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Abstract

Biomedical word sense disambiguation (WSD) is an important intermediate task in many natural 

language processing applications such as named entity recognition, syntactic parsing, and relation 

extraction. In this paper, we employ knowledge-based approaches that also exploit recent advances 

in neural word/concept embeddings to improve over the state-of-the-art in biomedical WSD using 

the public MSH WSD dataset [1] as the test set. Our methods involve weak supervision – we do 

not use any hand-labeled examples for WSD to build our prediction models; however, we employ 

an existing concept mapping program, MetaMap, to obtain our concept vectors. Over the MSH 

WSD dataset, our linear time (in terms of numbers of senses and words in the test instance) 

method achieves an accuracy of 92.24% which is a 3% improvement over the best known results 

[2] obtained via unsupervised means. A more expensive approach that we developed relies on a 

nearest neighbor framework and achieves accuracy of 94.34%, essentially cutting the error rate in 

half. Employing dense vector representations learned from unlabeled free text has been shown to 

benefit many language processing tasks recently and our efforts show that biomedical WSD is no 

exception to this trend. For a complex and rapidly evolving domain such as biomedicine, building 

labeled datasets for larger sets of ambiguous terms may be impractical. Here, we show that weak 

supervision that leverages recent advances in representation learning can rival supervised 

approaches in biomedical WSD. However, external knowledge bases (here sense inventories) play 

a key role in the improvements achieved.

I. Introduction

Biomedical natural language processing (NLP) that goes beyond simple text processing is 

increasingly becoming indispensable to derive value and insights from vast amounts of 

unstructured data generated in the form of scientific articles [3]–[5], clinical narratives [6]–

[8] and health related social media posts [9]–[11]. Specialized components including named 

entity recognition (NER) programs, syntactic parsers, and relation extractors form the 

backbone of many high level information extraction and knowledge discovery applications. 

For most components in an NLP application pipeline, there is a clear snowball effect of 
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errors in a component in the beginning of the pipeline leading to more errors in other 

subsequent components and the final results of the full application.

Resolving lexical mentions in text to correct named entities from a fixed terminology is 

essential in building an effective NER program, which is typically the next step after 

sentence segmentation and part-of-speech tagging in most NLP pipelines. All other 

downstream components and the full application suffer if lexical ambiguities are not 

correctly resolved. Recent research also shows that resolving ambiguities provides 

performance gains in information retrieval and search system design [12]. In this effort, we 

employ knowledge-based methods, neural concept and word vectors learned through 

unsupervised deep learning approaches, and a straightforward nearest neighbor approach to 

achieve new state-of-the-art results over a public gold standard dataset [1] in biomedical 

word sense disambiguation (WSD).

For this effort, WSD specifically deals with identifying the correct sense of a term, among a 

set of given candidate senses for that term, when it is presented in a brief narrative along 

with its context (surrounding text). For example, consider the ambiguous term ‘discharge’. It 

has two unique senses in biomedicine – (S1). The first is the administrative process of 

releasing a patient from a healthcare facility following an in-patient stay for some treatment 

or procedure. (S2). The second sense pertains to bodily secretions of certain fluids from an 

orifice or wound. In our task the ambiguous term ‘discharge’ is specified along with the 

sense set {S1, S2} and an example context – “Low risk patients identified using CADILLAC 

risk score with STEMI treated successfully with primary PCI have a low adverse event rate 

on the third day or later of hospitalization suggesting that an earlier discharge is safe in 

properly selected patients.” Our goal is to identify the correct sense S1 for this specific 

occurrence of ‘discharge’.

Next, we outline the organization of the rest of the paper. In Section II, we discuss earlier 

efforts in biomedical WSD and recent approaches that incorporate word embeddings. Our 

main methods that employ concept/word embeddings including the nearest neighbor 

approach are detailed in Section III. We then present our main results and takeaways in 

Section IV. Finally, in Section V, we conclude with some future research directions involving 

recurrent neural architectures for biomedical WSD.

II. Background and Related Work

For a thorough overview of approaches to WSD, we direct the readers to the survey by 

Navigli [13], which suggests mainly three categories – supervised, knowledge-based, and 

unsupervised approaches. Supervised approaches for WSD [14], [15] use a labeled dataset 

along with interesting lexical/syntactic features derived from the context around the term to 

build machine learned models that predict the correct sense in unseen test contexts. 

