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Abstract

Body-weight support (i.e., gravity compensation) is an effective clinical tool for gait rehabilitation 

after neurological impairment. Body-weight supported training systems have been developed to 

help patients regain mobility and confidence during walking, but conventional systems constrain 

the patient's treatment in clinical environments. We propose that this challenge could be addressed 

by virtually providing patients with bodyweight support through the actuators of a powered 

orthosis (or exoskeleton) utilizing potential energy shaping control. However, the changing contact 

conditions and degrees of underactuation encountered during human walking present significant 

challenges to consistently matching a desired potential energy for the human in closed loop. We 

therefore derive a generalized matching condition for shaping Lagrangian systems with holonomic 

contact constraints. By satisfying this matching condition for four phases of gait, we derive 

passivity-based control laws to achieve virtual body-weight support through a powered knee-ankle 

orthosis. We demonstrate beneficial effects of virtual body-weight support in simulations of a 

human-like biped model, indicating the potential clinical value of this proposed control approach.

Index Terms
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I. Introduction

Individuals who have sustained a stroke, spinal cord injury, or other neurological condition 

often struggle to ambulate. Gait training is needed to help these patients regain mobility and 

independence. Patients are often provided with body-weight support (BWS), i.e., gravity 

compensation for the body's center of mass, to help them practice and relearn the 

coordinated muscle activities needed for walking. This locomotor retraining technique 

provides weight support for patients through a torso or hip harnesses attached to an overhead 

lift [1]. The percentage of BWS is often adjusted progressively as the patient's gait improves 
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through the training process. Over the past two decades, the use of BWS training systems to 

enhance ambulation and motor function in individuals has received considerable attention 

[1]–[5].

Current body-weight supported training systems can be classified into two categories: 

treadmill/stationary training systems and ceiling-mounted overground training systems. The 

former one involves stepping on a motorized treadmill while a percentage of the patient's 

body weight is unloaded by a counterweight-harness system [5], whereas the latter one is 

mounted to a ceiling track so that the therapist can work hand in hand with the patient to 

allow personalized assistance [6]. Conventional static and passive training systems usually 

consist of winches, counterweights, and elastic springs [7], while recently, several robotic 

BWS devices have been developed to automate the assistance during gait training. For 

example, the Lokomat exoskeleton system uses motors to drive the patient's lower limbs 

based on a reference trajectory over a treadmill [8]. The LOPES treadmill system provides 

BWS via cable-driven series elastic actuators with an impedance controller [9]. The ceiling-

mounted ZeroG system allows patients with severe gait impairment to practice gait and 

balance activities in a controlled manner inside a gait laboratory [6]. By unloading a certain 

percentage of body weight utilizing the aforementioned rehabilitation systems, patients can 

practice walking without the full strength or control of their muscles.

Despite the fact that robot-assisted rehabilitation systems have shown promise in improving 

patients' gaits, significant challenges still remain in aspects of control and mobility. The 

Lokomat system uses an impedance controller combined with supportive torques estimated 

through an adaptive algorithm, which makes the patient follow a specific joint position 

trajectory [8]. However, studies have shown that for subacute stroke patients, conventional 

labor-intensive interventions are more effective than Lokomat-assisted gait training [10]. 

Although new control strategies based on potential force fields have improved the 

mechanical transparency of the Lokomat to encourage patient participation during training 

[11], these control strategies still depend on predefined reference trajectories that may not 

generalize well across patients or tasks. In contrast, the ceiling-mounted ZeroG system 

allows freedom of motion while providing constant BWS with minimum horizontal 

dragging force as the patient walks [6]. However, patients can only receive therapy in 

clinical environments with treadmill or ceiling-mounted training devices, which greatly 

reduces the flexibility, convenience, and frequency of the therapy.

Many recent powered orthoses and exoskeletons address the issue of mobility, but the vast 

majority of these devices compensate for chronic deficits rather than provide therapeutic 

assistance for gait retraining [12], [13]. In one of the closest approaches to mobile BWS 

[14], the Vanderbilt exoskeleton provides a combination of feedforward movement 

assistance and gravity compensation for the swing leg to allow user adaptation of joint 

patterns with minimal interference from the exoskeleton. Although not designed for physical 

rehabilitation, the BLEEX enhances the ability of an able-bodied user to carry extra heavy 

loads, using force control to minimize the user's interaction forces with the exoskeleton so 

the user does not feel the weight of the backpack [15]. However, minimizing interaction 

forces with the exoskeleton does not offload the body weight of the human user. The passive 

gravity-balancing orthosis in [16] can provide variable gravity compensation to the patient's 

Lv and Gregg Page 2

IEEE Trans Control Syst Technol. Author manuscript; available in PMC 2019 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



swing leg by adjusting the geometry of the links and the spring locations of the device. 

However, the use of physical springs could make the device too cumbersome to adjust for 

the progressive levels of support needed in a clinical setting. Powered orthoses/exoskeletons 

that provide easily adjustable BWS during both stance and swing might enable greater 

flexibility during gait rehabilitation, motivating the development of novel control strategies 

for this purpose.

Energy shaping, a control method that alters the dynamical characteristics of a mechanical 

system [17]–[21], could possibly be used to augment the gravitational forces perceived by 

the human body. Energy shaping approaches have already seen success in applications to 

bipedal walking robots [22]–[24]. Because weight is equal to mass times gravity, virtual 

BWS could be achieved by shaping the gravitational constant or the mass terms in the 

potential energy of the human body. This idea was attempted in simulations of a simple 

compass-gait biped model in [25], ignoring the different contact conditions and unactuated 

degrees of freedom (DOFs) encountered during human walking. This simplification 

prevented translation to a real orthosis that can be used by patients. More realistic models 

are needed to design orthotic control strategies that are appropriate for the underactuated 

phases of the human gait cycle. However, shaping the potential energy is difficult for 

underactuated dynamical systems since the Matching Condition, whose solutions dictate the 

achievable forms of a system's closed-loop energy, can be quite challenging to satisfy [22]. 

The changing contact conditions from heel strike to toe off also result in different unactuated 

DOFs throughout the gait cycle, making it difficult to consistently match a desired potential 

energy for the human in closed loop.

This paper develops a generalized methodology for underactuated potential energy shaping 

that leverages the contact constraints encountered during human walking. As an extension of 

the initial results presented in [26], we generalize the classical potential energy matching 

condition for constraint-free Lagrangian dynamics (used in [25]) to the case of Lagrangian 

dynamics with holonomic contact constraints. By modeling generalized dynamics instead of 

lower-dimensional contact-specific dynamics, a single position-feedback control law with 

passivity properties can be derived for all stance contact conditions. In addition to virtual 

BWS in [26], the proposed framework is used to examine another therapeutic control 

strategy, where weight is virtually added (i.e., negative BWS) for challenge-based training as 

defined in [27]. Because the potential shaping control approach does not prescribe reference 

joint trajectories, it is fundamentally task-invariant.

We begin in Section II by modeling the contact constraints for four phases of gait: heel 

contact, flat foot, toe contact, and no contact (i.e., swing). In Section III the generalized 

matching condition is derived and satisfied to obtain BWS control laws for stance and 

swing. Then, passivity and stability of the shaped human system are shown in Section IV. 

