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Abstract

Background—Despite dramatic air quality improvement in the United States over the past 

decades, recent years have brought renewed scrutiny and uncertainty surrounding the effectiveness 

of specific regulatory programs for continuing to improve air quality and public health outcomes.

Methods—We employ causal inference methods and a spatial hierarchical regression model to 

characterize the extent to which a designation of “nonattainment” with the 1997 National Ambient 

Air Quality Standard for ambient fine particulate matter (PM2.5) in 2005 causally affected ambient 

PM2.5 and health outcomes among over 10 million Medicare beneficiaries in the Eastern US in 

2009–2012.

Results—We found that, on average across all retained study locations, reductions in ambient 

PM2.5 and Medicare health outcomes could not be conclusively attributed to the nonattainment 

designations against the backdrop of other regional strategies that impacted the entire Eastern 

United States. A more targeted principal stratification analysis indicates substantial health impacts 

of the nonattainment designations among the subset of areas where the designations are estimated 

to have actually reduced ambient PM2.5 beyond levels achieved by regional measures, with 

noteworthy reductions in all-cause mortality, chronic obstructive pulmonary disorder, heart failure, 

ischemic heart disease, and respiratory tract infections.

Discussion—These findings provide targeted evidence of the effectiveness of local control 

measures following nonattainment designations for the 1997 PM2.5 air quality standard.

INTRODUCTION

While drastic improvements in air quality during the decades following promulgation of the 

1970 Clean Air Act (CAA) provided clear indications of the benefits of air quality 

management [18, 20], recent years’ low levels of ambient pollution have generated renewed 

uncertainty and controversy surrounding the extent to which control policies continue to 

improve air quality and health.
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Existing regulatory health impact assessments such as those carried out by the US 

Environmental Protection Agency (EPA) typically rely on prospectively modeled air quality 

predictions under broadly-defined hypothetical scenarios (e.g., assuming full compliance 

with the 1990 CAA amendments) [6, 21]. To complement these assessments, agencies such 

as EPA, the National Research Council, and the Health Effects Institute have called for 

adopting a more performance-oriented approaches that track benefits of specific policies [6, 

7, 9, 12, 22, 23]. Direct evaluation of specific strategies using observed data in a manner that 

is reproducible and less reliant on prospectively-modeled hypothetical air quality scenarios 

is necessary to strengthen the evidence available to support current policies [2, 6, 25].

The goal of this paper is to use exclusively observed and publicly-available data to 

characterize the evidence that nonattainment designations for the 1997 National Ambient 

Air Quality Standard (NAAQS) for particulate matter of 2.5 μg/m3 in diameter or less 

(PM2.5) caused reductions in ambient PM2.5 and improvements in adverse health outcomes 

among Medicare beneficiaries living in the Eastern US. Our analysis is rooted in a potential-

outcomes perspective on causal inference designed to parse the consequences of the 

nonattainment designations from changes in air quality and health attributable to other 

concurrent regulatory actions. This parsing is essential due to the coincident timing of a 

variety of regional programs that are known to have contributed to improved air quality (see 

Figure 1). We estimate the effects of localized pollution control measures on ambient PM2.5 

and Medicare health outcomes that occurred above and beyond changes due to regional 

strategies. We provide open-source programs to acquire, link, process, and analyze all data 

sources. Thus, ours is the first reproducible and open source analysis of the causal effects of 

NAAQS designations on both ambient air quality and health outcomes.

These efforts towards transparency and reproducibility, in addition to our statistical approach 

grounded in formal methods for causal inference, are imperative amid the current regulatory 

climate that subjects existing epidemiological evidence to increased scrutiny amid the 

prospect of ever-increasing costs of air quality management [3, 18, 25].

METHODS

Nonattainment Designations and Effects of Interest

The NAAQS for PM2.5 were revised in 1997 to introduce annual (15 μg/m3) and 24-hour (65 

μg/m3) standards for the ambient concentration of PM2.5. After delays due to legal 

challenges and the need to establish a national monitoring network, counties were officially 

designated in Spring of 2005 as “nonattainment” of the standard or otherwise “attainment” 

(meeting or expected to meet the standard) or “unclassifiable” (insufficient data to classify). 

