Skip to main content
. 2018 Jan 31;8:1976. doi: 10.1038/s41598-018-20462-6

Table 6.

The table reports the accuracies obtained from five different machine learning classifiers in the 10-fold cross-validation and in test set, using only normalized measures as predictors. In addition to accuracies, the table reports the weight average of True Positive Rate (TP Rate), False Positive Rate (FP Rate), Precision value, Recall value, F-Measure, Receiver Operating Characteristics (ROC) Area value and Precision-Recall Curve (PRC) Area value.

Classifier Accuracy TP Rate FP Rate Precision Recall F-Measure ROC Area PRC Area
10-fold cross-validation
Logistic 90% 0.900 0.100 0.900 0.900 0.900 0.946 0.912
SVM (SMO) 92.5% 0.925 0.075 0.935 0.925 0.925 0.925 0.897
LMT 90% 0.900 0.100 0.917 0.900 0.899 0.985 0.986
Random Forest 95% 0.950 0.050 0.950 0.950 0.950 0.966 0.961
Test
Logistic 100% 1.000 0.000 1.000 1.000 1.000 1.000 1.000
SVM (SMO) 90% 0.900 0.100 0.917 0.900 0.899 0.900 0.867
LMT 90% 0.900 0.100 0.917 0.900 0.899 1.000 1.000
Random Forest 100% 1.000 0.000 1.000 1.000 1.000 1.000 1.000