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The generational scalability of single-cell
replicative aging
Ping Liu1,2 and Murat Acar1,2,3,4*

Despite the identification of numerous genes able to modulate lifespan, it remains unknown whether these
genes interact to form a regulatory network that governs aging. Here we show that genetic interventions that
extend or shorten replicative lifespan in Saccharomyces cerevisiae elicit proportional scaling of survival curve
dynamics. The scalable nature of replicative lifespan distributions indicates that replicative aging is governed by
a global state variable that determines cell survival by integrating effects from different risk factors. We also show
that the Weibull survival function, a scale-invariant mathematical form, is capable of accurately predicting exper-
imental survival distributions. We demonstrate that a drift-diffusion model of aging state with random challenge
arrival effectively captures mortality risk. Measuring single-cell generation durations during aging, we uncover
power-law dynamics with strain-specific speeds of increase in generation durations. Our application of quantitative
modeling approaches to high-precision replicative aging data offers novel insights into aging dynamics and lifespan
determinants in single cells.
INTRODUCTION
While themolecular determinants of how cells of an initially isogenic
population experience heterogeneity in their lifespan are not fully
understood, two distinct frameworks (1–3) are thought to describe
the organization of lifespan determinants. In the first framework
(competing risks model), a death event occurs when the state of a single
aging factor falls below its threshold for causing cell death, even if the
other factors have not reached their thresholds yet. In the second
framework (dependency network model), coordinated interactions
among the aging factors lead to the formation of a global state variable
(X) which determines cell death.

A recent study (3) has shown that interventions, such as temperature
and gene disruptions, altered the chronological lifespan (CLS) distribu-
tions of Caenorhabditis elegans in a scalable manner by stretching or
shrinking of the time. CLS (4–6) is a lifespan metric that quantifies
the length of time an organism is alive in a nonmitotic state. Supporting
the dependency network model, results from the C. elegans study sug-
gested that, through such temporal scaling, the physiological determi-
nants of the death risk were altered to the same extent by each
intervention throughout the adult life of the organism (3).

For organisms whose cells go through mitotic divisions, replicative
lifespan (RLS) (4, 7) is an alternative quantitative metric to measure the
lifespan of mitotically dividing cells. RLS is defined as the total number
of division events a mother cell completes before death. Here, using the
yeast Saccharomyces cerevisiae as a model, we experimentally and com-
putationally investigate whether or not genetic interventions change
RLS distributions in a scalable manner. We show the scalability of the
distributions and identify Weibull and Strehler-Mildvan models as
scale-invariant empirical and mechanistic models, respectively, that
can mathematically describe the experimental distributions. Further,
we elucidate that the power law provides a quantitative link between
generation durations and the number of generations before cell death.
RESULTS
Experimental measurement of single-cell RLS
To explore whether RLS distributions would display scalable behavior
with respect to the number of generations, we tracked mitotically
dividing mother yeast cells throughout their full RLS by starting from
their first generation. Using our microfluidic “yeast replicator” device
(8) to automate the measurements of yeast RLS in liquid medium, we
collected high-precision cell survival data (Fig. 1, A to C). The prob-
ability of a cell’s being alive at a specific age (g) formed a survival
distribution S(g) (Fig. 1D). An average lifespan of 23.5 generations
was measured from the distribution of lifespan values obtained from
the wild-type cells (Fig. 1E).

By deleting specific genes from the yeast genome, the average
lifespan of yeast cells can be made shorter or longer compared to the
average lifespan displayed by the wild-type cells.We picked seven genes
(Table 1) and deleted them from the wild-type genome. The choice to
include these specific gene deletions was based on either their canonical
nature or the desire to represent a wide range of lifespan values (8, 9).
Performing single-cell aging experiments on these seven strains using
our microfluidic setup, we found that the absence of SIR2, RIF1, or
TVP15 shortened the average lifespan, whereas yeast cells lived longer
when SGF73, TOR1, GPA2, or FOB1 gene was deleted (Table 1).

