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Significance: Excessive scarring is major clinical and financial burden in the
United States. Improved therapies are necessary to reduce scarring, especially
in patients affected by hypertrophic and keloid scars.
Recent Advances: Advances in our understanding of mechanical forces in the
wound environment enable us to target mechanical forces to minimize scar
formation. Fetal wounds experience much lower resting stress when compared
with adult wounds, and they heal without scars. Therapies that modulate
mechanical forces in the wound environment are able to reduce scar size.
Critical Issues: Increased mechanical stresses in the wound environment induce
hypertrophic scarring via activation of mechanotransduction pathways. Me-
chanical stimulation modulates integrin, Wingless-type, protein kinase B, and
focal adhesion kinase, resulting in cell proliferation and, ultimately, fibrosis.
Therefore, the development of therapies that reduce mechanical forces in the
wound environment would decrease the risk of developing excessive scars.
Future Directions: The development of novel mechanotherapies is necessary to
minimize scar formation and advance adult wound healing toward the scarless
ideal. Mechanotransduction pathways are potential targets to reduce excessive
scar formation, and thus, continued studies on therapies that utilize mechanical
offloading and mechanomodulation are needed.
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SCOPE AND SIGNIFICANCE
Scarring of the skin after cuta-

neous injury is a source of major
morbidity to patients and is a finan-
cial burden to the healthcare system.
Recent improvements in our under-
standing of the role of mechanical
forces in wound healing and repair
open up the possibility of targeting
mechanotransduction pathways to
reduce scar formation. This review
will discuss the role of mechanical
forces in wound healing and scarless
wound repair and provides an update

on therapies that offload mechanical
tension in the wound environment to
encourage a healing response closer
to the ‘‘scarless ideal.’’

TRANSLATIONAL RELEVANCE

Since the original observation that
fetal wounds heal without scars in
utero,1 a major goal of skin and
wound healing research has been to
identify the changes that cause neo-
natal and adult skin to assume a
scarring phenotype. Human skin is
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particularly sensitive and responsive to mechani-
cal forces in the environment and converts me-
chanical cues to biochemical signals that promote
scar formation.2–5 It may be possible to specifically
target these signaling pathways to return adult
wound healing to the scarless state of fetal skin.

CLINICAL RELEVANCE

The clinical and financial burden resulting from
excessive scarring is tremendous. Severe burns re-
sult in more than 40,000 hospitalizations and
nearly 4,000 deaths per year in the United States,
and much of the care required is related to the en-
suing burn scar.6 Wounds that heal with excessive
scar tissue result in poor functional and aesthetic
outcomes through the formation of hypertrophic
scar and keloid scar. The economic impact is greater
when the costs of disability and revision surgeries
due to dysfunctional tissue and disfiguring scars
are included.7

DISCUSSION OF FINDINGS
AND RELEVANT LITERATURE
Overview of uncomplicated wound healing

The classic stages in adult wound repair have
been well described in the literature.8 There are
three distinct, sequential phases of repair leading
to the formation of a fibrotic scar: (1) inflammation,
(2) new tissue formation, and (3) remodeling. In-
flammation occurs immediately after tissue injury.
During this phase, hemostasis is achieved via the
platelet plug and fibrin matrix, bacterial products
are degraded via complement activation and the
recruitment of neutrophils, and monocytes localize
to the wound and differentiate into macrophages.8–10

Neutrophils immediately diapedese to the wound
to kill microbes, whereas macrophages arrive later
to phagocytose debris and produce cytokines. The
mechanisms by which these immune mediators in-
duce scar formation are not yet fully understood.11,12

The second phase, new tissue formation, occurs
through the proliferation and migration of various
cell types (e.g., keratinocytes, endothelial cells, fi-
broblasts, myofibroblasts). Granulation tissue, con-
sisting of connective tissue and a dense network of
new blood vessels, forms from 2 to 10 days after tis-
sue injury. Of particular interest are the actions of
fibroblasts and myofibroblasts, because they interact
with and produce extracellular matrix (ECM; i.e.,
collagen) that comprises a substantial component of
the mature scar.13

