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Abstract

BACKGROUND—With almost 47 million individuals worldwide suffering from some aspect of 

dementia, it is clear that cognitive loss impacts a significant proportion of the global population. 

Unfortunately, definitive treatments to resolve or prevent the onset of cognitive loss are limited. In 

most cases such care is currently non-existent prompting the need for novel treatment strategies.

METHODS—Mammalian forkhead transcription factors of the O class (FoxO) are one such 

avenue of investigation that offer an exciting potential to bring new treatments forward for 

disorders that involve cognitive loss. Here we examine the background, structure, expression, and 

function of FoxO transcription factors and their role in cognitive loss, programmed cell death in 

the nervous system with apoptosis and autophagy, and areas to target FoxOs for dementia and 

specific disorders such as Alzheimer’s disease.

RESULTS—FoxO proteins work in concert with a number of other cell survival pathways that 

involve growth factors, such as erythropoietin and neurotrophins, silent mating type information 

regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1), Wnt1 inducible signaling pathway 

protein 1 (WISP1), Wnt signaling, and cancer-related pathways. FoxO transcription factors 

oversee pro-inflammatory pathways, affect nervous system amyloid (Aβ) production and toxicity, 

lead to mitochondrial dysfunction, foster neuronal apoptotic cell death, and accelerate the 

progression of degenerative disease. However, under some scenarios such as those involving 

autophagy, FoxOs also can offer protection in the nervous system and reduce toxic intracellular 

protein accumulations and potentially limit Aβ toxicity.

CONCLUSIONS—Given the ability of FoxOs to not only promote apoptotic cell death in the 

nervous system, but also through the induction of autophagy offer protection against degenerative 

disease that can lead to dementia, a fine balance in the activity of FoxOs may be required to target 

cognitive loss in individuals. Future work should yield exciting new prospects for FoxO proteins 

as new targets to treat the onset and progression of cognitive loss and dementia.
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cerevisiae) (SIRT1); sirtuin; wingless; Wnt1 inducible signaling pathway protein 1 (WISP1); Wnt 
signaling

The Impact of Cognitive Loss in the Global Population

Nervous system disorders affect a significant proportion of the world’s population and result 

in disability and death for multiple individuals. In particular, cognitive disorders such as 

Alzheimer’s disease (AD) can impact greater than 5 million individuals in the United States. 

Familial cases of AD account for less than 2% of all presentations of AD (1, 2). Throughout 

the world, almost 47 million people suffer from some form of dementia with approximately 

60% of these cases resulting from AD (2–5). Unfortunately, the availability of definitive 

treatments to resolve or prevent the onset of cognitive loss are limited and to the most extent 

are non-existent (6, 7). For example, alternative treatments provide only some relief to limit 

the progression of symptoms (8–13). As a result, it is vital to explore novel strategies that 

can potentially target, treat, and possibly limit the onset and progression of cognitive loss in 

patients suffering from such disorders.

FoxO and the Family of Forkhead Transcription Factors

Mammalian forkhead transcription factors may be one such avenue that can offer effective 

therapeutic strategies for dementia and cognitive loss (14–17). Greater than one hundred 

forkhead genes and 19 human subgroups that range from FOXA to FOXS are known to exist 

since the original discovery of the Drosophila melanogaster gene forkhead (18). If one 

focuses upon the mammalian FOXO proteins of the O class, these forkhead box class 

transcription factors have the members FOXO1, FOXO3, FOXO4, and FOXO6 (19). 

Previous terminology for forkhead proteins included forkhead in rhabdomyosarcoma 

(FKHR) (FOXO1), FKHRL1 (forkhead in rhabdomyosarcoma like protein 1) (FOXO3a), the 

Drosophila gene fork head (fkh), Forkhead RElated ACtivator (FREAC)-1 and -2, and the 

acute leukemia fusion gene located in chromosome X (AFX) (FOXO4) (20, 21). With the 

current nomenclature, an Arabic number is provided with the designation of “Fox”, then a 

subclass or subgroup letter is provided, and finally the member number is listed within the 

subclasses of the Fox proteins (22). All letters are capitalized for human Fox proteins. For 

the mouse, only the initial letter is listed as uppercase and for all other chordates the initial 

and subclass letters are in uppercase (23–25).