Scalability of RLS distributions across different
genetic interventions
Independent of any particular parametric form of S(g), between any
two genetic backgrounds D1 and D2, if SD1(g) = SD2(l

− 1g), then the ge-
netic perturbations introduced to the yeast genome would be expected
to affect cell survival statistics through a generational rescaling of the
survival probability, with l being the scaling factor (3). To quantitatively
evaluate the presence or absence of scalability, we applied an accelerated
failure time (AFT) regression model to the survival data (Fig. 2, A to G,
and the Supplementary Materials). For lifespan distributions that can
overlap by a simple generational rescaling, one would expect to obtain
identically distributed residuals as a result of the AFT regression. To
evaluate the degree of differences between AFT residual distributions,
we applied a Kolmogorov-Smirnov test (see the Supplementary
Materials). We did not observe (Kolmogorov-Smirnov at 0.05 signifi-
cance level; fig. S1 and tables S1 and S2) any significant deviations from
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perfect scaling across the different genetic backgrounds, confirming that
a diverse set of genetic interventions produce a generational scaling of
cell survival probabilities for single yeast cells.

As expected, the values of l that were extracted after scaling the sur-
vival curve of each gene-deleted strain to the wild-type survival curve
displayed a linear relationship with respect to the average RLS of the
strains measured (Fig. 2, H and I). The scalability indicates that these
Liu and Acar, Sci. Adv. 2018;4 : eaao4666 31 January 2018
seven genes have a concerted influence on the global aging factor X(g)
(3). Such an influence could be through direct or indirect interactions
among these genes. Some of these interactions have already been char-
acterized mechanistically. For example, the deletion of SIR2 shortens
yeast lifespan through increasing both ribosomal DNA (rDNA) recom-
bination and extrachromosomal rDNA circle formation (10), whereas
the deletion of TOR1 extends lifespan through reduced signaling in the
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Fig. 1. Experimental measurement of single-cell lifespan and generation durations. (A) Schematics of the experimental setup with the microfluidic chip and a
stage-automated inverted microscope. (B) Scanning electron microscope picture of the functional unit of the microfluidic chip. Scale bar, 5 mm. (C) Time-dynamic
bright-field images of a sample mother cell giving birth to a daughter cell. (D) Cell survival as a function of the number of generations (gen.) of the wild-type yeast
cells. Cell survival was quantified by taking the fraction of initial cells (n = 200) that were still alive at a specific generation. (E) RLS distribution from 200 wild-type
mother cells analyzed. The average RLS is 23.5 generations. PDMS, polydimethylsiloxane.
Table 1. Descriptions of the genes deleted from the wild-type background. RLS values for the gene-deleted strains are given in mean ± SD generations.
Wild-type cells lived 23.5 ± 8.1 generations. n = 200 cells.
Gene
 Description
 Lifespan
SIR2
 NAD+-dependent histone deacetylase of the sirtuin family.
 14.0 ± 4.8
RIF1
 Protein involved in telomere length control, silencing, and DNA replication.
 15.4 ± 5.0
TVP15
 Integral membrane protein. Localizes to late Golgi vesicles.
 19.0 ± 7.5
SGF73
 Protein with roles in anchoring deubiquitination module into SAGA and SLIK complexes.
 33.2 ± 13.0
TOR1
 PIK-related protein kinase and rapamycin target. Subunit of the TORC1 complex.
 30.0 ± 10.7
GPA2
 Nucleotide binding a subunit of the heterotrimeric G protein.
 28.3 ± 8.5
FOB1
 Nucleolar protein that is required for replication fork blocking.
 31.9 ± 11.8
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TOR pathway (9), resulting in down-regulation of ribosome biogenesis.
As another example, when combined in the same yeast strain, SIR2 and
FOB1 deletions compensate the effects of each other to a large degree
(10). FOB1 is a key gene whose deletion decreases the rate of rDNA
recombination (11) and extends yeast lifespan (12).