Such designations were typically based on monitoring data from 2000–2002, States 

containing counties designated as nonattainment are required to develop or revise State 

Implementation Plans (SIPs) outlining how a nonattainment area will attain the standards 

with strategies to reduce ambient concentrations of PM2.5. New control strategies for areas 

designated as attainment or unclassifiable were not required in SIP revisions. Note that 

designations occur at the county level, so individual monitoring locations in nonattainment 

areas may exhibit ambient PM2.5 that does not exceed the NAAQS.
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The overall goal is to estimate causal effects of the 2005 nonattainment designations on 

ambient pollution and Medicare health outcomes in 2010–2012, where causal effects of the 

designations are defined as the differences between pollution and health outcomes that were 

observed in the nonattainment areas and those that would have been observed in these same 

areas had the nonattainment designations never occurred [16]. Importantly, the timing of 

these designations aligned with various regional or national control strategies (e.g., the Acid 

Rain Program and Clean Air Interstate Rule) that were expected to reduce ambient PM2.5 

across the entire Eastern US in both attainment and nonattainment areas. Some 

nonattainment areas expressly relied on the expected benefits of these regional programs to 

attain the PM2.5 NAAQS. Thus, the present analysis is designed to isolate the incremental 

benefit of the nonattainment designations above and beyond impacts on pollution and/or 

health that are attributable to national or regional strategies.

The study design considers years prior to 2005 as the “baseline period,” with a “follow-up” 

period of 2010–2012 during which the following outcomes are measured: 1) the average 

annual ambient concentration of PM2.5 during 2010–2012; 2) rates of all-cause Medicare 

mortality (# of deaths per beneficiary) in 2012; and 3) rates of hospitalization (# of 

hospitalizations per person-year) in 2012 among Medicare beneficiaries for the following 

conditions: chronic obstructive pulmonary disease (COPD, ICD9-CM 490.xx to 492.xx), 

cardiovascular stroke (CV stroke, ICD9-CM codes 430.xx-438.xx), heart failure (ICD9-CM 

codes 428.xx), heart rhythm disorders (ICD9-CM codes 426.xx-427.xx), ischemic heart 

disease (IHD, ICD9-CM codes 410.xx–414.xx or 429.xx), peripheral vascular disease 

(ICD9-CM codes 440.xx-448.xx), and respiratory tract infection (ICD9-CM 464.xx to 

466.xx and 480.xx to 487.xx). Two hospitalization summaries are constructed and used as 

covariates in the analysis: one for all respiratory hospitalizations (the sum of COPD and 

respiratory tract infection admissions) and another for all cardiovascular hospitalizations 

(All CVD, ICD9-CM codes 390.xx-459.xx, which includes some diagnoses not analyzed 

individually). Figure 1 describes the timeline of the study period.

Publicly Available and Linked Data Sources

The publicly-available data sources used for the analysis consist of: ambient PM2.5 

monitoring data from the EPA Air Quality System, nonattainment designations from the 

EPA Green Book, population demographics from the US Census Bureau (year 2000), 

county-level smoking rates from previously-used small-area estimation techniques in 

conjunction with the Center for Diseases Control and Prevention Behavioral Risk Factor 

Surveillance System [4], climate data from the Automated Surface Observing System, and 

Medicare health outcomes from the Center for Medicare and Medicaid Services. Medicare 

mortality data come from the enrollment file, and Medicare Part A claims data were used to 

identify hospitalizations using principal discharge diagnosis codes. This study was reviewed 

by the Harvard School of Public Health Institutional Review Board, and details including 

web links to these data sources appear in eAppendix A.

The above data sets are available at various spatial and temporal resolutions. eAppendix A 

details how these data were processed and linked to yield the data set used for the present 

analysis, and also outlines our publicly-available tools to obtain, link, and assemble this data 
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set. The result is a data set where the units of analysis are 829 pollution monitoring 

locations, each having measures of ambient PM2.5 during the baseline and follow up periods, 

baseline measures of general population demographics among zip codes with centroids 

located within 6 miles of the monitoring station, baseline period climate measurements from 

climate monitors located within 150km of the monitoring site, baseline period smoking rates 

from the surrounding county, and baseline and follow up period mortality and 

hospitalization rates from Medicare beneficiaries residing in zip codes with centroids located 

within 6 miles of the monitoring location. The locations of these monitoring sites appear in 

Figure 2, 292 of which fall in nonattainment areas and the remaining 537 in areas that were 

considered in attainment or unclassifiable and will be referred to collectively here as 

“attainment areas.” Table 1 describes the characteristics of monitoring locations in 

attainment and nonattainment areas. In sum, the data set contains health-outcomes 

information on 7,423,025 fee-for-service Medicare enrollees (on whom hospitalization and 

mortality information is available) and an additional 3,050,558 managed care beneficiaries 

(on whom only mortality outcomes are available). Note that no areas were added or removed 

from the set of nonattainment locations until the middle of the follow up period (2011), 

when some locations switched from nonattainment to attainment with the PM2.5 NAAQS, 

and designations according to the revised 2006 PM2.5 standard did not take effect until 2009.