Finally, simulations of an 8-DOF biped in Section V demonstrate that the positive BWS 

controller results in shorter and slower steps accompanied by higher swing foot clearance, 

whereas the negative BWS controller results in longer and faster steps without sacrificing 

swing heel clearance. These results suggest that orthotic potential energy shaping could 

provide variable weight augmentation for mobile gait training, ranging from assistive to 

resistive therapies.
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II. Dynamics of the Biped

In this section, we are interested in controlling a powered knee-ankle orthosis using only 

feedback local to its leg. For the purpose of control derivation, we separate the dynamical 

models of the stance and swing legs, which are coupled through interaction forces (Fig. 1). 

We also assume the masses mi, i ∈ {f, s, t, h}, shown in Fig. 1 are the combined masses of 

the human limb and its orthosis.

A. Stance Leg

The stance leg is modeled as a kinematic chain with respect to an inertial reference frame 

(IRF) defined at either the heel or toe, depending on the phase of the stance period (to be 

discussed later). The generalized coordinates of this leg are given by qst = (px, py, ϕ, θa, 

θk)T, where px and py are the Cartesian coordinates of the heel, ϕ is the angle of the heel 

defined with respect to the vertical axis, and θa and θk are the ankle and knee angles, 

respectively. Following [28], [29] the generalized Lagrangian dynamics can be expressed as

(1)

where Mst is the inertia/mass matrix, Cst is the Coriolis/centrifugal matrix, Nst is the 

potential forces vector with gravity constant g = 9.81, Aℓ ∈ ℝc×5 is the constraint matrix 

defined as the gradient of the constraint functions, c is the number of contact constraints that 

may change during different contact conditions, and ℓ ∈ {heel, flat, toe} indicates different 

contact configurations. The Lagrange multiplier λ is calculated using the method in [29]. 

Assuming the orthosis has actuation at the ankle and knee joints, i.e., ust = (ua, uk)T ∈ ℝ2×1, 

where ua and uk are the torques at the ankle and knee joints, the matrix Bst = (02×3, I2×2)T 

maps joint torques into the coordinate system. The interaction forces F = (Fx, Fy, Mz)T ∈ 
ℝ3×1 between the hip of the stance model and the swing thigh are composed of 3 parts: two 

linear forces and a moment in the sagittal plane [29]. Force vector F is mapped into the 

system's dynamics by the body Jacobian matrix Jst(qst) ∈ ℝ3×5. The human input term vst = 

(va, vk)T ∈ ℝ2×1 provides additional torques at the ankle and knee joints, i.e., va and vk. 

While designing the energy shaping controller, we make no assumptions about the human 

inputs or interaction forces.

The stance period can be divided into three phases: heel contact, flat foot, and toe contact 

(Fig. 2), for which holonomic contact constraints can be appropriately defined.

1) Heel Contact: During this period the heel is fixed to the ground as the only contact point, 

about which the stance leg rotates. The IRF is defined at the heel, yielding the constraint 

aheel(qst) = 0 and matrix Aheel = ∇qst aheel where

(2)
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2) Flat Foot: At this configuration the foot is flat on the ground slope, where ϕ is equal to the 

slope angle. The IRF is still defined at the heel, which yields the constraint aflat(qst) = 0 and 

the constraint matrix Aflat = ∇qst aflat where

(3)

3) Toe Contact: The toe contact condition begins when the center of pressure (COP), the 

point along the foot where the ground reaction force (GRF) is imparted, reaches the toe 

(detecting this event will be discussed later). When switching to this configuration, the IRF 

shifts instantly from the heel to the toe, where the COP is currently located. During this 

phase the toe is the only contact point, about which the stance leg rotates. We define the IRF 

at this contact point to simplify the contact constraints. The coordinates of the heel are then 

defined with respect to the toe, which gives us the constraint atoe(qst) = 0 and the constraint 

matrix Atoe = ∇qst atoe where

(4)

B. Swing Leg

We choose the hip as a floating base for the swing leg's kinematic chain in Fig. 1. The full 

configuration of this leg is given as qsw = (hx, hy, θth, θsk, θsa)T, where hx and hy are the 

positions of the hip, θth is the angle defined between the vertical axis and the swing thigh, 

and θsk and θsa are the angles of the swing knee and ankle, respectively. By deriving the 

equations of motion [28], we obtain

(5)

where Msw is the inertia/mass matrix, Csw is the Coriolis/centrifugal matrix, and Nsw is the 

potential forces vector. The matrix Bsw = (02×3, I2×2)T maps the orthosis torque vector usw = 

(usk, usa)T ∈ ℝ2×1 into the system, where usk and usa are the torques at the swing knee and 

swing ankle, respectively. The vector F = (Fx, Fy, Mz)T ∈ ℝ3×1 contains the interaction 

forces between the swing leg and hip (including human hip torques), and Jsw(qsw) ∈ ℝ3×5 is 

the body Jocabian matrix that maps F into the dynamics. The input vector vsw = (vsk, vsa)T ∈ 
ℝ2×1 contains human knee and ankle torques vsk and vsa, respectively. As in the case of the 

stance leg, we design the energy shaping controller without assumptions on the human 

inputs or interaction forces. There are no contact constraints during swing, i.e., Asw = 0.
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III. Energy Shaping Control

A. Strategies for Rehabilitation

According to the literature review in [27], assistive control strategies and challenged-based 

control strategies are two of the main categories of robotic movement training. These two 

categories can be treated as part of a continuum along which task difficulty can be 

modulated from easier-than-normal to harder-than-normal [30]. In the assistive category, 

studies have demonstrated the clinical efficacy of BWS methods that unload a certain 

percentage of a patient's body-weight using different types of devices [2]–[4]. However, 

evidence in [31] suggests that adding resistance to a patient's lower limbs can enhance flexor 

muscle activity during treadmill locomotion in incomplete spinal cord injury. Therefore, in 

this section, we will derive a general potential energy shaping framework that is capable of 

the following two control strategies:

We will see that the gravity constant g can only be shaped in certain rows of Nsw and, 

depending on the contact condition, Nst. Because weight is equal to mass times gravity, 

shaping the gravity constant in these rows is equivalent to shaping the masses of the shank, 

thigh, and hip during stance or the foot and shank during swing.

B. Definition of Matching Condition

Although we modeled the biped with contact constraints explicitly appearing in the 

generalized dynamics (1), this section will review the concept of potential energy shaping 

for a Lagrangian system without explicit constraints [17]–[21], though contact constraints 

could be implicit if only a subset of the generalized coordinates are modeled. We will later 

prove that potential energy shaping can be equivalently achieved in a generalized Lagrangian 

system with explicit constraints.

Consider a forced Euler-Lagrange system with configuration space ℚ, taken for simplicity to 

be equal to ℝn, and described by a Lagrangian L : T ℚ → ℝ:

(6)

where  is the kinetic energy and P (q) is the potential energy. The Lagrangian 

dynamics are given by

(7)
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where B(q) : ℝm → Tq*ℚ≃ℝn with rank m maps the torque vector u ∈ ℝm into the 

dynamical system. We consider the underactuated case, hence m < n. The vector Fnc ∈ ℝn 

contains the external (non-conservative) forces. We can express (7) in the following form for 

a mechanical system:

(8)

where terms on the left-hand side are defined similarly to (1) with N (q) = ∇q P (q).

Now consider an unforced Euler-Lagrange system defined by another Lagrangian L̃ : T ℚ 
→ ℝ:

(9)

for a new potential energy P̃(q), resulting in the dynamics

(10)

These Lagrangian dynamics can be expressed in the form

(11)

with Ñ (q) = ∇q P̃(q).

Definition 1: The systems (8) and (11) match if (11) is a possible closed-loop system of (8), 

i.e., there exists a control law u such that (8) becomes (11).