Empirical Weibull model fits and predicts the experimental
survival distributions
To ascertainwhether an exactmathematical form (describing the exper-
imental survival distributions and satisfying the scalability requirement)
Liu and Acar, Sci. Adv. 2018;4 : eaao4666 31 January 2018
can be associated to S(g), we considered the gamma, Gompertz, and
Weibull distributions that have been historically (13–16) used to de-
scribe morbidity statistics of living systems, with the survival functions
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Fig. 2. Scalability of RLS distributions across multiple genetic interventions. (A to G) Experimental (left) and scaled (right) survival curves are shown for sir2D (A),
rif1D (B), tvp15D (C), gpa2D (D), tor1D (E), fob1D (F), and sgf73D (G) strains. n = 200 cells for all strains, and wild-type survival data are shown in black in all panels. (H) The
scaling factor l and the RLS (mean ± SD generations) values for all strains characterized. (I) Linear fit applied to l and mean RLS values. To compute the error bars, we
generated 1000 virtual samples for each strain. Each virtual sample consists of 200 RLS data points sampled from a pool of 200 RLS measurements (with replacement)
available for each strain. Sampling is done using MATLAB’s bootstrp function. Using wild-type (w.t.) strain as the template, l and mean RLS for each sample are
computed. The error bars (SD) of l and mean RLS are then computed respectively based on the l and mean RLS values of the 1000 virtual samples for each strain.
The linear fit is performed on the pooled l and mean RLS values of all the virtual samples.
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In these equations, g describes the replicative age of a cell, S is the
number of cells that are alive at g, and S0 is the initial number of cells
to be followed during their aging process (see the Supplementary
Materials). Performing a least-squares fit against the experimental
survival distribution of the wild-type yeast cells, we saw that theWeibull
distribution was superior in its fitting ability compared to the gamma
and Gompertz distributions (Fig. 3 and table S3). The robustness of the
fits was further confirmed across different initial values of the param-
eters by systematically sampling them from large ranges (fig. S2).
Furthermore, an inspection of the gamma and Gompertz survival
functions showed us that they could not be scale-invariant. Finally, the
Weibull survival function could be reduced to a one-parameter form
without diminishing its fit accuracy (fig. S3 and tables S4 and S5),
and it could support scale invariancewith respect to changes in its scaling
parameter r, lending further support to its selection to represent S(g).

The observation that the survival probabilities of single yeast cells
at specific generation numbers follow the form of the one-parameter
Weibull survival function suggests that it may be possible to predict
their full survival dynamics by using only a fraction of the data obtained
at young ages. To test the predictive power of the Weibull survival
function, we performed least-squares fitting procedures by using only
a fraction (10 to 90%) of thewild-type cell survival data (table S6). Using
the extracted value of the fit parameter (scaling parameter), we then
calculated the full survival curve and examined the degree of similarity
Liu and Acar, Sci. Adv. 2018;4 : eaao4666 31 January 2018
between each result and the empirical curve (fig. S4). Feeding the initial
30% of the experimental survival data into the fitting process turned out
to be sufficient for predicting the full survival curve reasonably well.
When we analyzed and included a higher number of cells (1000 cells
instead of 200) to compose the survival curve of the wild-type strain
(fig. S5 and table S7), the smoothness of the curve slightly improved
as expected; however, the fraction of data needed for strong predic-
tions did not change drastically.

We next showed that the predictive capacity of theWeibull survival
function was not specific to the survival curve obtained from the wild-
type yeast strain, but it could also predict the full survival curves of
the strains experiencing different genetic interventions reasonablywell
(figs. S6 to S12 and table S8). These findings reaffirmed the ability of the
Weibull survival function to mathematically represent cell survival as a
function of generations. What biological insights into the aging process
can be gained from the knowledge that theWeibull survival function
with a constant shape parameter a quantitatively describes empirical
cell survival dynamics?With the variable g corresponding to “time to
failure,”Weibull survival function provides a distribution for which
the failure rate is proportional to a power of time (measured in genera-
tions), with a > 1 indicating that the failure rate increases over time (as
would be expected in an aging process). Therefore, we conclude that the
aging process in yeast is accompanied by a specific nonlinear increase in
failure rate dictated by the fixed value of a (3.28). Intriguingly, after
A B

C

Fig. 3. Performance comparisons among the empirical models. (A to C) Least-squares fit results for the three empirical survival distributions. Experimental wild-type
cell survival curve (black dots) was fitted to two-parameter gamma (A), Gompertz (B), or Weibull (C) distributions. The blue line was generated using the best-fitting
parameter values extracted from each fit. Higher R2 and lower sum of squared errors (SSE) values show the superior performance of the Weibull distribution. n = 200
wild-type cells formed the experimental survival curve.
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factoring in the scaling parameter, our data suggest that the nonlinear
dynamics of failure rate increase is kept constant across the specific
genetic backgrounds we investigated. In this system, the failure rep-
resents cell death, that is, when the global state variable X reaches the
threshold necessary to trigger the death event. Therefore, the con-
stant nonlinear dynamics of the failure rate indicates that the scaled
rate of change of X(g) is invariant across the strains we tested.