Statistical Methods

The analysis approach is to compare pollution and health outcomes in nonattainment areas 

against those in attainment areas, properly adjusted for confounding factors that differ 

between areas. This approach consists of two steps undertaken in sequence.

“Designing” the study with propensity scores

First, propensity scores are used to adjust for confounding by grouping attainment and 

nonattainment locations together on the basis of similarity with regard to baseline 

characteristics. This is meant to ensure that locations in nonattainment areas are compared 

only against attainment locations that are similar with regard to the baseline factors in Table 

1 [8, 15, 17, 19]. This is accomplished by 1) estimating propensity scores with predicted 

values from a logistic regression model of the probability that a monitoring location is in a 

nonattainment area, conditional on the baseline factors noted in Table 1; 2) identifying and 

omitting locations with features that are not comparable to any area in the comparison group 

(propensity score pruning); and then 3) grouping the remaining locations into four 

subgroups such that, within each subgroup, attainment and nonattainment areas are similar 

with regard to all baseline factors in Table 1. Under the crucial assumption that the baseline 

factors in Table 1 comprise all factors that differ between locations in attainment/

nonattainment areas and relate to pollution and health outcomes (i.e., that there are no 

unmeasured confounders), this propensity score strategy can be regarded as approximating 

the design of an experiment where nonattainment designations are “randomized” to 

locations within propensity score groups. Details of the propensity score procedure appear in 

eAppendix B.
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Analysis of causal effects

Following this “design” stage that constructs groups of attainment and nonattainment areas 

that are comparable with respect to an extensive set of baseline characteristics, causal effects 

are estimated with the Bayesian approach of [26]. All effects described below are calculated 

among retained (after pruning) areas actually designated as nonattainment to represent 

quantities akin to the “Average Treatment Effect on the Treated” [8]. Specifically, a spatial 

hierarchical regression model for pollution is used to predict the (log-transformed) potential 

ambient PM2.5 concentration in 2010–2012 that would have occurred in nonattainment areas 

if the designations had never occurred. The model specifies linear adjustment terms for 

propensity score group indicators and several specific covariates (as detailed in Section), 

each including an interaction with the indicator of attainment status. The model includes a 

spatial random effect that acknowledges the similarity of ambient air quality at nearby 

locations.

For the analysis of each mortality and hospitalization outcome, this same spatial hierarchical 

pollution model is estimated jointly with a log-linear model for each outcome with the same 

confounding adjustment for propensity score group and additional covariates. Full details of 

the model specifications appear in eAppendix C and in [26].

In addition to estimating overall average effects, a secondary objective is to learn the extent 

to which health impacts of the nonattainment designations differ depending on the extent to 

which the designations actually improved air quality. This is particularly important in 

attempt to isolate health effects of the nonattainment designations from those due to 

concurrent regional strategies. For example, knowledge of differential health effects of 

nonattainment designations in 1) areas where the designations reduced ambient PM2.5 above 

and beyond reductions due to regional strategies and 2) areas where the designations did not 

cause additional reductions, would inform whether any health impacts could be specifically 

attributed to the nonattainment designations. The former group may correspond to locations 

where designations induced localized control measures, while areas in the latter group may 

have simply relied on existing regional strategies and not taken any localized action in 

response to the designation. Towards this goal, we follow the principal stratification 

approach in [26] to estimate 1) causal effects of the nonattainment designations on health 

outcomes among areas where the nonattainment designations are estimated to reduce 

ambient PM2.5 by at least 1.0 μg/m3, called “associative effects,” and 2) causal effects of the 

nonattainment designations on health outcomes among areas where the nonattainment 

designations are estimated to not affect ambient PM2.5 by more than +/− 1.0 μg/m3, called 

“dissociative effects.” In both cases reductions (or lack thereof) represent impacts above and 

beyond regional strategies. Associative and dissociative effects are estimated with the same 

models described above. Every attainment and nonattainment location is stratified according 

to whether the causal effect of the nonattainment designation on ambient PM2.5 is estimated 

as a reduction of at least 1.0 μg/m3 (for associative effects) or a change smaller than +/− 1.0 