Standard results in [19] show that systems (8) and (11) match if and only if there exists a 

full-rank left annihilator B(q)⊥ ∈ ℝ(n−m)×n of B(q), i.e., B(q)⊥B(q) = 0 and rank(B(q)⊥) = (n 
− m), ∀q ∈ ℚ, such that

(12)

Equation (12) is the so-called matching condition. From now on, we will omit q in the 

dynamical terms to abbreviate notations. Assuming (12) is satisfied, the control law that 

achieves the closed-loop dynamics (11) is given as
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(13)

where Ñ is the desired potential forces vector, which can be chosen with properties such as 

weight augmentation.

C. Equivalent Constrained Dynamics

The classical matching condition and control law in the previous section cannot be directly 

applied to the generalized dynamics (1). Although a dynamical system in the form of (8) 

could be separately modeled for each phase by dropping constrained coordinates from the 

generalized coordinate vector, this would require a clever change of coordinates for some 

constraints (e.g., rolling contact [32]). The dimension and degree of underactuation of the 

resulting hybrid system would also change between phases, requiring different models of 

potential energy for control law (13). Switching between control models in real time would 

require precise estimates of gait cycle phase and knowledge of the contact constraints, which 

can be difficult to achieve in practice. Moreover, the full generalized coordinates are 

required to derive impact maps [33], [34], so a system of the form (1) would still be needed.

Instead of modeling a different dynamical system for each phase, we will extend the results 

of the previous section to a single generalized Lagrangian system (1) to obtain a shaping 

framework which can accommodate any holonomic contact constraints (and the resulting 

unactuated DOFs) that could occur during various locomotor tasks. This generalized 

framework will show exactly what terms can and cannot be shaped with each contact 

constraint. Although the generalized matching condition will depend on the contact 

constraints, we will see that the resulting control laws are identical and thus can 

accommodate uncertainty in the contact constraints that the non-generalized approach 

cannot.

We start by plugging expressions for Aℓ and λ into (1) to obtain the form of (8), which is 

denoted as the equivalent constrained dynamics. We will derive the energy shaping control 

laws in the next section based on these constrained dynamics, which have fewer (possible 

zero) unactuated DOFs compared to the generalized dynamics (1) without constraints. The 

constraint matrices for each contact condition are already defined in Section II-A, and we 

follow the method in [28], [29] to determine the GRF vector as

(14)

(15)
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Note that Nst appears in λ̂, so this term must also be shaped by control. Plugging in Aℓ and 

λ, dynamics (1) become:

(16)

where

(17)

We wish to achieve in closed-loop the constrained dynamics

(18)

where we choose

(19)

given the desired potential forces vector Ñst, which will be introduced in Section III-D.

Given that (16) and (18) have the form of (8) and (11), respectively, the equivalent 

constrained matching condition has the same form as (12):

(20)

and the control law that achieves (18) is similarly given as

(21)

Remark 1: This control methodology has the beneficial property of requiring only local 

position feedback qst based on the definitions of Bλ and Nλ in (17). Explicitly modeling the 

inertial DOFs allows the generalized approach to accommodate uncertainty in the contact 

conditions that the classical approach cannot, as we will see in Section V-C3.
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We now wish to prove that the control law (21) actually brings (1) into the desired dynamics

(22)

where Ñst is the desired potential forces vector, and

(23)

is the GRF vector associated with the new potential energy.

Lemma 1: If matching condition (20) is satisfied, the control law (21) with Ñλ defined as 

(19) brings the generalized Lagrangian system (1) into the form of (22) with the desired 

potential forces vector Ñst and associated GRF vector (23). Therefore, system (1) matches 

system (22).

Proof: By construction we can equate (1) and (16):

Given satisfaction of (20), control law (21) provides the closed-loop dynamics (18), so the 

previous equality becomes

Expanding expressions from (17), we can then obtain

Leveraging the definitions (23) and (14), we finally have

which is equivalent to (22) and matches (1). ■

Remark 2: Although Nλ contains the inertia matrix in (17), Lemma 1 shows that 

components of this matrix should not be changed in Ñλ even if common parameters (like 

masses) are changed in Ñst. We will later see that the inertia matrix terms may disappear 

from control law (21) after simplification.
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We can now establish the usefulness of the equivalent constrained form and the associated 

matching condition (20).

Theorem 1: The generalized systems (1) and (22) match if the equivalent constrained 

systems (16) and (18) match.

Proof: By construction, control law (21) brings (16) into (18) if and only if matching 

condition (20) is satisfied. By Lemma 1, control law (21) then brings (1) into (22). ■

In the next section, we will plug Aℓ into (17) to obtain Bλ for each stance contact condition. 

We will choose the annihilators for each Bλ to satisfy the matching condition (20) and 

derive the corresponding control law based on (21).

D. Matching Conditions for Stance

Before evaluating the matching condition (20) for each contact constraint, the desired 

potential forces vector Ñst in (19) must be specified. To provide BWS we wish to replace the 

gravity constant g in Nst with g̃ = μg, where μ < 1 for positive BWS and μ > 1 for negative 

BWS. However, orthosis actuators located at the stance ankle and knee will only be able to 

shape the gravity constant applied to the masses of the stance shank, thigh, and hip (i.e., 

body center of mass). The gravity shaping strategy is equivalent to replacing the masses of 

the shank, thigh, and hip in the shapeable rows of Nst.

To help evaluate the matching condition (20),  is decomposed using the blockwise 

inversion method [35]. To begin Mst is decomposed into four submatrices:

(24)

where M1 and M4 are square and . Given that well-defined inertia matrices are 

nonsingular [28], the inverse of Mst can be obtained as

(25)

where .

This inversion method can only be used if M4 and Δ are nonsingular. Submatrix M4 

corresponds to an inertia matrix of a lower-DOF kinematic chain based on the results in 

[24], which implies that M4 is nonsingular [28]. Using the formulae of Schur in [36] to 

calculate the determinant of Mst, we have
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Since det(Mst) ≠ 0 and det(M4) ≠ 0, we have det(Δ) ≠ 0 by [36], which proves that Δ is 

nonsingular. We will now utilize (25) to evaluate the matching condition (20) and obtain a 

control law (21) for each phase of stance. For brevity we will denote phase-specific matrices 

with subscripts 1, 2, or 3 instead of heel, flat, or toe, respectively.

1) Heel Contact: Let M1 ∈ ℝ2×2, M2 ∈ ℝ2×3, M3 ∈ ℝ3×2, M4 ∈ ℝ3×3 so that the 

multiplication of Aheel and  can be greatly simplified. We plug Aheel into (17) using the 

decomposition of  from (25) to obtain

(26)

Let , where Y11 ∈ ℝ2×1 and Y12 ∈ ℝ2×2. Plugging Bst and (26) into 

(17), we have

(27)

where subscript (i, j) indicates rows i through j of a matrix. Because we constrained the first 

two DOFs to zero in (2), the first two rows of Bst and Nst disappear in Bλ1 and Nλ1, 

respectively. Hence, only the terms relevant to this contact condition will be considered in 

the matching condition (20).

We choose the annihilator of Bλ1 as

(28)

It is obvious that  and . Plugging terms into (20), the matching 

condition holds if Ñst(3,3) =Nst(3,3), i.e., not shaping the heel orientation DOF. Assuming this 

case in (19), we can achieve Ñλ1 in the closed-loop constrained dynamics with control law 

uheel defined by (21).
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2) Flat Foot: At this configuration let M1 ∈ ℝ3×3, M2 ∈ ℝ3×2, M3 ∈ ℝ2×3, M4 ∈ ℝ2×2, 

which have different dimensions than the previous case in order to handle three contact 

constraints instead of two. Plugging Aflat into (17) with the decomposition of  from 

(25), we obtain

(29)

where . Choosing the annihilator

(30)

where  and , we immediately see that matching condition (20) 

holds. The corresponding energy shaping control law uflat is given by (21).