Stochastic Strehler-Mildvan model provides mechanistic
insights into single-cell aging
To gather mechanistic insights into the dynamics of yeast aging at
the microscopic level, we explored how our experimental results
related to specific stochastic models that can potentially describe
the aging process in single cells and the impact of aging on cell
survival. For this, we tested three different microscopic models
for their ability to capture the survival dynamics of the wild-type
yeast cells (see the Supplementary Materials). Among the stochastic
models we tested were semi-infinite random walk, drift-diffusion
process with drift heterogeneity, and Strehler-Mildvan model with
drift-diffusion-based survival mode. Importantly, the analytical cell sur-
Liu and Acar, Sci. Adv. 2018;4 : eaao4666 31 January 2018
vival distributions corresponding to each of these microscopic models
satisfy the scalability requirement (3). However, we found that the
Strehler-Mildvan model was superior to the other two models in terms
of its ability to capture the dynamics of the cell survival distribution
using the optimal model parameters (Fig. 4, A to C, figs. S14 to S16,
and table S9).

Compared to the other two models we tested, the distinguishing
feature of the Strehler-Mildvan model with drift-diffusion-based sur-
vival mode is that it splits the age-dependent and age-independent
causes of cell death. An age-dependent cause leads to a linear loss in sur-
vival governed by the drift-diffusion model, while an age-independent
sudden catastrophe leads to cell death if its randomly sampled value
is equal to or larger than the survival level at a given time. Therefore, the
success of the Strehler-Mildvan model to fit to our cell survival data
suggests that the generation-specific probability of death for yeast cells
has microscopic contributions from both age-dependent and age-
independent random factors. However, further exploration on the rela-
tive importance of the parameters describing the Strehler-Mildvan
model showed us that the diffusion parameter was not essential for real-
izing the differential survival distributions observed from the wild-type,
A

C

B

Fig. 4. Performance comparisons among the mechanistic models. For each microscopic process, n = 200,000 parameter sets were sampled from the parameter
ranges (table S9) and fed into the analytical survival functions (see the Supplementary Materials) corresponding to each microscopic model. For each parameter set, the
SSE between the simulated survival curve and the experimental survival curve (obtained from the tracking of 1000 wild-type cells) was computed. The parameter sets
corresponding to the smallest SSE values for the different models were then used as initial values for the final optimization process using MATLAB’s fminsearch
function. The red curve in each panel was generated by using the optimized/fitted parameter values in each analytical survival function. The experimental survival
curve is denoted by the blue dots in each panel. The insets show schematic trajectories reflecting the nature of each microscopic process. (A) Semi-infinite random walk
(SSE = 0.0190). (B) Drift diffusion with drift heterogeneity (SSE = 0.0320). (C) Strehler-Mildvan model with viability drift diffusion (SSE = 0.0032).
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short-living (sir2D), and long-living (fob1D) yeast strains (fig. S17 and
table S10), indicating that the drift process is the primary determinant
of the aging state in the age-dependent module of the Strehler-Mildvan
model (see the SupplementaryMaterials). To understand the generation-
dependent dynamics of the aging state X in these three strains, we ran
stochastic simulations of the Strehler-Mildvan model using strain-
specific parameter values. We saw that the mean of the aging state
X (or vitality) followed nonlinear decrease dynamics toward cell death
(fig. S18). The speed of the vitality decrease was the highest for the
short-living sir2D strain, while it was the lowest for the long-living
fob1D strain.

The fitting abilities of the empirical Weibull and mechanistic
Strehler-Mildvan models together with their generational scaling
features suggest the existence of a link between these models. Ap-
plying the same strain-specific scaling factor value to the scalable
parameters of the Strehler-Mildvan and Weibull survival functions
made the two functions’ output overlap (fig. S19). This indicates that
the scalable parameters m,s2,g of the mechanistic Strehler-Mildvan
survival function collectively play the same role as the scalable
parameter r of the empirical Weibull survival function through the
scaling parameter l. Further characterization of the specific analytical
connection between the two parameter sets could not be performed
because of the complex nature of the survival function associated with
the Strehler-Mildvan model (see the Supplementary Materials).

Power law governs the dynamics of mean generation
durations during aging
Next, we considered single-cell generation durations as a reporter of
death risk that integrates the effects of the age-dependent and age-
independent microscopic contributions to the risk of death, and we
sought to explore empirical connections between replicative age and
generation durations. Results from a previous study (17) showed that
old yeast cells contained higher levels of reactive oxygen species
(ROS) compared to young cells. Expecting that higher ROS levels
lead to more DNA damage and considering the time needed for
damage repair, we hypothesized that old cells will have longer cell
cycle durations, though we were unable to predict the dynamics of
duration increases as a function of generations. Thus, throughout the
full lifespan of single cells, we measured generation durations from
wild-type, short-living (sir2D), and long-living (fob1D) yeast strains
and quantified mean generation durations at single-generation reso-
lution (Fig. 5).