μg/m3 (for dissociative effects), and causal health effects are estimated in each stratum. As 

with the overall effects on PM2.5 and health outcomes, associative and dissociative effect 

estimates are confined to locations that were actually designated as nonattainment. The 

strategy for accommodating missing pollution data is described in eAppendix C.3.
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RESULTS

The “design” stage that estimates propensity scores and omits (i.e., “prunes”) observations 

with no comparable location in the opposite attainment group results in a final analysis data 

set consisting of 404 monitoring locations, each grouped into one of four propensity score 

subclasses. The population surrounding these retained monitoring locations in 2012 consists 

of 3,892,984 Medicare fee-for-service beneficiaries and 1,620,778 Medicare managed-care 

beneficiaries. Figure 2(b) shows the locations of the retained monitors, 183 of which lie in 

nonattainment areas. Thus, subsequent causal inferences of the effects of the nonattainment 

designations are confined to the effects on these 183 locations. eTable ?? of the eAppendix 

provides a descriptive comparison between locations that were pruned and those retained, 

but note here that locations with the most extreme (high or low) ambient PM2.5 in 2002–

2004 were among those pruned.

Figure 3 illustrates the success of the propensity score “design” for constructing groups of 

attainment and nonattainment areas that are comparable with respect to the factors in Table 

1. The threat of confounding due to each covariate is quantified with the average 

standardized mean difference between nonattainment and attainment locations. The red line 

denoting large differences between attainment and nonattainment locations in the full 

sample of 829 locations indicates a strong threat of confounding before applying any 

propensity score adjustment. In contrast, the blue line displays average differences within 

propensity score subclass, which are close to zero for all covariates indicating adequate 

balance and a reduced threat of confounding. While overall balance is achieved on average 

across the four subgroups, balance is not perfect for all covariates, and those exhibiting 

imbalance even after the propensity score subgrouping (denoted in Table 1), as well as 

baseline PM2.5 in 2002–2004 are included in the statistical models as covariates for 

adjustment within propensity score group [19].

Overall Average Causal Effect Estimates

The estimated average causal effect of the nonattainment designations on average ambient 

PM2.5 in 2010–2012 among the 183 nonattainment areas in the pruned sample is −0.339 

μg/m3, with 95% posterior interval (−1.542, 0.688), providing limited evidence that, on 

average across all 183 locations, the nonattainment designations causally improved this 

measure of air quality above and beyond improvements due to regional strategies impacting 

both attainment and nonattainment areas.

Figure 4 summarizes posterior distributions of the average causal effects of the 

nonattainment designations on the Medicare mortality rate (deaths per 1000 beneficiaries), 

and hospitalization rates (hospitalizations per 1000 person-years) among nonattainment 

areas. For all-cause mortality, the posterior mean estimates indicate that, on average across 

nonattainment areas, the nonattainment designations reduced the mortality rate by 1.251, 

with 95% posterior interval (−2.631 0.108). Point estimates for the overall average effects of 

the designations on hospitalization outcomes ranged from an average reduction of 0.651 for 

CV stroke, to an increase of 0.440 for respiratory tract infections, although 95% posterior 

intervals for all hospitalization outcomes included 0 and were unable to rule out the 

possibility of no average effect.
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Average Associative and Dissociative Effects

Estimates of average associative and dissociative effects are depicted alongside overall 

average health effects in Figure 4. Across all health outcomes, dissociative effects are 

estimated to be very similar to overall health effects, with posterior intervals overlapping 0. 

This implies that, among areas where the nonattainment designations did not substantially 

impact PM2.5 over what was accomplished by regional strategies, there is no evidence that 

the nonattainment designations improved health outcomes. The average number of 

nonattainment locations estimated to have exhibited no substantial impact on PM2.5 (i.e., < 

1.0μg/m3) varied from 50.7 to 61.4, depending on the outcome.

In contrast, average associative effects are estimated to be different from overall average and 

average dissociative effects for many outcomes. In particular, the average associative effects 

for all-cause mortality, COPD, Heart Failure, IHD, and respiratory tract infections rates are 

estimated to be −3.161 (−5.188, −1.210), −2.658 (−4.305, −1.167), −2.375 (−4.349, −0.436), 

−2.597 (−4.242, −1.137), and −2.611 (−4.440, −0.840), respectively. This provides evidence 

that the nonattainment designations causally reduced rates of these health outcomes among 

areas where the designations causally reduced ambient PM2.5. All other associative effects 

are estimated with 95% posterior intervals including zero, with point estimates suggesting 

increases in rates of CV stroke and heard rhythm disorders. The average number of 

nonattainment locations estimated to have exhibited causal reductions in ambient PM2.5 (of 

at least 1.0 μg/m3) varied from 59.7 75.3, depending on the outcome.