Two to 3 weeks after tissue injury, in the final
remodeling phase, many cells undergo apoptosis or
migrate from the wound and leave behind type I

and type III collagen and other ECM proteins that
they previously produced. Fibroblasts, macro-
phages, and endothelial cells secrete metalloprotei-
nases that remodel the ECM. In the early wound and
immature scar, the ratio of type I to type III collagen
in the acellular matrix is *2:1 (33% type III colla-
gen). As the scar matures, the composition of the
acellular matrix transitions to contain more type I
collagen, changing the ratio of type I to type III col-
lagen to *4:1, the ratio typically found in normal
skin.14–16 This process strengthens the repaired tis-
sue over the course of 6–12 months.17 The remodel-
ing phase lasts for a year or more.8 The strength of
previously wounded skin is at most 75–80% that of
unwounded skin.14 All of the aforementioned stages
of wound healing are influenced by mechanical for-
ces, as will be described in later sections.

Scarless wound healing
The existence of scarless healing in the fetus was

first observed in 1971,1 but the transition from
scarless to scar-forming wound healing was first
demonstrated in fetal lambs in 1990.18 This transi-
tion was further demonstrated in fetal rhesus mon-
keys in 1993.19 In 75-day gestation (term = 165 days)
fetal monkeys, full-thickness lip wounds healed
completely with normal tissue architecture and
epidermal appendages (hair follicles and sebaceous
glands) and without scars (scarless and regenerative
repair). In the 85–100 day gestation group, healed
wounds displayed normal collagen patterning, but
lacked epidermal appendages (scarless, but not re-
generative repair). By 107 days of gestation, the
wounds healed with a thin scar and with no epi-
dermal appendages.19 Differences in growth factor
distribution among fetal, neonate, and adult mouse
lip wounds are associated with this transition.
Though platelet-derived growth factor was observed
in all three populations, transforming growth factor
b (TGFb) and basic fibroblast growth factor were
absent in scarless fetal wounds and were present in
scarring neonatal and adult wounds.20 Further-
more, trophic factors such as TGFb are sufficient to
induce fibrosis in fetal animal models. Implants
containing TGFb placed subcutaneously induced
adult-like fibrosis and collagen deposition in fetal
rabbit wounds.21 Similarly, a fibrotic and angiogenic
response was induced 48–72 h after TGFb was in-
jected directly into the skin of newborn mice.22 Thus,
inflammation can induce scarring in otherwise
scarless fetal wound healing. There are many more
documented differences between adult and scarless
wound healing.23,24 Of note, the phenomenon of fetal
scarless repair is organ specific: Fetuses that heal
cutaneouswounds without scars will formscar tissue
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in the stomach, intestines, and diaphragm.25,26 The
timing of the transition from scarless to scarring
cutaneoushealingmayberelated to thedevelopment
of acute inflammation and the increasingly complex
architecture of fetal skin.27 Remarkably, there are
adult mammals that are able to heal scarlessly and
regeneratively. In two species of African spiny mouse
(Acomys kempi and Acomys percivali), adults are
able to fully regenerate epidermal-derived struc-
tures in response to large excisional wounding.28

Future studies that characterize the wound envi-
ronment and mechanisms of skin regeneration in
African spiny mice will be critical for our under-
standing of scar mechanisms and therapeutic inter-
ventions for fetal scarless and regenerative repair.

In addition, fetal mammalian skin contains thin
collagen fibers that exhibit low levels of resting
stress, whereas adult skin contains thick collagen
bundles that exhibit high levels of resting stress.
This suggests a relationship between mechanical
tension and scar formation.24 Studies addressing
the mechanics of embryonic wound healing in vitro
have given rise to a model known as ‘‘purse-string’’
healing in which a circular cable of connected actin
filaments encircling the epidermal wound margin
gradually contracts and closes the wound.29,30 This
has been further studied and computationally
modeled in the chick embryo. As a result, three
different phases in early chick embryo healing
were proposed: (1) contraction of a thick actin cable
of cells in the first *30 s to close the wound area by
>50%, (2) formation and contraction of a thin actin

cable at the wound edge to close the wound almost
completely over several minutes, and (3) ‘‘zipping’’
of wound edges via filopodia.31 In adult healing,
fibroblasts convert to myofibroblasts to form con-
tractile granulation tissue and keratinocytes mi-
grate from the edges of the wound via lamellipodia
to re-epithelize the wound bed.32 Given that fetal
wounds experience much lower resting stress and
have a different mechanism of wound contraction,
mechanical forces in the wound environment likely
play a key role in scarless fetal wound healing.