Knowledge-based approaches [1], [16] do not use any corpus but solely rely on thesauri or 

sense inventories such as WordNet and the Unified Medical Language System (UMLS) that 

contain brief definitions of different senses and corresponding synonyms. Unsupervised 

approaches may employ topic modeling [17] based methods to disambiguate when the 

senses are known ahead of time. Some unsupervised approaches [18] are often referred to as 
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performing word sense discrimination or induction as opposed to disambiguation because 

they employ clustering approaches where different clusters are expected to represent the 

different senses, which are not known a priori.

A. WSD in Biomedicine

In biomedicine, knowledge-based word sense disambiguation efforts mostly relied on the 

UMLS knowledge base [19], which contains over 3.4 million unique concepts expertly 

sourced from ≈ 200 different terminologies in biomedicine and allied fields. The UMLS is 

maintained by the US National Library of Medicine (NLM) and is updated every year to 

reflect new concepts and other changes. For each concept in the UMLS, there is usually a 

brief definition and sometimes additional relations (both hierarchical and associative) 

connecting it with other concepts. Each concept has a unique ID called the concept unique 

identifier (CUI), an alphanumeric string that starts with a ‘C’. For example, the sense S1 

(administrative process) for ‘discharge’ in Section I is represented by CUI C0030685 and 

sense S2 (body substance) is represented by the CUI C0012621. S1 has a short definition 

“The administrative process of discharging the patient, alive or dead, from hospitals or other 

health facilities”. For S2 we notice the definition – “In medicine, a fluid that comes out of 

the body. Discharge can be normal or a sign of disease.” In the MSH WSD dataset that we 

use in this effort, the candidate senses for each ambitious word are represented in the form 

of these unique CUIs. The task is to identify the correct CUI given a particular context (few 

sentences) containing an ambiguous term. For the rest of the manuscript, we use the three 

terms CUI, concept, and sense synonymously as they refer to the same notion.

Schuemie et al. [20] present a nice survey of approaches and efforts in biomedical WSD 

until 2005 including the well-known NLM WSD dataset [21], which has 50 ambiguous 

terms with 5000 test instances. Disambiguation efforts were also focused on a small set of 

10–15 ambiguous abbreviations [22], [23] using combinations of supervised and 

unsupervised approaches. More recent approaches [24], [25] used supervised models 

including Naive Bayes, SVMs, logistic regressors, decision lists with a variety of features 

using both subsets of the NLM WSD dataset and other smaller datasets. Berster et al. [26] 

encoded senses, contexts, and ambiguous terms using random indexing and conducted 

supervised ten-fold cross validation experiments on the NLM WSD dataset using the binary 

splatter code method. McInnes and Pedersen [16] used the network structure of the UMLS 

(specifically the hypernymic trees) and concept definitions to devise concept relatedness 

measures which are in turn used for WSD for the MSH WSD dataset. Chasin et al. [27] 

demonstrated the application of topic modeling for a clinical WSD dataset of 50 ambiguous 

terms curated from the Mayo Clinic [25]. Recently, Wang et al. [28] used an active learning 

strategy to involve domain experts in an interactive supervised machine learning framework 

for biomedical WSD. Among all the datasets available, the MSH WSD that we use in our 

current effort is the largest publicly available dataset [1] for biomedical WSD (more in 

Section III) and also has the least skewed distribution (the average percentage of majority 

sense is 54% [28]).

In a recent approach Jimeno-Yepes and Berlanga [2] used a hybrid approach that combined a 

knowledge-based component that exploits the UMLS definitions and synonyms for different 
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concepts with unlabeled biomedical narratives (from Medline/PubMed) to derive word-

concept probability estimates P (w|c) for any word w and UMLS concept c. They exploited 

the Naive Bayes formulation and selected the correct sense as the CUI c that maximizes P(T|

c) = ∏i P(wi|c), where wi is the i-th word in the test context T that contains the ambiguous 

term. With this approach they achieved an accuracy of 89.1% on the MSH WSD dataset [1]. 