3) Toe Contact: Although toe contact provides the same number of constraints as in Heel 
Contact, we decompose Mst as in Flat Foot to simplify the matching proof. Plugging Atoe 

into (17) with the decomposition of  from (25), we obtain

(31)

where  and Y4 = I3×3 − U with

(32)

We split up Nst in this way because the upper-left part of the matrix in (26) is no longer zero.

The annihilator of Bλ3 is chosen as

(33)

where  and . Plugging in (31) and (33), the left-hand side of the 

matching condition (20) is
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(34)

The matching condition is not immediately satisfied unless we assume Nst(1,3) = Ñst(1,3), 

which means that the unactuated DOF corresponding to ϕ is unshaped (recall that the rows 

for px and py get constrained). This results in the toe-contact control law utoe of the form 

(21) with

It is worth noting that all three stance control laws are slope-invariant because γ does not 

appear in any Aℓ matrix. We can also show that the three stance control laws are identical.

4) Unified Control Law for Stance: A unified controller for stance would avoid the practical 

difficulties in distinguishing between contact phases and thus would be beneficial for future 

experimental implementations. Now that we have shown that only Nst(4,5) can be shaped for 

each stance phase, we can show that control law (21) is the same between phases.

Proposition 1: Equation (21) yields the same control law for all three stance contact 

conditions:

(35)

Proof: Starting with the heel contact condition, we obtained Bλ1 and Nλ1 in (27) and know 

the shapeable form of Ñλ1. Control law (21) becomes (35) by taking the product of

(36)

and

(37)

where  is the left-pseudo inverse of Bλ1. For the other conditions we have
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(38)

(39)

where k ∈ {2, 3} indicates flat foot or toe contact. Multiplying (38) with (39), we obtain 

(35). ■

It is clear from the proof that the unified control law requires only angular position feedback 

and does not depend on inertia matrix terms. The generalized framework determined which 

terms of the potential forces vector were relevant to the matching condition in the presence 

of specific contact constraints. The same terms could be shaped across contact conditions, 

resulting in a unified, simple control law. We now turn our attention to the swing period of 

the orthosis.

E. Matching Condition for Swing

For the swing leg there are no contact constraints defined in the dynamics (5). With Aℓ = 0 

equation (20) reduces to the classical matching condition (12). Orthosis actuators at the 

swing ankle and knee will only be able to shape the weights of the swing shank and foot in 

their respective rows of Nsw.

Letting , we know that  and . The left-hand side of 

condition (12) is

where Ñsw is the desired potential forces vector, and Nsw(1,3) and Ñsw(1,3) contain the first 

three rows of Nsw and Ñsw, respectively. Therefore the matching condition can only be 

satisfied if the first three rows of Nsw (corresponding to unactuated inertial DOFs) are 

unshaped, i.e., Ñsw(1,3) = Nsw(1,3). The swing controller for the orthosis is then

(40)

where . This controller can make the swing knee and ankle to 

move as though the shank and foot are lighter, but because the first three rows of Nsw are 

unshaped, the weight of the swing leg (and orthosis) cannot be offloaded from the hip of the 

human user. Nevertheless we will see in the next section that control law (40) still has 

beneficial properties such as improved foot clearance above ground.

Lv and Gregg Page 15

IEEE Trans Control Syst Technol. Author manuscript; available in PMC 2019 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



IV. Passivity and Stability

Energy shaping is intimately related to the notion of passivity [17]–[20], through which safe 

interactions between the orthosis control strategy and the human user can be guaranteed. 

Input-output passivity implies that the change in some storage quantity (often energy) is 

bounded by the “energy” injected through the input, i.e., the system cannot generate 

“energy” on its own. We will show that the shaped human system is passive from the human 

inputs to joint velocity, implying that energy growth is controlled by the human and thus 

interaction with the orthosis should be safe. Given this property, we will highlight stability 

results for certain human control policies.

A. Passivity of the Control System

Consider the equivalent constrained dynamics (16) of the human leg wearing the orthosis in 

stance, where we treat the external forces of the right-hand side as an input 

. The state vector of this system is given by . 

Now consider an output y = h(x) ∈ ℝ5, to be specified later. The definition of input/output 

passivity for this system is given as follows [37]:

Definition 2: Let S(x) : ℝ10 → ℝ be a continuously differentiable non-negative scalar 

function, then the system (16) is said to be passive from input τ to output y with storage 
function S(x) if Ṡ (x) ≤ yT τ.

A kinematic chain with dynamics of the form (8) is passive from joint torque input to joint 

velocity output with total energy as the storage function, where the proof is based on the 

skew-symmetry property (Ṁ − 2C)T = −(Ṁ − 2C) [38]. The Appendix shows that a similar 

property also holds for constrained matrices Mλ and Cλ, implying that the constrained 

system (16) is passive from input τ to output y = q̇st with storage function 

:

(41)

For a human leg without an orthosis (ust = 0), muscular input vst and hip force F provide the 

torque input in the passive mapping to leg joint velocity (note that studies of passivity in 

human joint control date back to [39]). If an energy-shaping orthosis preserves this human 

passivity property in closed loop (Fig. 3), then energy growth of the coupled human-machine 

system is controlled by the human.

Lemma 2: The shaped energy function  is positive-

definite.
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Proof: The constrained potential energy can be defined in terms of the shapeable and 

unshapeable rows of Nλ using the variable gradient method [40]:

(42)

where the subscript (n) indicates the n-th row of Nλ, and the integration variable is denoted 

as s. The matrices ψ1(qst) ∈ ℝ1×3 and ψ2(qst) ∈ ℝ1×2 are defined for heel contact as

for flat foot as

and for toe contact as

where the argument (l, k) indicates the element located at the l-th row and the k-th column of 

the matrix. Due to the way we defined Ñst in Section III, the following properties hold:

(43)

where  is a strictly positive number defined as the ratio between the shaped and 

the original parameters. Given (42) and (43), we can obtain the shaped potential energy
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(44)

Given (44), the shaped total energy takes the following form:

Assuming the biped has an upright posture, the center of mass of every link is above that 

link's reference frame. Hence, every link's potential energy is positive, implying that Pλ1 > 0 

and Pλ2 > 0. Given that the kinetic energy  is positive-definite and μ is strictly 

positive, the overall shaped energy is positive-definite. ■

Theorem 2: The closed-loop system (18) is passive from human input  to 

joint velocity output y = q̇st with storage function Ẽλ(qst, q̇st), i.e., .

Proof: The non-negativity requirement of a storage function is satisfied by Lemma 2. The 

same procedure as (41) with closed-loop dynamics (18) yields . ■

The same result applies for the swing period by setting A = 0 in the definition (17) for the 

terms in (18).

B. Stability of the Control System

Input-output passivity enables several stability results through passivity-based control. For 

example, negative feedback of the output through the input guarantees asymptotic 

convergence of the output to zero [38]. Feedback and parallel interconnections of passive 

systems are also passive [37], through which interconnected systems can be stabilized.

Here we highlight two possible results for the human control policy in Fig. 3. It is well 

established that human motor control effectively modulates joint impedance, i.e., the 

stiffness and viscosity of a joint [39], [41]. Joint impedance control involves feedback of 

joint angle and velocity, where the latter is the output of a passive mapping. We first 

consider feedback control with only the passive output and then consider the more general 

case with joint stiffness.