In all three genetic backgrounds, mean generation durations
increased in a nonlinear fashion while cells were approaching their
last generation before death (Fig. 5, A to C). The generation-
dependent increase in mean generation durations is consistent with
a power law f(g) = agk. The strain-specific power law exponent k
quantifying the speed of increase in generation durations was the
highest for the short-living sir2D strain, and it was the lowest for
the long-living fob1D strain. This observation together with the power
law being a scale-invariant functional relationship supported the idea
of using generation duration as a reporter of death risk.

Although we do not exactly know the specific molecular mech-
anism that leads to the power law–governed increases in generation
durations during aging, one of the plausible mechanisms is that aging-
associated accumulation of DNA damage and/or aging-associated
deficiency in the fidelity of DNA repair or genome maintenance path-
ways cause the observed phenotype. In this framework, the deletion of
the histone deacetylase SIR2 could be expected to lead to a speedier
Liu and Acar, Sci. Adv. 2018;4 : eaao4666 31 January 2018
increase in generation durations compared to the wild type due to re-
duced levels of genome silencing, making DNAmore prone to damage.
In addition, the facts that SIR2 and FOB1 deletions compensate the
effects of each other on RLS to a large degree (10) and that the fob1D
genome experiences relatively less DNA replication fork blocking (11)
compared to the wild type (therefore, less need for repair and slower
increase in generation durations) could be taken as additional support
on this plausible mechanism.
A

B

C

Fig. 5. Analysis of single-cell generation times during aging. Mean generation
times as a function of generations toward the death event for sir2D (A), wild-type
(WT) (B), and fob1D (C) strains. For each generation, single-cell generation durations
of all cells experiencing that generation were averaged. The generation times of
121 wild-type, 122 sir2D, and 122 fob1D cells were analyzed. Solid lines depict the
results from fitting the mean generation time data of each strain to a power law
function. Fit statistics are provided on the panels.
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DISCUSSION
Here, we show that the RLS distributions measured from single
yeast cells are scalable across several different genetic backgrounds
tested. On the basis of detailed numerical analyses (2, 3) performed
for two phenomenological aging models (competing risks model
and dependency network model), the scale-invariant nature of cell
survival suggests that replicative aging in yeast can be described in
terms of generational changes in a global state variable X(g). This
variable determines cell survival by integrating the effects of differ-
ent risk factors present. This integration can be intuitively under-
stood by considering the effects of each risk factor on X(g) to be
simultaneously and equally rescaled throughout lifespan.

Despite the fact that the different genetic interventions we studied
here turned out to be part of the same aging network due to the scal-
ability across the genetic backgrounds we tested, we cannot rule out the
possible presence of additional,modularly independent, aging networks
in the yeast genome. These networks and their components can be iden-
tified by performing high-throughput lifespan measurements on gene-
deletion libraries followed by the grouping of the scaled survival curves
based on pairwise similarities.

Our results also elucidated that the age-dependent dynamics of
survival decrease in yeast populations can be mathematically de-
scribed and predicted by the scale-invariant one-parameter Weibull
survival function, meaning that the aging process in yeast is accom-
panied by a specific nonlinear increase in failure rate. Despite this
deterministic description introduced, we note that the stochastic
effects experienced by a single cell during its lifespan can still make
the cell deviate from the deterministic lifespan trajectory followed
by the population. A stochastic model we tested, the Strehler-Mildvan
model, shows that the drift-guided diffusion process together with ran-
dom challenge arrival explains how themeasured cell survival dynamics
can be realized. Finally, using single-cell generation durations as an in-
tegrative probe of cell health and fitness, this study also uncovers an
empirical connection between aging and generation durations through
a power-law model of decaying cell health during aging.
MATERIALS AND METHODS
Yeast strains used in this study
All S. cerevisiae strains (table S8) used in this study have the BY
genetic background. The haploid gene-deletion strains fob1D,
sgf73D, tor1D, sir2D, gpa2D, tvp15D, and rif1D were obtained from
Dharmacon Inc. with the following catalog numbers, respectively:
YSC6273-201935800, YSC6273-201936107, YSC6273-201937801,
YSC6273-201935296, YSC6273-201921174, YSC6273-201935791,
and YSC6273-201938023.