This result corresponds to the best performance thus far on the MSH WSD dataset without 

using supervised models. Given we employ this method as a component of our best model, 

for completeness, we provide its high level summary in the Appendix.

In this effort, we use recent advances in neural word embeddings to generate new state-of-

the-art results on the MSH WSD dataset achieved without supervised cross validation 

experiments. Our methods can be classified as weakly supervised given we employ the well-

known biomedical concept mapping tool MetaMap [29] to generate concept vectors and 

employ them in combination with the knowledge-based method from Jimeno-Yepes and 

Berlanga [2].

B. Neural Embeddings for WSD

Neural word representations have been shown to capture both semantic and syntactic 

information and a few recent approaches learn word vectors [30]–[32] (as elements of ℝd, 

where d is the dimension) in an unsupervised fashion from textual corpora. These dense 

word vectors obviate the sparsity issues inherent to the so called one-hot representations of 

words1. Chen et al. [34] adapted neural word embeddings to compute different sense 

embeddings (of the same word) and showed competitive performance on the SemEval 2007 

WSD dataset [35]. Disambiguation is achieved by picking the sense that maximizes the 

cosine similarity of the corresponding sense vector with the context vector for an ambiguous 

term. Recently, Iacobacci et al. [36] evaluated and demonstrated the superiority of neural 

word embeddings as features in supervised WSD models on the same SemEval dataset.

In a very recent effort Pakhomov et al. [37] use word embeddings (without corpus enhanced 

concept embeddings) for the MSH WSD dataset but only report 77% accuracy although the 

central aim of their paper is not limited to WSD. Their approach relies on vectors of words 

that co-occur with words in the definitions of different senses (CUIs) in the UMLS. In our 

effort, we use a similar framework as Chen et al. [34] to directly learn sense vectors using a 

pure distributional semantics framework that does not rely on word vectors. Additionally, we 

employ complementary evidences beyond cosine similarity to achieve further improvements 

that rival performances typically reported using supervised approaches.

III. Our Approach

There are 203 ambiguous terms in the MSH WSD dataset [1] with a total of 424 unique 

CUIs (from the UMLS), each of which is a unique sense. Thus, on average, the dataset has 

424/203 = 2.08 senses. There are a total of 38,495 test instances of contexts (a few 

sentences) each with one of the 203 ambiguous terms along with the correct sense (CUI). 

1One-hot representations lead to very large dimensionality (typically the size of the vocabulary) resulting in further issues in similarity 
computations, a phenomenon often termed as the curse of dimensionality [33, Chapter 1.4]
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Besides being the largest biomedical WSD dataset, it also includes a richer set of 

ambiguities including 106 ambiguous abbreviations, 88 ambiguous noun phrases, and 9 that 

are combinations of both. Due to these features, the NLM encourages researchers to use this 

dataset over their older dataset (please see https://wsd.nlm.nih.gov). Our goal is to directly 

test on this dataset by employing weakly supervised approaches. For this, we learn vector 

representations of words and CUIs using well-known approaches that apply deep neural 

networks to NLP tasks.

A. Neural Word and Concept Embeddings

We ran the well-known word2vec [32] word embedding program (the skip-gram model) 

from Google on over 20 million biomedical citations (titles and abstracts) from PubMed to 

obtain word vector representations with a word window size of ten words and 

dimensionality d = 300 with all other parameters set to the default settings. To learn concept 

or CUI vectors of the same dimensionality, we curated a dataset of five million randomly 

chosen citations (published between 1998 and 2014). For this subset of PubMed, we ran 

MetaMap [29] with its WSD option turned on so we obtain unique CUIs for potential 

ambiguous terms2. The text was passed through MetaMap two adjacent non-stop words at a 

time, to capture as many CUIs as possible. Next, we treated these sequences of CUIs in each 

citation thus obtained through NER as a semantic version of the free text corpus. We ran 

word2vec on this corpus of CUI texts, just like how we ran it on free text articles with the 

same parameters. As a result we obtained 300 dimensional dense vectors for each CUI, 

including all 424 CUIs corresponding to the 203 ambiguous terms in our test set. This 

component of our methodology to derive dense concept vectors involves weak supervision 

because although MetaMap with its WSD option is in and of itself not a powerful solution 

(see Section IV), it nevertheless was useful to learn concept vectors that in turn helped us 

achieve state-of-the-art results. This deep neural network based distributional semantics 

approach to learning CUI vectors aids in modeling complementary aspects of similarity. 