We leverage a standard result for passive systems to state the following [37]:

Proposition 2: Consider the passive system (18) with input τhum and output y = q̇st. Given 

output feedback control τhum = σ(y), where σ is any continuous function satisfying yT σ(y) 

≤ 0, then limt→∞y(t) → 0 and the origin (qst, q̇st) = (0, 0) is stable in the sense of Lyapunov.
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Therefore, if we assume the human is controlling the viscosity part of joint impedance, i.e., 

τhum = −Kdy = −Kdq̇st, where Kd is a positive-definite diagonal matrix, we will have

(45)

and thus convergence of the joints and Lyapunov stability of the upright posture (the origin).

Consider now the impedance controller with stiffness, which we will ultimately use in our 

simulations based on previous human modeling studies [42]. This control law is given by 

τhum = −Kpe−Kdė, where Kp is a positive-definite diagonal matrix, e ≔ qst−q̄st is the 

difference between qst and the fixed equilibria vector q̄st, and ė = q̇st = y. To utilize 

Lyapunov stability analysis [28], we define a Lyapunov function

(46)

It is clear that adding a quadratic term to the positive-definite shaped energy (Lemma 2) 

produces a positive-definite function. Using Theorem 2, the time derivative of V (qst, q̇st) 

with closed-loop dynamics (18) yields

(47)

implying that the shaped human leg is Lyapunov stable [28].

V. Simulations and Results

Now that we have designed controllers for the orthosis and proven passivity for the closed-

loop system, we wish to study it during simulated walking with the full biped model, i.e, 

combining the stance and swing legs together in Fig. 1. This requires us to consider the 

coupled dynamics of the two legs [29]. The full biped model's configuration space is given 

as , where θh is defined as the hip angle between the stance and swing 

thigh. The extended coordinates are related to the swing leg model in Section II-B through a 

change of coordinates, i.e., θh is a relative angle whereas θth is an absolute angle. For 

simplicity we assume symmetry in the full biped, i.e., identical orthoses on both human legs 

[29].

A. Human Inputs

In order to predict the effects of virtual BWS on human locomotion, we must first construct 

a human-like, stable walking gait in simulation. According to the results in [43], a simulated 
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7-link biped can converge to a stable, natural-looking gait using joint impedance control. 

The control torque of each joint can be constructed from an energetically passive spring-

damper coupled with phase-dependent equilibrium points [42]. We adopt this control 

paradigm to generate dynamic walking gaits that preserve the ballistic swing motion [44] 

and the energetic efficiency down slopes [45] that are characteristic of human locomotion. 

We assume that the human has input torques at the ankle, knee and hip joints of both legs. 

We keep the human impedance parameters constant instead of having a different set of 

parameters with respect to each phase of stance as in [42]. The total input torque vector, i.e., 

orthotic inputs plus human inputs, for the full biped model is given as

(48)

where ust is the stance controller given by (21), and υ is the vector of human inputs 

including the hip input υh. The human torque for a single joint in υ is given by

(49)

where Kpj, Kdj, θ̄j respectively correspond to the stiffness, viscosity, and equilibrium angle 

of joint j ∈ {a, k, h, sk, sa}.

B. Hybrid Dynamics and Stability

Biped locomotion is modeled as a hybrid dynamical system which includes continuous and 

discrete dynamics. Impacts happen when the swing heel contacts the ground and 

subsequently when the flat foot slaps the ground. The corresponding impact equations map 

the state of the biped at the instant before impact to the state at the instant after impact. Note 

that no impact occurs when switching between the flat foot and toe contact configurations, 

but the location of the IRF does change from heel to toe. Based on the method in [29], the 

hybrid dynamics and impact maps during one step are computed in the following sequence:

where the subscript e indicates the dynamics of the full biped model, , and  = 

(lf cos(γ), lf sin(γ))T models the change in IRF. The vector cp(q, q̇) is the COP defined with 

respect to the heel IRF calculated using the conservation law of momentum. The vector Te 

groups the Coriolis/centrifugal terms and potential forces for brevity. The ground clearance 
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of the swing heel is denoted by h(qe), and Θ denotes the swing heel ground-strike impact 

map derived based on [33]. The aforementioned sequence of continuous and discrete 

dynamics repeats after a complete step, i.e., phase 6 switches back to phase 1 for the next 

step.

The combination of nonlinear differential equations and discontinuous events makes stability 

difficult to prove analytically for hybrid systems in general. Fortunately, the method of 

Poincaré sections [46] provides analytical conditions for local stability that can be checked 

numerically by simulation. Letting  be the state vector of the full biped, a 

walking gait corresponds to a periodic solution curve x̄e(t) of the hybrid system such that 

x̄e(t) = x̄e(t + T), for all t ≥ 0 and some minimal T > 0. The set of states occupied by the 

periodic solution defines a periodic orbit  ≔ {xe|xe = x̄e(t) for some t} in the state space. 

The step-to-step evolution of a solution curve can be modeled with the Poincaré map  : G 
→ G, where G = {xe|h(qe) = 0} is the switching surface indicating initial heel contact [29]. 

The intersection of a periodic orbit with the switching surface is a fixed point 

 with standard assumptions in [46]. If  is a locally exponentially stable 

fixed point of the discrete system xe(k + 1) = (xe(k)), then  is a locally exponentially 

stable periodic orbit of the hybrid system defining the Poincaré map  : G → G. Therefore, 

the periodic orbit  is locally exponentially stable if the eigenvalues of the Jacobian 

 are within the unit circle.

The Jacobian eigenvalues can be numerically calculated through a perturbation analysis as 

described in [47], [48]. In fact, a similar analysis using normal kinematic variability instead 

of explicit perturbations has shown that human walking is orbitally stable [49]. The 

simulations of the next section will show that the energy-shaping controller maintains the 

orbital stability of a nominal walking gait, which suggests that human walking will remain 

orbitally stable with an orthosis utilizing this control strategy (see preliminary experiments 

in [50]).

C. Results and Discussion

We chose the model parameters of Table I to consist of average values from adult males 

reported in [51], with the trunk masses grouped at the hip as in [29]. The BWS controllers 

can compensate for the weight of the orthoses (at least during stance), so we neglected the 

orthosis masses in the parameters of Table I to simplify the analysis and find generic 

properties independent of any one exoskeleton design. The foot length was set to 0.2 m to 

provide reasonable amounts of time in both the flat foot and toe contact conditions.

We first tuned the human joint impedance gains to find a stable nominal gait, where the 

gains are given in Table I. The knee and ankle trajectories over four steady-state strides are 

shown in Fig. 4, and the biped's complete angular kinematics are shown for one step in Fig. 

5 (right). This walking gait is perfectly periodic, leading to the periodic orbit shown in the 

phase portrait of Fig. 5 (left). The COP moves monotonically from the heel to the toe (Fig. 

5, center), providing a flag to detect the transition between flat foot and toe contact. The 

nominal gait spent 248 ms in heel contact, 228 ms in flat foot, and 49 ms in toe contact.
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We then added the virtual BWS controller and progressively increased or decreased the 

BWS percentage to study its effect on the nominal gait. For notational purposes, X% BWS 

corresponds to Ñst(4,5) = (1 − 0.01X)Nst(4,5) and Ñsw(4,5) = (1 − 0.01X)Nsw(4,5). For each 

sampled BWS percentage, the biped was simulated to obtain a steady-state gait and record 

its features. The human impedance parameters were kept constant in order to isolate the 

effects of energy shaping. The torque profiles for ±24.5% BWS are given in Fig. 6. Positive 

BWS performs negative net work by removing potential energy, whereas negative BWS does 

the opposite by injecting potential energy. The work done has an approximately linear trend 

from 2.0 J/kg at -30% BWS to -1.3 J/kg at 24.5% BWS (with 0 J/kg at 0% BWS). Other gait 

features are shown over BWS percentage in Figs. 7 and 8. Animations of the walking gaits 

are available for download as supplemental multimedia.