Growth medium and experimental protocol followed during
the aging experiments
The design and fabrication of the PDMS chip used in this study and
the experimental protocols for setting up and running the aging
experiments were described in detail in our previous publication (12).
In summary, cells were grown in complete synthetic medium (CSM)
supplemented with amino acids and 2% glucose as the carbon source.
Overnight-grown yeast cells (10 ml of culture volume in a shaker at
30°C) were diluted so that the cell density (optical density at 600 nm)
was around 0.1. Diluted cells were loaded into the microfluidic plat-
form using a syringe pump operating at the flow rate of 20 ml/min for
a duration between 2 and 3 min. Using Nikon’s Elements software,
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200 mother cells were analyzed from each strain (1000 cells were
analyzed for the wild-type strain) for their lifespan values by starting
from their first generation until the end of their RLS. For tracking the
cells, 60× oil and 40× air objectives were used. Bright-field images
were acquired with 10-min intervals in the CSM minimal media
environment containing 2% glucose, and the single-cell lifespan
values were counted and recorded after the completion of the aging
experiment. The generation time data plotted in Fig. 5 were collected
at the single-cell level by measuring the time each mother cell took
between consecutive S phase initiations which were marked by con-
secutive bud initiations. From each strain, 122mother cells were ana-
lyzed for their generation times across their lifespan. For the wild-type
strain,we included 121 cells, because one cell was excluded as an outlier
due to its abnormally long generation duration of 2340 min during its
fifth generation.

During the aging experiments, the syringe pump was programmed
to push fresh minimal medium into the microfluidic chip at two differ-
ent medium flow rates: the continuous rate at 2 ml/min for 18 min
followed by the flushing flow rate of 30 ml/min for 2 min. These flow
rates cycled repeatedly until the end of the RLS experiment. The growth
temperature during the lifespan experiments was ~30°C.
SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/4/1/eaao4666/DC1
fig. S1. Evaluating the Kolmogorov-Smirnov test on differentially scaled survival curves using
simulated data.
fig. S2. Parameter sweeps.
fig. S3. Fit performance comparisons between one- and two-parameter Weibull survival
functions.
fig. S4. Predictive capacity characterization for the one-parameter Weibull survival function on
200 wild-type cells.
fig. S5. Predictive capacity characterization for the one-parameter Weibull survival function
on 1000 wild-type cells.
fig. S6. Predictive capacity characterization for the one-parameter Weibull survival
function on sir2D.
fig. S7. Predictive capacity characterization for the one-parameter Weibull survival function
on rif1D.
fig. S8. Predictive capacity characterization for the one-parameter Weibull survival function
on tvp15D.
fig. S9. Predictive capacity characterization for the one-parameter Weibull survival function
on gpa2D.
fig. S10. Predictive capacity characterization for the one-parameter Weibull survival function
on tor1D.
fig. S11. Predictive capacity characterization for the one-parameter Weibull survival function
on fob1D.
fig. S12. Predictive capacity characterization for the one-parameter Weibull survival function
on sgf73D.
fig. S13. Quantifying deviations from perfect scaling.
fig. S14. Simulation results for the Strehler-Mildvan model with vitality drift diffusion.
fig. S15. Performance of the exponential challenge arrival process.
fig. S16. Results from the application of AIC and BIC tests on the stochastic models tested.
fig. S17. Sensitivity characterization for the Strehler-Mildvan model parameters.
fig. S18. The generation-dependent dynamics of the aging or viability state X.
fig. S19. Numerical connection between the Strehler-Mildvan and Weibull survival functions.
table S1. Results from the Kolmogorov-Smirnov statistic sup|Si − Sj|, where sup is the
supremum (maximum) function.
table S2. P values computed using ks.test function of R.
table S3. Fit results from the use of the two-parameter Gompertz, gamma, and Weibull survival
functions.
table S4. Fit performance of the two-parameter Weibull survival function.
table S5. Fit performance of the one-parameter Weibull survival function (a is fixed at 3.28).
table S6. Fit and prediction results from the use of the one-parameter Weibull survival
function.
table S7. Fit and prediction results from the use of the one-parameter Weibull survival function.
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table S8. Yeast strains used in this study.
table S9. For each microscopic process, parameter ranges used during the sampling process
and the fitted parameter values.
table S10. Predicted parameter values for sir2D and fob1D strains, obtained after applying
scaling.
Materials and Methods
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