This is because we use, as a component, the CUI definition based information via the word-

probability estimate based approach [2] outlined earlier.

B. WSD with Word/Concept Embeddings and Knowledge-Based Approaches

Our main idea is that besides comparing pairs of word vectors and concept vectors, we can 

also compare a word vector with a concept vector given at a high level there is a direct 

connection between words and concepts – words are often lexical manifestations of high 

level concepts. The fact that we simply replaced word sequences in free text with the 

corresponding concept sequences to generate CUI vectors of the same dimensionality as the 

word vectors also makes it feasible to compare word vectors and their compositions to 

concept vectors. As will see in Section IV, this intuition appears to work as well as other 

state-of-the-art approaches [2].

We establish some notation for the rest of the paper. In any WSD problem, a test instance 

corresponds to a three tuple (T, w, C(w)) where T is a context, typically a few sentences, 

2MetaMap uses the UMLS knowledge base of concept synonyms along with shallow linguistic parsing to map free text to UMLS 
CUIs. It also has a WSD option which is based on concept profiles generated through words co-occurring with different concepts in 
biomedical literature [38].
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that contains the ambiguous term w and C(w) is the set of different senses that w can assume 

depending upon the context T3. Specifically, C(w) in this effort is the set of different CUIs 

that capture the different senses for w. Our WSD goal is to construct a function f(T, w, C(w)) 

that maps T to the CUI c ∈ C(w) that corresponds to the correct sense in which w was used 

in T. We have four approaches that apply the embeddings from Section III-A to our test set. 

We specify them in terms of functions f?(T, w, C(w)) where ? indicates symbols that identify 

the underlying method(s) used, made clear as follows.

1. Our first approach uses vector cosine similarity with

where  is the average of non-stop words’ vectors in the context T and  is 

the context vector for c. This formulation is well-known given cosine similarity 

is a popular approach to measure semantic similarity of entities (words, concepts,

…) represented by the corresponding vectors.

2. Our second approach is based on vector projections with

where  refers to the projection of  on to , is the Euclidean norm, 

and ρ is the sign function. Using straightforward manipulation based on vector 

projections in Euclidean spaces [39, Chapter 5], we have

which is what we used in our implementation (with ● denoting vector dot 

product). Although fc (approach one) accounts for the overall directional 

similarity (thematic orientation) of the vectors, it does not account for the 

strength or magnitude of association, an aspect that seems ignored in others’ 

efforts we reviewed for this paper. By considering the vector projection of the 

context vector onto the CUI vector , in fp we also account for the magnitude of 

the context vector’s projection in relation to that of the CUI vector. The sign 

function ρ is essentially to account for situations when 90 < θ ≤ 180, the angle 

between  and .

3. Our third approach is based on the first two approaches where we set

3In practice, there might be cases where the context in T is deemed insufficient even for human judges to pick the right sense. 
However, for this paper we assess our performance based on MSH WSD dataset where each instance is assigned a unique sense.
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We simply incorporate both evidences (magnitude and orientation of association) 

to compare different CUIs.

4. Our final approach uses a probabilistic model developed in an earlier effort by 

Jimeno-Yepes and Berlanga [2] (as outlined in Section II-A and elaborated in the 

Appendix) that selects the c that maximizes P (T|c). We involve this knowledge-

based approach as a third scoring component and set

Although there are different ways of combining evidences from multiple sources 

of predictive information, we rely on this straightforward combination as a form 

of unsupervised rank aggregation from two different sources.

The methods discussed thus far can be summarized using the schematic in Figure 1.

C. WSD with Weak Supervision

From methods in Section III-B, we have multiple ways of disambiguating CUIs for any 

ambiguous term given a sample context. We exploit them to build a weakly supervised 

dataset for the 203 ambiguous terms in our test dataset. For each sentence in an independent 

corpus of biomedical citations that contains any ambiguous term from our dataset, we 

employ methods in Section III-B to assign the predicted CUI. Thus we can create a weakly 

supervised dataset for each ambiguous term with thousands of examples if we choose a large 

corpus. These examples can then be used to train traditional discriminative models or nearest 

neighbor models. We emphasize here that we are proposing to label arbitrary sentences (not 

our test sentences) in an external corpus based on our methods in Section III-B. Hence we 

still have our full MSH WSD dataset to finally test the approach we propose here with other 

models in a fair way.