For comparison with virtual BWS, we repeated this procedure while scaling 1) the true 

gravity constant g in all rows of Nst and Nsw, or 2) the true masses in both the potential and 

kinetic energies. The former is referred to as real gravity support (“real GS”), and the latter 

is referred to as real mass support (“real MS”). Even though virtual BWS does not shape all 

weights in the potential forces vector, it closely approximates the real GS case (Figs. 7 and 

8). Virtual BWS also approximates the real MS case without attempting to shape kinetic 

energy, likely because potential energy is more influential at these walking speeds.

1) Positive BWS: The walking gait tends to have a smaller step length and velocity with 

higher BWS percentages (Fig. 7) due to the decreasing potential energy. Patients may benefit 

from starting with slower, shorter steps at the beginning of therapy, after which the BWS 

percentage could be lowered to encourage faster and longer steps. Fig. 8 (left, center) shows 

that the swing clearances of both toe and heel increase with BWS percentage. This implies 

that trips commonly associated with stroke gait [52] could potentially be avoided with 

virtual BWS. Fig. 7 (right) shows that the time spent on each step tends to increase with the 

percentage of virtual BWS and real GS but not with real MS due to the effect of smaller 

masses in the inertia matrix (i.e., kinetic energy).

Fig. 8 (right) shows that the maximum absolute eigenvalues tend to increase with BWS 

percentage, suggesting slower local convergence rates to the associated periodic orbit. 

Because walking gaits of passive bipeds are sensitive to model parameters [47], we could 

only examine up to 24.5% virtual BWS, 18% real GS, or 25% real MS before there was 

insufficient potential energy to maintain a stable gait. However, a patient or therapist could 

likely compensate for gait stability better than the passive biped model, which would expand 

the range of virtual BWS percentages to the limits of the orthosis actuators.

2) Negative BWS: Once patients have regained some functionality of their lower limbs, 

therapists could prescribe the negative BWS controller to challenge the patients by virtually 

adding weight to their body. Athletes might also benefit from negative BWS in their daily 

training to improve muscle strength and endurance. Fig. 7 (left, center) shows that more 

negative BWS percentages cause longer and faster steps. If this effect holds true for real 

human subjects, it might be beneficial for patients when they have finished training with 

assistive strategies and want to further enhance their gaits by challenging their muscles. The 

time spent during each step period decreases with negative percentages of virtual BWS and 
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real GS (Fig. 7, right), implying that patients can spend less time per step without sacrificing 

step length and velocity. For negative percentages of real MS, the step time period slowly 

increases due to the larger masses in the inertia matrix.

Fig. 8 (left, center) shows that negative BWS increases minimum heel clearance but 

decreases minimum toe clearance. Fig. 8 (right) demonstrates that the eigenvalues tend to 

decrease with negative BWS. As was the case with positive BWS, the passive biped loses 

stability beyond a certain percentage of negative BWS (−30% virtual BWS, −20% real GS, 

and −30% real MS) due to an excess of potential energy.

3) Comparison to Classical Approach: We now wish to demonstrate the benefit of the 

generalized shaping approach in terms of contact invariance. The classical (non-generalized) 

framework of Section III-B is based on contact-specific dynamics and thus would require 

contact phase detection to switch between contact-specific control laws. Assuming no 

knowledge of the contact condition, we implemented the classical control law associated 

with the flat foot configuration during all three phases of stance:

(50)

with model terms Nng(θa, θk) = Nst(4,5)(0, 0, 0, θa, θk) ∈ ℝ2, Ñng(θa, θk) = Ñst(4,5)(0, 0, 0, 

θa, θk) ∈ ℝ2, and Bng = I2 × 2. The appropriate control law (40) was utilized during swing.

Fig. 9 compares the effects of real GS with the generalized and non-generalized cases of 

virtual BWS. The non-generalized case immediately diverges from the desired 

characteristics of real GS, which are closely approximated by the generalized case. These 

differences were likely the effect of the inertial DOFs during heel and toe contact, which are 

not explicitly modeled in the non-generalized controller (50).

The contact invariance of the generalized approach should justify the implementation 

challenge of measuring the necessary coordinates for the control law. Fortunately, the 

cartesian coordinates px and py do not need to be measured because they do not appear in the 

potential forces vector, which is defined as the gradient of the potential energy. The global 

orientation of the foot ϕ can be measured using an inertial measurement unit (IMU) as 

demonstrated by preliminary experiments with a powered ankle orthosis in [50]. The only 

parameters that must be specified in control law (35) are the leg segment lengths and the 

relative changes in weight (not necessarily the absolute mass values), which are easily 

determined.

VI. Conclusion

This paper derived an orthotic control strategy for augmenting the perceived weight of a 

patient through underactuated potential energy shaping. The closed-loop energy that can be 

altered via control was determined by a generalized matching condition defined from 

Lagrangian dynamics with holonomic contact constraints. The proposed framework can be 

applied to different contact conditions with a unified control law. Simulation results suggest 
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that walking gaits can be augmented in beneficial ways for rehabilitation. At the initial stage 

of gait training, patients can start with easier gaits having higher toe and heel clearances to 

avoid tripping. Clinicians can easily adjust the BWS percentage, where positive values 

would assist and negative values would challenge the patient. Because this control strategy 

does not prescribe joint kinematics, it is task-invariant and would allow training on slopes 

and stairs. Created as a rehabilitation tool, virtual BWS could potentially reduce physical 

labor from clinicians and enable training outside the clinic. Future work will include 

experimental implementations of this control method on powered orthoses.
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Refer to Web version on PubMed Central for supplementary material.
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Appendix

We now show that  for the proof of passivity. Plugging in Mλ = M and 

Cλ from (17) we obtain

(51)

where the standard skew-symmetry property of Ṁ − 2C was applied. By definition of a 

contact constraint aℓ (qst) = 0,

Hence, the remaining terms on the right side of (51) are zero. Note that 

 does not necessarily imply skew-symmetry of Ṁλ − 2Cλ, but it does 

suffice for passivity in Section IV.

References

1. Dobkin B, et al. Methods for a randomized trial of weight-supported treadmill training versus 
conventional training for walking during inpatient rehabilitation after incomplete traumatic spinal 
cord injury. Neurorehab Neural Repair. 2003; 17(3):153–167.