FoxO proteins are transcription factors and bind to deoxyribonucleic acid (DNA) through 

the FoxO-recognized element in the C-terminal basic region of the forkhead DNA binding 

domain (26, 27). Following forkhead binding to DNA, target gene expression is repressed or 

activated through fourteen protein-DNA contacts with the primary recognition site located at 

α-helix H3 (28). Phosphorylation or acetylation that can block FoxO activity may alter the 

binding of the C-terminal basic region to DNA to prevent transcriptional activity (29). In 

addition, multiple mechanisms may contribute to forkhead DNA binding that involve 

variations in the N-terminal region of the recognition helix, changes in electrostatic 

distribution, and nuclear translocation of FoxO proteins (30–33).
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FoxO Transcription Factors in the Nervous System

FoxO proteins are expressed in all tissues of the body, but serve to have multiple roles in the 

nervous system (27, 34). Interestingly, individual FoxO proteins can have selective 

expression in the nervous system (27, 34). For example, FoxO6 is present in several regions 

of the brain, such as the hippocampus, the amygdala, and the nucleus accumbens (35, 36) 

and may control memory consolidation and emotion (37). FoxO6 also is involved in other 

regions of the body and may control hepatic gluconeogenesis and cellular metabolism (38). 

FoxO3 may be involved in a number of pathways that involve in auditory synaptic 

transmission (39), cerebral endothelial vascular cell survival (40, 41), oxidative stress injury 

in mouse cerebellar granule neurons (42), erythroid cell growth (43), hippocampal neuronal 

injury (44, 45), and neonatal hypoxic-ischemic encephalopathy (46). In relation to FoxO1, 

this transcription factor may impact astrocyte survival (47), embryonic endothelial stem cell 

survival (48), ischemic brain injury (49), vascular disease (50), and memory pathways in the 

striatum and sub-regions of the hippocampus (35).

FoxO Transcription Factors and Cell Death

FoxO transcription factors may impact cognitive loss through the modulation of pathways 

that involve programmed cell death pathways of autophagy and apoptosis (51, 52). In 

regards to autophagy, FoxO proteins may be protective. Some studies suggest that FoxO 

activity, such as FoxO1, can function to increase basal autophagy and reduce atherogenesis 

(53, 54). Ectopic expression of FoxO1 enhances autophagy and toxic mHtt protein clearance 

in neuronal cell cultures (55). In addition, a loss of FoxO activity with autophagy inhibition 

during aging may contribute to neuronal dysfunction and the induction of β-amyloid (Aβ) 

production (56).

In regards to apoptosis, loss of FoxO activity usually improves cell survival. Loss of FoxO 

transcription factors can protect against microglial cell demise during oxidative stress (57) 

and Aβ exposure (58), promotes the protective effects of metabotropic glutamate receptors 

(59), increases neuronal cell survival through nicotinamide adenine dinucleotide (NAD+) 

precursors (60), enhances survival with growth factors (61), such as erythropoietin (EPO) 

(30, 40, 43, 62) and neurotrophins (63–65), and can lessen metabolic and vascular disease 

(66). Work has suggested that some antipsychotics, such as clozapine, may function through 

FoxO inhibition to protect against apoptotic neuronal cell loss (67).

In some scenarios, pathways involving silent mating type information regulation 2 homolog 

1 (Saccharomyces cerevisiae) (SIRT1) and Wnt signaling may affect FoxO modulation of 

apoptotic cell death. In cortical bone formation, loss of SIRT1 activity can lead to depletion 

of Wnt activity with a corresponding increase in FoxO activity and the loss of bone 

formation (68). SIRT1 can result in enhanced neuronal survival through modulation of FoxO 

activity (69–73). SIRT1-mediated deacetylation of FoxO1 also results in starvation-induced 

increases in autophagic flux that can maintain vascular and cardiac left ventricular function 

during periods of starvation (74). Under some conditions, sirtuins and FoxO transcription 

factors may function synergistically to increase neuronal cell survival (4, 71). FoxO proteins 

in conjunction with SIRT1 pathways may offer protection against Aβ toxicity (75) and 
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forkhead transcription factors, such as FoxO3a, may be dependent upon SIRT1 to reduce 

oxidative stress and cell injury during exposure to Aβ (76). In models of Drosophila, loss of 

FoxO and SIRT1 activity with a reduction in autophagy activity can lead to neuronal 

accumulation of Aβ (56).

In addition, Wnt signaling pathways (77) with Wnt1 in microglial cells of the central 

nervous system can block apoptosis through the post-translational phosphorylation and 

sequestration of FoxO3a in the cytoplasm to prevent caspase activation (78). Wnt1 inducible 

signaling pathway protein 1 (WISP1), a target of Wnt signaling (79, 80), prevents apoptotic 

neuronal death through the post-translational phosphorylation of FoxO3a, sequestration of 

FoxO3a in the cytoplasm with protein 14-3-3, and limiting the deacytelation of FoxO3a (44). 