For the k nearest neighbor (k-NN) model, let  be the set of instances for the 

ambiguous term w in the weakly supervised dataset . We rank instances 

for a given test instance T based on , where c is the sense assigned to D 

from C(w) based on methods in Section III-B. Let  be the set of top k instances in 

 when ranked in descending order based on . Now the predicted sense 

for T is chosen based on
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The expression in the arg max boils down to summing up the similarities of the test context 

with those contexts in the training dataset that have the same assigned CUI c. We 

subsequently pick the particular c that maximizes that summation. Intuitively, our approach 

aggregates evidence from training instances that are semantically most similar to our test 

instance. The choice of k also plays an important role in the performance of k-NN 

approaches as we observe in the next section.

IV. Results and Discussion

Our results are shown in Table I based on methods introduced in the previous section. 

MetaMap does not perform as well on this dataset (row 1) even with the WSD option 

achieving an accuracy4 of 81.77%. However, it may not be fair to compare MetaMap with 

our methods given it does not try to particularly disambiguate our specific 203 terms, for 

each of which we are already given candidate concepts that contain the correct sense. In row 

2 of the table, we show the performance achieved by Jimeno-Yepes and Berlanga using 

word-concept probability estimates P(w|c) derived from synonymous names of concepts in 

the UMLS Metathesaurus.

Rows 3–6 show performances of our methods that leverage neural word/concept embeddings 

from Section III-B. The cosine similarity and projection approaches both score above 85% 

but when used together, they achieve an accuracy of 89.26% which is slightly better than the 

current best result [2] achieved through unsupervised and knowledge-based approaches. 

Row 6 shows an accuracy of 92.24% achieved by our ensemble method that combines our 

word/concept vector approach with the knowledge-based method by Jimeno-Yepes and 

Berlanga [2]. The time complexity of these methods is linear in terms of the number of 

words in the test context T and the number of candidate senses |C(w)|, considering the 

computation of  and evaluation of the arg max expressions for each c ∈ C(w).

We created a weakly supervised dataset as outlined in Section III-C with the same corpus of 

five million biomedical citations used for training word and concept vectors (Section III-A). 

From this corpus, we considered the so called utterances that represent clauses (from the 

input text) that MetaMap outputs as distinct fragments with the corresponding CUIs. For 

each utterance that contains an ambiguous term in our test set, we apply our best linear 

method fc,p,k (corresponding to row 6 of Table I) to assign one specific CUI from all 

possible candidates. There were seven million such utterances, with an average length of 18 

words, that contained an ambiguous term out of a total of 78 million utterances from the 

corpus. Given our prior experiences in convolutional neural networks (CNNs) in biomedical 

text classification [40] that proved superior over traditional linear classifiers such as support 

vector machines and logistic regression models, we built 203 multiclass CNN models, one 

for each ambiguous term based on this weakly supervised dataset. The configuration of the 

CNN and its various hyper parameters were determined as per our prior effort [40, Sections 

4Accuracy is the ratio of total number of correctly assigned senses to the total of number of occurrences of the 203 ambiguous terms 
in the MSH WSD dataset. The usage of accuracy as the evaluation metric is inline with a few prior efforts on biomedical WSD [16], 
[22], [24], [37] and is justified [27] given the notions of precision and recall are equivalent to it in this scenario.
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3.2 and 4.2]. This setup however resulted in accuracy of 87.78% which does not match the 

performance of simpler approaches (rows 4–6 of Table I).