Mechanotransduction in the wound
environment

Early observations in anatomy and surgery have
hinted at the importance of mechanical tension on
wound-healing outcomes.33 For example, Langer
lines in human skin correspond to the bands of
tension naturally occurring in skin due to collagen
fibril and fibroblast interactions. Incisions made
parallel to these lines experience reduced tension
and tend to heal with less scarring than those
placed perpendicular to them.33–35 Increased scar
formation has also been noted when wounds are in
locations subjected to increased mechanical force,
such as wounds along the sternum and across
joints.35,36 Conversely, reduction of mechanical
tension through tension shielding has been shown
to reduce scarring.2,5

In addition to tension, cells experience and re-
spond to compressive, shear, and osmotic forces,37–53

as illustrated in Fig. 1. It has been shown that

Figure 1. Schema of mechanical forces acting on a cell and resulting cellular responses. An illustration of the types of mechanical forces to which cells
respond. Far left, a cell adhering to the ECM via adhesion molecules such as integrins. Four types of physical stimuli are depicted: tension (stretching in a plane
perpendicular to the cell cross-section), compression (pushing inward), shear (stretching in a plane parallel to the cell cross-section), and osmotic (internal
pressure maintaining the turgor of a cell, preventing it from collapsing on itself). The stimuli are color-coded as follows: tension (red), compression (orange),
shear (green), and osmotic (blue). These stimuli are transmitted to the cell via mechanoreceptors, such as integrins, ion channels, growth factor receptors, and
G-protein coupled receptors. Mechanoreceptors trigger various cellular responses, as depicted and cited earlier. ECM, extracellular matrix. To see this
illustration in color, the reader is referred to the web version of this article at www.liebertpub.com/wound
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mechanical properties play an important role in
proliferation and differentiation of stem cells. For
example, mechanical properties of hydrogels influ-
ence mesenchymal stem cell (MSC) differentiation.
Specifically, local degradability was found to be
necessary for human MSC (hMSC) spreading and
traction responses that direct cell fate. The authors
also showed that introduction of nondegradable
crosslinks via delayed secondary crosslinking could
switch hMSC cell fate from osteogenic to adipogenic.
This was observed by histological as well as bio-
chemical staining.54 Another study has shown that
hMSCs possess mechanical memory, allowing them
to maintain predisposition toward a certain cell fate.
This phenomenon is dose dependent and reversible
within a time window of 3 days in culture.55 There
have been several publications that demonstrate
how skin responds to biomechanical cues and which
biomechanical signal mediators are important in
mechanotransduction.56–62 The known intracellular
mechanisms involved in mechanotransduction are
summarized in Fig. 2. Advancements in the past

decade pertaining to the exploration of mechanical
forces on the individual cell and system levels can be
attributed to developments in nanotechnology, fluo-
rescence energy transfer-based mechanosensors,
atomic force microscopy, traction force microscopy,
and magnetic twist cytometry.63–67

Fibroblasts have been extensively studied in
biomechanical wound models, and physical forces
are known to influence the expression of ECM
genes and inflammatory genes involved in scar
formation.68–70 Fibroblasts grown in mechanically
loaded three-dimensional collagen lattices resem-
bling connective tissue develop dendritic exten-
sions that enable them to migrate and remodel
their matrices.71–74 Simply subjecting fibroblasts
to microdeformations caused by suction, as one
would observe with vacuum-assisted wound clo-
sure, results in increased fibroblast proliferation
and up-regulation of typical genes expressed by
fibroblasts (e.g., type 1 collagen alpha 1, fibroblast
growth factor 2, TGF-b1).75 Using an in vitro model
to investigate the effects of cyclically stretching