Neuroprotective trophic factors and cytokines, such as EPO (22, 30, 40), rely upon Wnt 

signaling to offer cellular protection through the inhibition of FoxO proteins.

FoxO Transcription Factors and Cognitive Loss

FoxO transcription factors can affect multiple pathways in the body and influence a number 

of disease entities (34, 81). As an example, FoxO proteins are considered as therapeutic 

targets for cancer (23, 82–84), diabetes mellitus (30, 85, 86), and pathways involving 

oxidative stress (82, 87, 88). Interestingly, FoxO transcription factors also play a significant 

role in inflammation. The FoxO pathway can affect renal inflammation (89), vascular 

inflammatory pathways (21), and cardiac injury (21).

Some of these very same pathways involving FoxOs including cancer-related signaling 

pathways (90, 91) also impact the nervous system and cognition. Calcineurin and FoxO3 can 

interact in astrocytes during Aβ exposure that results in pro-inflammatory cytokines and 

injury to neurons (92). FoxO transcription factors could be considered a target to block Aβ 
production and possibly suppress the onset and progression of AD. Nuclear translocation of 

FoxO3 is tied to apoptotic neuronal DNA damage (15, 45, 93). Histone deacetylase 2 

(HDAC2) can form a physical complex with FoxO3a that can lead to oxidative stress-

induced cerebellar granule neuron apoptosis (42). In some circumstances, Aβ can result in 

the dephosphorylation and mitochondrial translocation of FoxO3a that leads to 

mitochondrial dysfunction (17). Blockade of FoxO activity can protect against oxidative 

stress and Aβ toxicity (58, 94). Increased FoxO activity can function in concert with tribbles 

pseudokinase 3 to result in apoptotic and autophagic Aβ induced neuronal cell death (95).

Yet, as previously noted, some studies suggest that Aβ toxicity may be attenuated through 

SIRT1 and FoxO3a antioxidant dependent pathways (76) as well as those involving 

autophagy. In models of full-length mutant Huntingtin (mHtt) transgenic mice, ectopic 

expression of FoxO1 enhances autophagy and toxic mHtt protein clearance in neuronal cell 

cultures (55). SIRT1 and FoxO proteins can function synergistically to promote cell survival. 

As an example, in differentiated chrondrocytes exposed to oxidative stress, forkhead 

transcription factors FoxO1 and FoxO3 in combination with SIRT1 activity are protective 

with the production of autophagic related proteins (87). In other systems such as the 

maternal decidua, FoxO proteins may function independently during oxidative stress with 
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FOXO1 preventing oxidative stress damage and FOXO3a promoting oxidative cell death 

(96).

Considerations for the Future

Cognitive disorders affect a significant proportion of the world’s population. Yet, the 

availability of treatments that can resolve the loss of cognition are severely limited. 

Mammalian forkhead transcriptions of the O class (FoxOs) offer an exciting pathway to 

develop novel treatments for cognitive loss. These transcription factors can target gene 

expression in the nervous system and are found in regions that affect memory, such as the 

hippocampus. FoxOs oversee the programmed cell death pathways of autophagy and 

apoptosis. Under some scenarios such as with autophagy, FoxOs can offer protection in the 

nervous system and reduce toxic intracellular protein accumulations and potentially limit Aβ 
toxicity. FoxOs have been shown to reduce oxidative stress and protect neurons through the 

induction of autophagy. Yet, FoxOs also contribute to apoptotic cellular death and therefore 

by limiting the activity of FoxOs, neuronal protection can ensue when apoptotic cellular 

death is prominent. Recent work suggests that some antipsychotics, such as clozapine, may 

function through FoxO inhibition to protect against apoptotic neuronal cell loss. Importantly, 

FoxOs function with a number of other cell survival pathways that involve growth factors, 

such as EPO and neurotrophins, SIRT1, WISP1, Wnt signaling, and cancer-related 

pathways. Ultimately, FoxOs can lead to the activation of pro-inflammatory pathways, alter 

Aβ production, result in mitochondrial dysfunction, foster neuronal injury, and accelerate 

the progression of degenerative Aβ toxicity. Yet, as suggested above, a fine balance that 

oversees the activity of FoxOs may be required to offset cognitive loss since under some 

circumstances FoxOs can be protective. Future studies of FoxO transcription factors can 

provide exciting areas of investigation and discovery to uncover some of the hidden 

opportunities for new drug development to treat cognitive loss.
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