A sensitivity analysis analogous to that above but without the propensity score pruning (i.e., 

using all 829 locations) exhibits poorer covariate balance and more pronounced overall 

estimates of pollution and health improvements, including significant reductions in all-cause 

mortality and heart failure. Results for associative and dissociative effects are similar to 

those presented here. Details appear in eAppendix D.

DISCUSSION

The multifaceted system of air quality management in the US has generated enormous 

benefits at substantial cost, with regulations targeting PM2.5 alone constituting over half of 

the benefits and nearly half of the costs of all monetized federal regulations [13]. Periodic 

evaluation of the effectiveness of specific components of this system is central to its 

refinement. Towards this goal, we have provided a focused, empirical, and reproducible 

evaluation of enforcing NAAQS for PM2.5 with nonattainment designations.

We employed a causal inference perspective designed to directly answer whether ambient 

PM2.5 and Medicare health outcomes among nonattainment locations were improved in 

2010–2012, relative to what would have occurred if EPA had never prompted areas to take 

local control actions with the designations. Our approach uses observed pollution and health 

outcomes, making use of modern tools for causal inference and confounding adjustment to 

learn about the counterfactual scenario where nonattainment designations were never 

instituted. We used principal stratification to determine whether causal health effects of the 

designations differed among areas where the designations did and did not actually improve 

air quality above and beyond improvements due to regional strategies.
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Importantly, the analysis does not estimate the entire benefit of setting and enforcing the 

1997 NAAQS for PM2.5. Several national or regional control programs were designed in part 

to help achieve the NAAQS but actually affected attainment and nonattainment areas alike. 

In particular, programs to reduce important PM2.5 precursors such as the Acid Rain Program 

and the Clean Air Interstate Rule, as well as regulations on diesel emissions, were widely 

recognized as important for achievement of the NAAQS. The impact of these programs 

across both attainment and nonattainment areas is evident from Table 1; average ambient 

PM2.5 went down from 11.59 during the baseline period to 9.39 during the follow up period 

among attainment areas, and the analogous decrease in nonattainment areas was from 14.48 

to 11.13. Note that random regression to the mean for areas with particularly high (or low) 

PM2.5 is possible, but not expected to play a large role with a measure as temporally stable 

as multi-year annual averages of PM2.5.

The present analysis regarding monitoring locations in nonattainment areas as “treated” by 

the designation is designed to estimate the extent to which any localized pollution control 

measures implemented in nonattainment areas improved pollution and health outcomes 

above and beyond those conferred by regional programs. Importantly, not all nonattainment 

areas were subject to controls on local sources, in particular when EPA recognized that the 

expected benefits of regional controls would bring an area into attainment without further 

local action. What’s more, monitoring locations that are in nonattainment areas but don’t 

themselves indicate elevated PM2.5 are likely not the target of localized actions [1]. Thus, 

the diversity of local action (or inaction) in response to the nonattainment designations 

renders the analysis akin to an “intent-to-treat” analysis in a clinical study that estimates the 

effect of assignment to an intervention, as opposed to actual receipt of that intervention. This 

diversity of local action, in combination with the recognized importance of regional 

programs across the entire Eastern US, likely explains the result that overall average effects 

on ambient PM2.5 and on health outcomes were not significantly different from zero. This 

result is consistent with previous analyses of nonattaiment designations that similarly 

average over locations that may or may not have been subject to actual pollution control 

measures [5].

The diversity of actions that may or may not follow a nonattainment designation also 

underscores the importance of the principal stratification analysis that compares health effect 

estimates among locations where ambient PM2.5 was actually reduced by the nonattainment 

designation (associative effects) against those where pollution was not measurably affected 