Figure 2. Intracellular mechanisms involved in mechanotransduction. External mechanical forces are transmitted across the cell membrane by mechano-
receptors, resulting in the activation of various intracellular signaling pathways. Such mechanoreceptors include stretch-activated ion channels, growth-factor
receptors, G-protein coupled receptors, and integrins. In fibroblasts and keratinocytes, two of the key mechanosensitive cells in the skin, mechanical signals
transmitted via integrins activate focal adhesion complexes containing FAK. Downstream biochemical pathways, such as calcium regulated targets, nitric
oxide (NO) targets, phosphoinositol-3-kinase (PI3K) targets, mitogen-associated protein kinases (MAPKs), and Rho GTPases, all synergize to activate
transcription factors that translocate into the nucleus and activate mechanically regulated genes. Adapted and used with permission from Wong et al. (2011).61

FAK, focal adhesion kinase. To see this illustration in color, the reader is referred to the web version of this article at www.liebertpub.com/wound
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cells in culture, increased tension was also dem-
onstrated to promote human fibroblast prolifera-
tion and mechanical strengthening.76 Cyclically
stretched fibroblasts exhibited increased migration
speed and distance when compared with un-
stretched cells. This induced the cells to align
themselves perpendicularly to the vector of applied
mechanical force and was associated with reduced
apoptosis via mechanisms related to the integrin
(ITG) and Wingless-type mechanotransduction
pathways.77 Mechanical stretching also induces
phosphorylation and activation of protein kinase B
(Akt) in keratinocytes in vitro,78 providing support
for the concept that keratinocytes are mechan-
osensitive and can modulate their intracellular
signaling pathways in response to mechanical de-
formations in the environment.

Aarabi et al. were first to show the impact of
mechanical signal transduction on cutaneous wound
healing in vivo. They demonstrated that the addition
of mechanical stress in the early phases of wound
healing induces hypertrophic scarring by inhibiting
Akt-dependent cellular apoptosis.24 In subsequent
studies, microarray analysis of scars in an estab-
lished mouse model has shown that focal adhesion
kinase (FAK), a tyrosine kinase without a receptor
protein, is critical in cell mechanotransduction.
Conditional knock-out of FAK in fibroblasts revealed
that FAK is necessary for the stimulation of che-
mokine signaling and collagen production in re-
sponse to mechanical stimulation in vivo.79 This
further suggests that the fibroblast is critical for
mechanosensing and transduction in the wound
environment. Paradoxically, deletion of FAK sig-
naling in keratinocytes had a different phenotype
with atrophic dermis, indicating the complexity of
epithelial-to-mesenchymal signaling that occurs
during wound healing.80 However, it is important to
note that the significant differences between prop-
erties of mouse skin and those of human skin may
limit our ability to translate these findings clinical-
ly.81 Large animal studies have been conducted in
the pig, which possesses skin similar to that of hu-
mans. Mechanical stress has been shown to regulate
collagen fibril thickness, fibrosis, microvascular
blood flow, inflammatory response via neuropeptide
release, and numbers of myofibroblasts.2,36,82–86

Given evidence that mechanical forces influence
wound healing, targeting these forces has the po-
tential to reduce scar formation.

Mechanomodulation and emerging
mechanotherapies

A variety of techniques utilize mechanical off-
loading to limit fibrosis and minimize scarring. As

described earlier, increased mechanical tension
plays a major role in the development of scar tissue
through a variety of biochemical signals. Prior
studies have demonstrated that direct modification
of these biochemical signals results in reduced
adult skin scarring.87–92 For example, neutraliza-
tion of TGF-b1/2 and/or addition of TGF-b3,88

downregulation of connexin 43 (Cx43) protein lev-
els,89 and exogenous application of angiotensin
peptides87 have all been shown to reduce scar for-
mation in adult skin. However, these studies are
validated primarily in animal models. Here, we dis-
cuss three different mechanical offloading techniques
used in humans: silicone gel sheets, paper tape, and
embrace advanced scar therapy.