We finally applied the k-NN approach outlined in Section III-C with the weakly supervised 

dataset with the number of nearest neighbors k ∈ {20, 50, 100, 200, 300, 500, 1000, 1500, 

2000, 2500, 3000, 3500, 4000, 4500, 5000}. The corresponding accuracies are plotted as 

shown in Figure 2. We obtained the best accuracy of 94.34% when k = 3500 as shown in the 

last row of Table I. Overall, the accuracy rapidly increases as the numbers of neighbors used 

increase. The gains become smaller as more neighbors are added, reaching the top score at k 
= 3500 after which the accuracy descends abruptly. At k = 5000, the accuracy is same as that 

achieved with k = 300. This phenomenon is not surprising – at first more neighbors 

contribute to additional evidence, consistency, and robustness against noise in comparing the 

candidate concepts. However, considering an increasing number of neighbors at some point 

also leads to the semantic drift of their content from that of the test context. So neighbors 

ranked further down the list negatively affect the prediction given they are not as related to 

the test context, thus lowering overall accuracy. We realize that the value of k = 3500 is 

specific to this biomedical dataset and that there could be a value 3000 < k < 4000 that 

achieves a slightly higher accuracy. Our analysis is essentially a proof of concept for the 

high-level nearly monotonous nature of performance of k-NN based approaches. Given that 

there are over 38,000 test instances in our dataset, we believe k ≈ 3500 is appropriate in 

domains with similar characteristics (e.g., average number of senses per word, distributions 

of senses, and average length of test contexts). However, researchers may be able to derive 

more appropriate k values for their domains if they have access to relevant datasets.

Finally, it is well known that k-NN approaches are infamous for high test time complexity 

because of the nearest neighbor search in high dimensional space. Our implementation 

involves cosine similarity computation with all training instances for the corresponding 

ambiguous term. In this effort, on average there are nearly 40,000 training instances created 

through weak supervision per ambiguous term. So given a new test instance (T, w, C(w)), 

cosine similarity (of 300 dimensional vectors) needs to be computed for the test instance T 
with about 40,000 contexts to impose the ranking on these potential neighbors. The 

threshold of a chosen k (say, 3500) can only be applied after this ranking is created. 

However, this similarity computation can be parallelized in a straightforward manner by 

distributing the similarity computations across multiple processors and pooling the results to 

incrementally build the ranked neighbor list. Although real time disambiguation may not be 

feasible, having the k-NN models run overnight every day to address disambiguation in new 

articles may be practical. Alternative approaches such as locality sensitive hashing [41] that 

address the dimensionality problems without having to compute cosine similarities may be 

helpful to alleviate the situation. Overall, however, it is clear that k-NN based approaches 

with weakly supervised datasets offer an interesting alternative to purely supervised 

approaches in biomedical WSD.

V. Conclusion

Biomedical WSD is an important task with implications for downstream components in NLP 

applications. In this effort, we applied recent approaches in neural word embeddings to 
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construct concept embeddings. Our linear time method uses these embeddings to combine 

cosine similarity, projection magnitude proportion, and a prior knowledge-based approach to 

produce an accuracy of 92.24%. This is an absolute 3% improvement over just using the 

knowledge-based approach, which generated the previous best result obtained without 

supervised learning. Based on predictions from our best linear method, we created a new 

weakly supervised dataset and built a k-NN model that achieves an accuracy of 94.34%.

Our results rival performances achieved by supervised approaches – the best published 

supervised result achieves 93% macro accuracy over ten fold cross validation experiments 

on the MSH WSD dataset with the Naive Bayes model [1]. Based on additional ten fold 

cross validation experiments with support vector machines that use neural word vector 

features, Jimeno-Yepes [42] was able to achieve close to 96% macro accuracy. However, we 

cannot directly compare these cross validation results (from the supervised experiments) to 

the 94.34% accuracy we obtained without supervision in this paper. Specifically, in each 

iteration, the cross validation framework tests only on one-tenth of MSH WSD dataset by 

training on the remaining nine folds of the dataset. In our method, we test on the full MSH 

WSD dataset without using any of it for training.

Overall, our results in this paper contribute new evidence that dense neural embeddings 

function as useful representations of textual data for biomedical NLP applications. 

Furthermore, they also showcase the potential of knowledge-based approaches in learning 

better dense vector representations (via MetaMap that uses UMLS) and their complementary 

contributions to WSD tasks. We conclude with some limitations and future research 

directions.

• Although linear method’s accuracy is above 92.24%, there is still room for 

improvement in terms of incorporating modifications that account for sense level 

errors. That is, in addition to accuracy, for each ambiguous term, if we study the 

errors (false positives, false negatives) associated with each of its senses, we 

might be able to modify our approaches to account for any common patterns in 

which errors manifest. This task involves manual qualitative analysis with over 

400 unique senses in the MSH WSD dataset and is a important future research 

direction.

