RA. The pulling force FA is the total actin force required to initiate 

endocytosis, and is calculated by integrating the force fA from r = 0 to RW. RW is defined as 

the location where fA = 0. Note that the spring bed model results do not include fM or fCGP, 

and this model has no Poisson's ratio by definition.

Section in Text Parameter
FA [pN] RW [nm]

Continuum Spring Bed Continuum Spring Bed

3b

νW = 0.0 2800 - 47 -

νW = 0.3 2700 - 46 -

νW = 0.49 2800 - 48 -

3c

EW = 0.25 × 110 MPa 2100 1800 42 43

EW = 0.5 × 110 MPa 2500 2300 46 46

EW = 1.0 × 110 MPa 2800 2800 48 48

EW = 2.0 × 110 MPa 3000 3300 51 51

3d

RA = 100 nm 2800 2800 48 48

RA = 150 nm 2900 3000 51 53

RA = 200 nm 3000 3100 53 56
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Table A4

Effects of turgor pressure on actin force fA and force crossover radius RW. The pulling force 

FA is the total force required to initiate endocytosis, and is calculated by integrating the 

force fA from r = 0 to r = RW. The spring bed model results do not include fM or fCGP.

P0 [MPa]
FA [pN] RW [nm]

Continuum Spring Bed Continuum Spring Bed

0.25 1500 1700 53 51

0.5 2800 2800 48 48

1.0 5000 4600 45 45

2.0 8000 7200 41 42

Table A5

Effect of CGP parameters on the total required actin force FAa and the endocytic width RW. 

FA is calculated by integrating the force fA from r = 0 to RW. RW is defined as the location 

where the experimentally estimated actin force fA = 0.

Study Parameter FA [pN] RW [nm]

4a

κCGP = 20 kBT 3100 48

κCGP = 285 kBT 2800 48

κCGP = 500 kBT 2600 51

4b

s0 = 36 nm 3000 48

s0 = 46 nm 2800 48

s0 = 56 nm 3000 46

4c

H0 = 36 nm−1 2900 48

H0 = 46 nm−1 2800 48

H0 = 56 nm−1 2700 49
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Fig. 1. 
Axisymmetric diagram of the model. a) The membrane is separated from the cell wall in the 

initial stage, in which the membrane forms a shallow dimple. The hatched sections of the 

cell wall and membrane are not included in the model but are shown for clarity. b) Free-body 

diagram of the cell wall, membrane, and actin network. P0 is the turgor pressure; fW is the 

reaction force density of the cell wall; and fA is the force density applied by (and on) the 

actin network. The cell wall force, fW, is balanced by a shear force Fw–bc and bending 

moment Mw–bc at the boundary. The forces fM and fCGP are omitted for clarity.
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Fig. 2. 
a) Electron microscopy (EM) images of endocytic profiles. The left profile shows the initial 

stage of endocytosis, in which the membrane forms a shallow dimple. Scale bars indicate 

100 nm. Reprinted with permission from Kukulski et al. [8]. b) Selected membrane profiles 

from the EM experiments [8]. Vertical displacement of membrane is w. c) Mean membrane 

profile of the initial stage of endocytosis (solid line) and Gaussian fit (dashed line).
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Fig. 3. 
a) Possible profiles of the bending modulus in the CGP patch. For the hyperbolic tangent 

profiles (Eq. 11), the center of the transition occurs at s0 = 46 nm; Δs is in nm and γ is given 

in units of nm−1. b) Force densities fCGP resulting from the bending modulus profiles. A 

negative force indicates that CGP are pulling the membrane into the cell.
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Fig. 4. 
a) Axisymmetric continuum mechanics model used to estimate the wall reaction force fW 

during the initial stages of endocytosis. The interface between the cell wall and membrane is 

frictionless. A frictionless boundary condition (BC) with zero displacement in the z-

direction is applied to the top surface of the cell wall. A frictionless BC with zero 

displacement in the radial direction is applied to the outer radius of both the cell wall and the 

membrane. The membrane is displaced vertically (in the z-direction) into the cell wall to 

create the wall force. The wall force on the membrane is estimated from fW = −σzz. b) The 

resulting stresses in the membrane and cell wall estimated by finite element solution of the 

continuum-mechanics model.
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Fig. 5. 
Results from FE simulation of the continuum mechanics model used to obtain the actin force 

fA from a growth distribution g(r) taken from the linear theory of Sec. 2.1.3. The actin 

network is modeled as a hemisphere with radius RA = 100 nm in contact with a rigid, freely 

sliding boundary at the membrane surface. The network is not permitted to pull away from 

the surface. a) The growth distribution in the model after a simulation time of 0.65 time 

units. b) The resulting stress σZZ in the FE model after a simulation time of 0.65 time units. 

Positive stress is tensile.
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Fig. 6. 
a) Wall reaction force plus turgor pressure (solid line) and black with inclusion of the 

internal membrane forces (dashed line). b) Total actin forces including the CGP force 

estimated from the Gaussian transition (solid line, Eq. 12) and the hyperbolic tangent 

transitions (broken lines, Eq. 11); Δs is in nm and γ is given in units of nm−1. c) Total actin 

force fA with (dotted line) and without (dashed line) fCGP obtained from Eq. 11 with γ = 

0.10 nm−1 (dotted line). All curves generated from Eq. 11 have a transition radius of s0 = 46 

nm.
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Fig. 7. 
Growth distributions using the linearized growth theory (LGT). The dashed line is the 

growth distribution g calculated using LGT directly from the estimated actin force fA. The 

dotted line is a growth distribution A Δg, where Δg is the growth distribution resulting from 

using the difference between the simulated and estimated actin force as the input to the LGT. 

The solid line is the linearly corrected growth distribution g′ = AΔg + g, with A = 35.
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Fig. 8. 
Comparison of simulated (dotted lines) force density generated by FE code from LGT 

growth profiles (Fig. 7), with force density estimated from experimental observations [8] 

(solid lines). a) Actin force density resulting from linear growth profile g. b) Actin force 

density resulting from corrected growth profile g′.
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Fig. 9. 
a) Corrected fully nonlinear growth profile g from a general growth calculation (solid line), 

compared with normalized linearly corrected growth profile g′ (dashed line). Calculations 

performed with a shear modulus of 4μA = 80 kPa. b) Direct, full-magnitude comparison of 

actin forces estimated from the experimental profile (solid line) and simulated using the 

nonlinear-strain growth model (broken lines).
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Table I
Parameter values

Parameter Definition Value Comments

hW Cell wall thickness 100 nm

EW Cell wall Young's modulus 110 MPa Baseline

νW Cell wall Poisson's ratio 0.49 Baseline

hM Membrane thickness 6 nm

μM Membrane shear modulus 10 MPa

KM Membrane bulk modulus 2 μM

σ Membrane tension 1 × 10−4 N·m

κB Membrane bending modulus 20 kB T

H0 CGP curvature 0.02 nm−1 Baseline

κCGP CGP bending modulus 285 kBT Baseline

RA Actin network radius 100 nm Baseline

μA Actin shear modulus 0.02 MPa Baseline

KA Actin bulk modulus 10 μA

α Nonlinear Fung model parameter 0.01 Baseline

Zp Growth region thickness 25 nm Baseline

P0 Turgor pressure 0.5 MPa Baseline
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