Silicone gel sheets. The silicone gel sheet is a
common therapy for scar management, despite
limited insight to its mechanism and evidence
supporting its clinical efficacy. Silicone gel sheets
reduce tensile stresses in the wound environ-
ment,93 but some studies propose that silicone gel
sheets minimize scarring via hydration of the
stratum corneum, ultimately mediating cytokine
signaling pathways that have downstream effects
on fibroblasts and keratinocytes.94–96 Other stud-
ies demonstrated that silicone gel sheet treatment
decreases TGF-b197 and TGF-b2 expression in fi-
broblasts.98 TGF-b1 is the predominant TGF-b
isoform in the skin and is a known profibrotic cy-
tokine.10,99,100 By decreasing TGF-b1 (and TGF-b2)
expression, silicone gel sheet treatment may confer
a more scarless fetal repair phenotype than scar-
ring adult repair phenotype.23,24 In a 30-patient
study with various scar types (superficial, hy-
pertrophic, and keloid), silicone gel was applied to
scars within 10 days after wound closure for *6
months. This resulted in improvements in scar
appearance, and considerably fewer scars were
characterized as hypertrophic or keloid at the 6-
month follow-up.101 In a 20-patient study focus-
ing on the evolution of evolving hypertrophic and
keloid scars, wearing a silicone gel sheet dressing
for at least 12 h a day for 8–12 weeks led to a re-
duction in scar size in 85% of patients.102 Though
similar studies showed statistically significant
differences between silicone gel sheet treated and
untreated groups, a recent Cochrane review of 20
trials evaluating the efficacy of silicone gel sheet
treatment to reduce the incidence of hypertro-
phic/keloid scarring, reduce scar thickness, and
ameliorate scar color revealed that current stud-
ies on the topic are of poor quality and are sus-
ceptible to bias.103 Ultimately, better evidence
supporting use of silicone gel sheets to reduce scar
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formation will be required before their routine use
can be recommended.

Paper tape. Paper tape has been reported to
reduce scarring through its ability to reduce wound
tension.104,105 In a randomized, controlled trial
testing the efficacy of paper tape in preventing
hypertrophic scarring, intradermal scar volumes
were assessed in 39 patients with cesarean section
surgical incisions that traversed Langer’s skin
tension lines. Paper tape significantly reduced scar
volume, and the odds of developing a hypertrophic
scar was 13.6 times greater in patients receiving no
postoperative intervention than those treated with
paper tape.104 In a blinded study with 195 patients,
taping elliptical torso wounds for 12 weeks im-
proved scar appearance at 6 months. The authors
postulate that applying paper tape perpendicular
to the wound edges reduced mechanical tension,
thereby minimizing scar formation.105 Similarly,
photographic analysis revealed reduced hypertro-
phic scarring after treatment with microporous
paper tape in a rabbit ear model.106 Recently, at-
tempts have been made to improve the action of
tapes, yielding products such as Dynaclose (med-
iGroup Australia Pty Ltd., Melbourne, Victoria,
Australia), a hybrid of silicone elastomer and paper
tape, and Steri-Strip S (3M, St. Paul, MN).107,108

Embrace Advanced Scar Therapy. Embrace
Advanced Scar Therapy is a silicone sheet-based
polymer dressing device that was developed to
harness the potential for mechanomodulation to

improve wound-healing outcomes.2,109 This device
was first tested on a hypertrophic-like scar model
in the red Duroc pig, which is known as a robust
model for studying human-like hypertrophic scar-
ring.2,109,110 The Embrace device was designed to
apply compressive forces to incision sites, thereby
off-loading tension and shielding the incisions from
stress, as illustrated in Fig. 3.

In both large animal studies and early human
clinical trials, the incisions off-loaded by the device
exhibited significantly improved scar appearance
based on blinded ratings using a validated visual
analogue scale. In addition, histological analy-
sis revealed a recapitulation of unwounded epi-
thelial architecture when compared with wounds
subjected to physiological levels of mechanical
stress.2,109

In the pivotal (Phase III) randomized clinical
trial, Embrace reduced scarring in abdominoplasty
incisions.111 Of the 67 subjects enrolled, 36 com-
pleted the 12-month study and were included in the
final analysis (two patients were exited before
treatment due to body mass index out of range or
missing the treatment window; 13 withdrew early
due to irritation or rash, one due to a wound-site
infection, and four for miscellaneous reasons; 11
subjects completed treatment but did not complete
the required 12-month follow-up). Four to 8 days
after abdominoplasty surgery, one half of the sub-
ject’s wound was treated (randomized) with the
Embrace device and the other half was treated
(randomized) with the operating physician’s opti-
mal treatment method. Removal and reapplication