•
In Section III-B, the test context  is the vector formed by element-wise 

averaging of the word vectors of the corresponding words in the test context T. 

Although averaging is simple and intuitive, it may not be the best representation 

of the semantic content of the narrative in the test context. As such, more 

powerful alternatives that can better represent information in the context 

sentences might be helpful. To this end, one option is to directly model 

paragraphs as fixed size vectors using a word2vec style unsupervised learning 

architecture as demonstrated by Le and Mikolov [43] where paragraph vectors 

are learned along with word vectors.

• A second approach is to consider a weighted average of the word vectors 

corresponding to tokens in the context vector where the weight selected for a 

word is inversely proportional to its distance from the ambiguous term w in the 
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test context. Besides word vectors, we can also compute the weighted average of 

concept vectors associated with the CUIs (other than those associated with w) in 

the test context. The weighted averages of the words and contextual CUIs can 

then be compared separately with the candidate concept vectors from C(w) to 

generate two different scores ∈ [0, 1] whose sum can form the final score to 

select the correct sense.

• Both the paragraph vector approach [43] and the weighted averaging approach 

discussed earlier do not explicitly model word order when composing test 

context words to form fixed size vectors that better capture the semantics of the 

full context. Recurrent neural networks (RNNs [44, Chapter 3]), especially with 

long short-term memory units [45], are a more suitable alternative for such 

scenarios but would need training data to set the parameters of the recurrent 

layer. The dataset created using weak supervision in Section III-C can be used 

here to estimate RNN parameters corresponding to the model for each 

ambiguous term.
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Appendix

As a component of main methods in Section III-B, we use the knowledge-based approach 

developed by Jimeno-Yepes and Berlanga [2] which we briefly discussed in Section II-A. 

Here we give some additional details. The main idea is to model P(c|T), probability of CUI c 
given a context T. If this is estimated accurately, our WSD solution is to simply pick the 

candidate sense c that maximizes P(c|T). Using Bayes theorem, we have

with the naive assumption of independence of tokens wj that constitute the context T given 

the sense c. So our solution now depends on estimating the word-concept probabilities P(w|

c) for any word w and CUI c. The rest of this appendix outlines how Jimeno-Yepes and 

Berlanga accomplish that.

A straightforward first cut to obtain P(w|c) is to simply model it as the maximum likelihood 

estimate
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where lex(c) is the synonymous name set of c in the UMLS. Instead of limiting the search of 

w to the lexical space of c, they propose to extend it to lexical spaces of concepts that are 

related to c based on the UMLS relations available as part of the MRREL file in the 

Metathesaurus [19]. That is, we now have Pk(w|c0), which denotes the probability of w 
being selected for the set of concepts Rk(c0) that are k hops away from the original concept 

c0 = c. Specifically, they estimate

where Markov assumption is used for estimating Pk(w, ck,…, c0) in terms of traversal 

probabilities, P(cl+1|cl), of hopping from concept cl to cl+1 in the UMLS relation graph. This 

is mathematically estimated as

with r(c1, c2) denoting the number of UMLS relations connecting c1 and c2 and the 

denominator indicating the number of relations where cl participates.

The word concept probabilities Pj(w|c) obtained at different values of j = 0,…, l are finally 

combined using a linear combination to estimate

They start with each αj = 1/l with l being the number of hops considered and update them 

using expectation-maximization, details of which are presented in their paper [2, Section 

3.3].
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Fig. 1. 
Architecture for WSD approaches from Sections III-A and III-B
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Fig. 2. 
Accuracy of the k-NN approach with varying k
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TABLE I

Performance on MSH WSD Dataset

Method Accuracy

MetaMap with WSD 81.77%

Jimeno-Yepes and Berlanga [2] 89.10%

Cosine similarity (fc) 85.54%

Projection length proportion (fp) 88.68%

Combining fc and fp (fc,p) 89.26%

Combining fc, fp, and [2] (fc,p,k) 92.24%

Convolutional neural networks 87.78%

k-NN with k = 3500 (fk−NN) 94.34%
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