2. Moseley AM, Stark A, Cameron ID, Pollock A. Treadmill training and body weight support for 
walking after stroke. Cocbrane Database of Systematic Reviews. 2014; 1

Lv and Gregg Page 24

IEEE Trans Control Syst Technol. Author manuscript; available in PMC 2019 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3. Duncan PW, et al. Body-weight–supported treadmill rehabilitation after stroke. N Engl J Med. 2011; 
364(21):2026–2036. [PubMed: 21612471] 

4. Franceschini M, et al. Walking after stroke: What does treadmill training with body weight support 
add to overground gait training in patients early after stroke? A single-blind, randomized, controlled 
trial. Stroke. 2009; 40(9):3079–3085. [PubMed: 19556526] 

5. Hornby TG, Zemon DH, Campbell D. Robotic-assisted, body-weight–supported treadmill training 
in individuals following motor incomplete spinal cord injury. Physical Therapy. 2005; 85(1):52–66. 
[PubMed: 15623362] 

6. Hidler J, Brennan D, Black I, Nichols D, Brady K, Nef T. ZeroG: Overground gait and balance 
training system. The Journal of Rehabilitation Research and Development. 2011; 48(4):287. 
[PubMed: 21674384] 

7. Frey M, Colombo G, Vaglio M, Bucher R, Jorg M, Riener R. A novel mechatronic body weight 
support system. IEEE Trans Neural Syst Rehabil Eng. 2006; 14(3):311–321. [PubMed: 17009491] 

8. Duschau-Wicke A, Brunsch T, Lunenburger L, Riener R. Adaptive support for patient-cooperative 
gait rehabilitation with the Lokomat. IEEE Int Conf Intelligent Robots and Systems. 2008:2357–
2361.

9. Veneman JF, Kruidhof R, Hekman EE, Ekkelenkamp R, Van Asseldonk EH, Van Der Kooij H. 
Design and evaluation of the LOPES exoskeleton robot for interactive gait rehabilitation. IEEE 
Trans Neural Syst Rehabil Eng. 2007; 15(3):379–386. [PubMed: 17894270] 

10. Hidler J, Nichols D, Pelliccio M, Brady K, Campbell DD, Kahn JH, Hornby TG. Multicenter 
randomized clinical trial evaluating the effectiveness of the Lokomat in subacute stroke. 
Neurorehab Neural Repair. 2009; 23(1):5–13.

11. Vallery H, Duschau-Wicke A, Riener R. Generalized elasticities improve patient-cooperative 
control of rehabilitation robots. Int Conf Rehabil Rob IEEE. 2009:535–541.

12. Tucker MR, Olivier J, Pagel A, Bleuler H, Bouri M, Lambercy O, Millan JdRz, Riener R, Vallery 
H, Gassert R. Control strategies for active lower extremity prosthetics and orthotics: A review. J 
NeuroEng Rehabil. 2015; 12(1):1. [PubMed: 25557982] 

13. Yan T, Cempini M, Oddo CM, Vitiello N. Review of assistive strategies in powered lower-limb 
orthoses and exoskeletons. Rob Auton Syst. 2015; 64:120–136.

14. Murray SA, Ha KH, Hartigan C, Goldfarb M. An assistive control approach for a lower-limb 
exoskeleton to facilitate recovery of walking following stroke. IEEE Trans Neural Syst Rehabil 
Eng. 2014; 23(3):441–449. [PubMed: 25134084] 

15. Ghan J, Steger R, Kazerooni H. Control and system identification for the Berkeley Lower 
Extremity Exoskeleton (BLEEX). Adv Rob. 2006; 20(9):989–1014.

16. Agrawal SK, Banala SK, Fattah A, Sangwan V, Krishnamoorthy V, Scholz JP, Wei-Li H. 
Assessment of motion of a swing leg and gait rehabilitation with a gravity balancing exoskeleton. 
IEEE Trans Neural Syst Rehabil Eng. 2007; 15(3):410–420. [PubMed: 17894273] 

17. Ortega, R. Passivity-Based Control of Euler-Lagrange Systems: Mechanical, Electrical and 
Electromechanical Applications. Springer Science & Business Media; 1998. 

18. Ortega R, Van der Schaft AJ, Mareels I, Maschke B. Putting energy back in control. IEEE Control 
Syst Mag. 2001; 21(2):18–33.

19. Blankenstein G, Ortega R, Van Der Schaft AJ. The matching conditions of controlled Lagrangians 
and IDA-passivity based control. Int J Control. 2002; 75(9):645–665.

20. Ortega R, Spong MW, Gomez-Estern F, Blankenstein G. Stabilization of a class of underactuated 
mechanical systems via interconnection and damping assignment. IEEE Trans Automat Contr. 
2002; 47(8):1218–1233.

21. Bloch AM, Chang DE, Leonard NE, Marsden JE. Controlled Lagrangians and the stabilization of 
mechanical systems II: Potential shaping. IEEE Trans Automat Contr. 2001; 46(10):1556–1571.

22. Holm JK, Spong MW. Kinetic energy shaping for gait regulation of underactuated bipeds. IEEE Int 
Conf Control Appl. 2008:1232–1238.

23. Spong MW, Bullo F. Controlled symmetries and passive walking. IEEE Trans Automat Contr. 
2005; 50(7):1025–1031.

24. Gregg RD, Spong MW. Reduction-based control of three-dimensional bipedal walking robots. Int J 
Rob Res. 2010; 29(6):680–702.

Lv and Gregg Page 25

IEEE Trans Control Syst Technol. Author manuscript; available in PMC 2019 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



25. Gregg RD, Bretl TW, Spong MW. A control theoretic approach to robot-assisted locomotor 
therapy. Decis & Control, 49th IEEE Conf on IEEE. 2010:1679–1686.

26. Lv G, Gregg RD. Orthotic body-weight support through underactuated potential energy shaping 
with contact constraints. Decis & Control, 54th IEEE Conf on IEEE. 2015:1483–1490.

27. Marchal-Crespo L, Reinkensmeyer DJ. Review of control strategies for robotic movement training 
after neurologic injury. J NeuroEng Rehabil. 2009; 6(1):20. [PubMed: 19531254] 

28. Murray, RM., Li, Z., Sastry, SS., Sastry, SS. A Mathematical Introduction to Robotic Manipulation. 
CRC press; 1994. 

29. Gregg RD, Lenzi T, Hargrove LJ, Sensinger JW. Virtual constraint control of a powered prosthetic 
leg: From simulation to experiments with transfemoral amputees. IEEE Trans Rob. Dec; 2014 
30(6):1455–1471.

30. Guadagnoli MA, Lee TD. Challenge point: A framework for conceptualizing the effects of various 
practice conditions in motor learning. Journal of Motor Behavior. 2004; 36(2):212–224. [PubMed: 
15130871] 

31. Lam T, Wirz M, ünenburger LL, Dietz V. Swing phase resistance enhances flexor muscle activity 
during treadmill locomotion in incomplete spinal cord injury. Neurorehab Neural Repair. 2008; 
22(5):438–446.

32. Martin AE, Post DC, Schmiedeler JP. Design and experimental implementation of a hybrid zero 
dynamics-based controller for planar bipeds with curved feet. Int J Rob Res. 2014; 33(7):988–
1005.

33. Westervelt ER, Grizzle JW, Koditschek DE. Hybrid zero dynamics of planar biped walkers. IEEE 
Trans Autom Control. 2003; 48(1):42–56.

34. Asano F, Yamakita M. Extended PVFC with variable velocity fields for kneed biped. IEEE Int 
Conf Human Robot. 2000

35. Bernstein, DS. Matrix Mathematics: Theory, Facts, and Formulas. Princeton University Press; 
2009. 

36. Ouellette DV. Schur complements and statistics. Linear Algebra and its Applications. 1981; 
36:187–295.

37. Sepulchre, R., Jankovic, M., Kokotovic, PV. Constructive nonlinear control. Springer Science & 
Business Media; 2012. 