Figure 3. Mechanical tension around cutaneous wound impacts scar formation. Human skin is always under tension. When injured, that tension causes the
wound to splay open. This results in a typical scar. Greater tension induces increased scar formation in the form of a hypertrophic scar. Conversely, tension-
shielding decreases scar formation. This phenomenon is the basis for the development of the Embrace Advanced Scar Therapy, a tension-shielding silicone
sheet-based polymer dressing device. To see this illustration in color, the reader is referred to the web version of this article at www.liebertpub.com/wound
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of the Embrace device was repeated
weekly for up to 13 visits, and photo-
graphic evaluation was performed at 6
and 12 months postoperation. The Em-
brace device significantly improved scar
appearance ( p = 0.027) according to vi-
sual analogue scale scores.111 Using the
Patient and Observer Scar Assessment
Scale, both subjects and investigators
concluded that Embrace treated scars
displayed a significantly improved ap-
pearance ( p = 0.02 and p < 0.001, respec-
tively).111 As each patient served as their
own control, the rate at which subjects
exited the study likely had little effect on the final
outcome. However, these results could be skewed if
the 11 subjects who did not complete the required
12-month follow-up did so because they did not
believe that the Embrace device improved scar
appearance. This study represents the first level I
evidence in scar reduction after surgery to the au-
thors’ knowledge.

The clinical trial that followed was a prospec-
tive, randomized study assessing the therapeutic
ability of the Embrace device to improve aesthetic
outcomes after scar revision. Twelve patients un-
derwent scar revision, and the Embrace device
was applied to one side of the closed incision 1 to
4 days postoperatively. The standard treatment
(Steri-Strips alone, Steri-Strips plus Mederma
cream, or no treatment) side of the closed incision
served as the control. Ten patients completed the
study, and four independent surgeons evaluated
their 6-month postrevision scar images. The Em-
brace device significantly improved scar appear-
ance ( p < 0.005), and 100% of patients were either
‘‘satisfied’’ or ‘‘very satisfied’’ with the minimized
scarring.112

SUMMARY

In the past decade, there have been major ad-
vancements in our understanding of scarless
wound healing and the role of mechanotransduc-
tion in scar formation. In conjunction with the
mounting clinical and financial burdens of scar-
ring, these developments inspire innovative ther-
apies to address wound healing. Basic science
research gives insight to the role of mechanical
forces in wound healing, whereas clinical trials
support reducing tension in the wound environ-
ment to minimize scar formation. Future studies
should more precisely define the specific molecular
mechanisms by which different therapies that re-
duce tension in the wound environment minimize

scar formation. However, there are limitations to
the use of tension-shielding therapies for scar re-
duction. The etiology of keloid formation is com-
plex, and some parts of the body (e.g., the ear) are
susceptible to keloid formation with minor injuries
to the skin and in the absence of increased tension
at the site of injury. In addition, the therapies de-
scribed are not applicable in cases where severe
scarring covers large parts of the body, as is often
observed with burn patients. Though compression
garment therapy is often used in these cases, there
are limited objective data that support the use of
compression garment therapy to reduce scar-
ring.113,114 Thus, we propose that studies address
how mechanical loading (pressure) therapies, in
addition to tension offloading therapies, can be
used to reduce scar formation. We also propose the
further study of skin regeneration in the adult Af-
rican spiny mouse and the development of novel
therapies that modulate stretch-activated ion
channels, growth factor receptors, G-protein cou-
pled receptors, ITGs, and their downstream targets
to minimize scar formation. There is hope that
continued advancements will produce more effec-
tive mechanotherapies for patients who are af-
fected by scarring.
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TAKE-HOME MESSAGES

� Cutaneous wound healing occurs in three phases (inflammation, new
tissue formation, and remodeling), all of which are affected by me-
chanical forces.

� There are differences in the mechanical forces and cellular processes
involved in adult wound healing and scarless fetal wound healing.

� Fibroblasts are particularly sensitive to mechanical forces in the wound
environment.

� Minimizing mechanical forces in the wound environment improves
wound healing and reduces scar formation. This is the basis of emerging
mechanotherapies.
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Akt ¼ protein kinase B
ECM ¼ extracellular matrix
FAK ¼ focal adhesion kinase

hMSC ¼ human mesenchymal stem cell
ITG ¼ integrin

MSC ¼ mesenchymal stem cell
TGFb ¼ transforming growth factor b
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