(dissociative effects); a distinction that presumably corresponds to whether local PM2.5 

control measures were actually implemented in the area. This analysis indicated that the 

designations did not causally impact health outcomes among locations where the 

designations did not meaningfully affect ambient PM2.5 in 2010–2012, that is, average 

dissociative effects were all estimated near zero. In contrast, average associative effects were 

estimated to suggest causal reductions in rates of all-cause Medicare mortality and 

hospitalization for COPD, heart failure, IHD, and respiratory tract infections among 

locations where the designations decreased ambient PM2.5 by at least 1.0 μg/m3. Taken 

together, these results imply that effects on these health outcomes occurred in conjunction 

with improvements to ambient PM2.5 attributable to the designations themselves (i.e., not 

due to regional programs). These results are consistent with the simple conclusion that 
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PM2.5 reductions cause health improvements and, by extension, with the presumed causal 

pathway whereby reducing ambient concentrations of PM2.5 in turn causes health 

improvements. However, the principal stratification analysis cannot definitively support the 

conclusion that health improvements are due to reductions in average ambient PM2.5 in 

2010–2012, as would be investigated in a formal “mediation analysis” [11, 14]. Principal 

stratification in this context cannot rule out, for example, the possibility that the concurrence 

between nonattainment-induced reductions in PM2.5 and the nonattainment-induced 

improvements in health outcomes is actually due to some other causal pathway (e.g., a 

different measure of PM2.5 over a different time frame) or some other factor common to the 

areas where both PM2.5 and health were improved (e.g., economic changes associated with 

causal improvements in both pollution and health) [10, 24].

The prospect of confounding presents a key challenge to the analysis of such 

epidemiological data, particularly so in this instance because nonattainment areas were 

designated precisely because they exhibited poor air quality. Poor air quality may be 

associated with a multitude of factors that differentiate attainment and nonattainment areas 

and may also relate to health outcomes. The propensity score strategy was able to group 

together attainment and nonattainment locations that were similar on the basis of baseline 

pollution levels, characteristics of the population residing near the monitoring locations, 

weather factors, and smoking patterns, thus minimizing the chance of confounding with 

regard to these factors. Importantly, the primary analysis discarded monitor locations in 

nonattainment areas that were not similar to any attainment area on the basis of observed 

confounders (and vice versa), restricting conclusions to only the retained subset of 183 

monitoring locations located in nonattainment areas. Sensitivity analyses indicated that 

results without this pruning indicated even more pronounced overall effects of the 

nonattainment designations, but these should be interpreted in light of the extrapolation 

across areas that may not be comparable. While the analysis strategy adopted here is 

specifically designed to mitigate bias due to measured confounders, the prospect of 

unmeasured confounding remains a threat to the validity of results. If there exist unmeasured 

factors related to pollution and/or health outcomes that, even after adjustment for all 

observed factors in Table 1, still differ between attainment and nonattainment areas, then the 

results are subject to unmeasured confounding.

Nonattainment designations are one key mechanism for air quality management in the US, 

and represent a key step to the implementation of the NAAQS. Evaluating the effectiveness 

of these designations required construction of a complex data resource that links together 

information on regulatory actions, ambient air quality, population characteristics, and health 

information on the entire US Medicare population in the Eastern US. A key feature of this 

research is the provision of open-source tools to obtain, link, and analyze these publicly-

available data sets (see eAppendix A for details) to promote transparency and reproducibility 

of results, as well as to foster similar investigations of other regulatory interventions. Despite 

the limitations of the present analysis, it provides evidence of the effectiveness of one 

integral feature of air quality management in the US, and represents a distinct perspective 

that should be interpreted in conjunction with - not instead of - the large body of 

epidemiological research motivating the setting and implementation of NAAQS.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Study timeline depicting 1997 National Ambient Air Quality Standards revisions, 

nonattainment designations (in 2005), and other concurrent regulatory programs.
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Figure 2. 
Locations of all (a) the 829 PM2.5 monitoring locations available for the initial analysis set 

and (b) the 404 locations retained after propensity score pruning.
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Figure 3. 
Plots of average standardized mean difference in each measured covariate between 

attainment and nonattainment locations. Red line denotes differences before propensity 

score pruning and subclassification, blue line denotes differences within propensity score 

subclass. Values closer to zero represent covariate balance between attainment and 

nonattainment areas. CV(D) is cardiovascular (disease). COPD is chronic obstructive 

pulmonary disease.
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Figure 4. 
Posterior mean point estimates and 95% posterior probability intervals for overall, 

associative, and dissociative effects in the analysis of PM2.5 nonattainment designations. 

Effects are measured as risk differences. Overall average effects are calculated across all 183 

nonattainment locations. Dissociative effects are averaged across locations where PM2.5 is 

estimated to have changed less than 1 μg/m3. Associative effects are averaged across 

locations where PM2.5 is estimated to have been reduced by at least 1 μg/m3.
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