38. Spong, MW., Hutchinson, S., Vidyasagar, M. Robot Modeling and Control. Vol. 3. Wiley; New 
York: 2006. 

39. Flash T, Hogan N. The coordination of arm movements: an experimentally confirmed 
mathematical model. J Neurosci. 1985; 5(7):1688–1703. [PubMed: 4020415] 

40. Khalil, HK. Nonlinear Systems. 3rd. Upper Saddle River, NJ: Prentice Hall; 2002. 

41. Burdet E, Osu R, Franklin DW, Milner TE, Kawato M. The central nervous system stabilizes 
unstable dynamics by learning optimal impedance. Nature. 2001; 414(6862):446–449. [PubMed: 
11719805] 

42. Braun DJ, Goldfarb M. A control approach for actuated dynamic walking in biped robots. IEEE 
Trans Rob. 2009; 25(6):1292–1303.

43. Braun DJ, Mitchell JE, Goldfarb M. Actuated dynamic walking in a seven-link biped robot. IEEE/
ASME Trans Mechatron. 2012; 17(1):147–156.

44. Mochon S, McMahon TA. Ballistic walking. J Biomechanics. 1980; 13(1):49–57.

45. Minetti AE, Moia C, Roi GS, Susta D, Ferretti G. Energy cost of walking and running at extreme 
uphill and downhill slopes. Journal of Applied Physiology. 2002; 93(3):1039–1046. [PubMed: 
12183501] 

46. Grizzle, J., Westervelt, E., Chevallereau, C., Choi, J., Morris, B. Feedback Control of Dynamic 
Bipedal Robot Locomotion. Boca Raton, FL: CRC Press; 2007. 

47. Goswami A, Thuilot B, Espiau B. Compass-like biped robot part I: Stability and bifurcation of 
passive gaits. Institut National de Recherche en Informatique et en Automatique (INRIA), 
Grenoble, France, Tech Rep. 1996; 2996

48. Gregg RD, Dhaher YY, Degani A, Lynch KM. On the mechanics of functional asymmetry in 
bipedal walking. IEEE Trans Biomed Eng. 2012; 59(5):1310–1318. [PubMed: 22328168] 

Lv and Gregg Page 26

IEEE Trans Control Syst Technol. Author manuscript; available in PMC 2019 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



49. Dingwell JB, Kang HG. Differences between local and orbital dynamic stability during human 
walking. ASME J Biomech Eng. Dec.2006 129(4):586.

50. Lv G, Zhu H, Elery T, Li L, Gregg RD. Experimental implementation of underactuated potential 
energy shaping on a powered ankle-foot orthosis. IEEE Int Conf on Robot Autom IEEE. 
2016:3493–3500.

51. De Leva P. Adjustments to Zatsiorsky-Seluyanov's segment inertia parameters. J Biomechanics. 
1996; 29(9):1223–1230.

52. Kelley RE, Borazanci AP. Stroke rehabilitation. Neurological Research. 2009; 31(8):832–840. 
[PubMed: 19723452] 

Biographies

Ge Lv (S'15) received the B.S. degree (2011) and the M.S. (2013) degree in information 

science and engineering from Northeastern University, Shenyang, China.

He joined the Department of Electrical Engineering at the University of Texas at Dallas as a 

Ph.D. student in 2013. His research is in the control of bipedal locomotion with applications 

to orthoses and exoskeletons. He received the Best Student Paper Award of the 2015 IEEE 

Conference on Decision and Control.

Robert D. Gregg (S'08-M'10-SM'16) received the B.S. degree (2006) in electrical 

engineering and computer sciences from the University of California, Berkeley and the M.S. 

(2007) and Ph.D. (2010) degrees in electrical and computer engineering from the University 

of Illinois at Urbana-Champaign.

He joined the Departments of Bioengineering and Mechanical Engineering at the University 

of Texas at Dallas (UTD) as an Assistant Professor in 2013. Prior to joining UTD, he was a 

Research Scientist at the Rehabilitation Institute of Chicago and a Postdoctoral Fellow at 

Northwestern University. His research is in the control of bipedal locomotion with 

applications to autonomous and wearable robots.

Lv and Gregg Page 27

IEEE Trans Control Syst Technol. Author manuscript; available in PMC 2019 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
Kinematic model of the biped. The stance leg is shown in solid black and the swing leg in 

dashed black. For the simulation study we assume the biped is walking on a slope with angle 

γ.
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Fig. 2. 
Heel contact configuration (left), flat foot configuration (center), and toe contact 

configuration (right) during stance on a slope with angle γ.
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Fig. 3. 
Feedback loops and passive mappings of a human leg wearing an energy-shaping orthosis, 

where τhum is the total human input, u is the orthosis input, τ is the combined human-

orthosis input, and (q, q̇) contain the joint angles and velocities of the leg. Subscripts 

associated with stance vs. swing have been dropped for simplicity.
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Fig. 4. 
Knee and ankle trajectories of one leg over four steady-state strides (stance and swing) of the 

nominal “human” gait.
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Fig. 5. 
Phase portrait (left), center of pressure (center), and angular positions (right) over one 

steady-state step of the nominal “human” gait.
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Fig. 6. 
The virtual BWS control torque with 24.5% BWS (top) and −24.5% BWS (bottom) over one 

steady-state step.
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Fig. 7. 
Step linear velocity (left), step length (center), step time period (right) from −30% to 25% 

virtual BWS, real gravity support (GS), and real mass support (MS). Divided by a red dotted 

line, the sign of the x-axis denotes negative or positive BWS.

Lv and Gregg Page 34

IEEE Trans Control Syst Technol. Author manuscript; available in PMC 2019 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 8. 
Minimum heel clearance (left), minimum toe clearance (center), maximum absolute 

eigenvalue (right) from −30% to 25% virtual BWS, real gravity support (GS), and real mass 

support (MS). Divided by a red dotted line, the sign of the x-axis denotes negative or 

positive BWS.
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Fig. 9. 
Step time period (top) and step linear velocity (bottom) from −20% to 20% BWS with real 

GS, virtual BWS, and non-generalized virtual BWS (Non-Gen VBWS). The non-

generalized case corresponds to flat-foot control (50), which does not measure inertial 

coordinates, during all phases of stance.
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Table I
Model and Simulation Parameters

Parameter Variable Value

Hip mass mh 31.73 [kg]

Thigh mass mt 9.457 [kg]

Shank mass ms 4.053 [kg]

Foot mass mf 1 [kg]

Thigh moment of inertia It 0.1995 [kg·m2]

Shank moment of inertia Is 0.0369 [kg·m2]

Full biped shank length ls 0.428 [m]

Full biped thigh length lt 0.428 [m]

Full biped heel length la 0.07 [m]

Full biped foot length lf 0.2 [m]

Slope angle γ 0.095 [rad]

Hip equilibrium angle θh 0.2 [rad]

Hip proportional gain Kph 182.258 [N·m/rad]

Hip derivative gain Kdh 18.908 [N·m·s/rad]

Swing knee equilibrium angle θ̄sk
0.2 [rad]

Swing knee proportional gain Kpsk 182.258 [N·m/rad]

Swing knee derivative gain Kdsk 18.908 [N·m·s/rad]

Swing ankle equilibrium angle θ̄sa
−0.25 [rad]

Swing ankle proportional gain Kpsa 182.258 [N·m/rad]

Swing ankle derivative gain Kdsa 0.802 [N·m·s/rad]

Stance ankle equilibrium angle θ̄a
0.01/rad]

Stance ankle proportional gain Kpa 546.774 [N·m/rad]

Stance ankle derivative gain Kda 21.257 [N·m·s/rad]

Stance knee equilibrium angle θ̄k −0.05 [rad]

Stance knee proportional gain Kpk 546.774 [N·m/rad]

Stance knee derivative gain Kdk 21.257 [N·m·s/rad]
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