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The effect of PU.1 knockdown on 
gene expression and function of 
mast cells
Yoshihito Oda1, Kazumi Kasakura1, Izumi Fujigaki1, Azusa Kageyama1, Ko Okumura2,  
Hideoki Ogawa2, Takuya Yashiro1 & Chiharu Nishiyama   1,2

PU.1 is a hematopoietic cell-specific transcription factor. In the current study, we investigated the 
role of PU.1 in the gene expression and the function of mouse mast cells (MCs) in vitro and in vivo. 
When PU.1 siRNA was introduced into bone marrow-derived MCs (BMMCs), IgE-mediated activation 
was reduced, and the Syk and FcεRIβ mRNA levels were significantly decreased. As the regulatory 
mechanism of the Syk gene is largely unknown, we performed promoter analysis and found that 
PU.1 transactivated the Syk promoter through direct binding to a cis-element in the 5′-untranslated 
region. The involvement of PU.1 in the Syk promoter was also observed in mouse dendritic cells and 
human MCs, suggesting that the relationship between PU.1 and Syk is common in mammals and in 
hematopoietic lineages. When antigen was administrated intravenously after the transfusion of siRNA-
transfected BMMCs in the mouse footpad, the footpad thickening was significantly suppressed by 
PU.1 knockdown. Finally, administration of the immunomodulator pomalidomide suppressed passive 
systemic anaphylaxis of mice. Taken together, these results indicate that PU.1 knockdown might be an 
efficacious strategy for the prevention of MC-mediated allergic diseases.

Mast cells (MCs) play an important role in IgE-mediated allergic responses1. MCs express FcεRI, the high-affinity 
receptor for IgE, whose cross-linking by IgE and multivalent antigens causes stimulation of cells, including 
rapid degranulation, immediate eicosanoid generation, and transcription of cytokine genes. In addition to the 
cross-linking by antigens and IgE, binding of monomeric IgE to FcεRI, even in the absence of antigen, accelerates 
several biological activities of MCs2–5. FcεRI is composed of three subunits-α, β, and γ-and is expressed on the 
cell surface as an αβγ2 tetramer or αγ2 trimer6. The expression of α and β is mainly restricted to FcεRI-expressing 
cells, whereas γ is detected in other hematopoietic lineages because of its role as a common component of FcγRs.

To clarify the mechanism of cell type-specific expression of FcεRI, we conducted a study of the transcriptional 
regulation of FCER1A (encoding FcεRIα) and MS4A2 (encoding FcεRIβ) and identified several transcriptional 
regulators7–16. Transcription factors PU.1, GATA1, and GATA2, and the cofactor FOG-1 are all candidates for 
determining cell type specificity. Briefly, cooperation between PU.1 and GATAs in FcεRI-positive cells7,15 and 
the suppressive effect of FOG-1 on GATA1 in FcεRI-negative cells16 determine the cell type-specific expression 
of human FCER1A and mouse Ms4a2 genes, respectively. Based on these findings, we analyzed the effect of 
knockdown of PU.1, GATA1, or GATA2 on the expression and function of FcεRI in human MCs and found that 
introduction of PU.1 siRNA most significantly suppressed the expression and function of FcεRI due to the sub-
stantial reduction of FCERIA transcription15. These results prompted us to evaluate the effect of PU.1 siRNA on 
MC-dependent allergic reactions in vivo.

In the present study, we focused on the involvement of PU.1 in the gene expression and function of mouse 
MCs and evaluated the effect of PU.1 knockdown on MC-mediated allergic responses in vitro and in vivo.

Results
Effects of PU.1 knockdown on the gene expression and function of mouse MCs.  Previously, 
we found that PU.1 transactivates the FCER1A gene encoding FcεRIα7 and that PU.1 knockdown suppresses 
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FcεRI expression and IgE-mediated degranulation of human MCs15. In contrast, it was unclear whether PU.1 
knockdown affected the transcription of FcεRI components and the subsequent cell surface expression level and 
function of FcεRI in mouse MCs. Thus, we evaluated the effect of PU.1 siRNA on the cell surface expression level 
of FcεRI and the mRNA levels of the FcεRI α−, β−, and γ-chains. First, we evaluated the effect of three siRNAs 
(#1, #2, and #3) encoding different nucleotide sequences of PU.1. As shown in Fig. 1(a), we confirmed that the 
three siRNAs significantly knocked down PU.1 mRNA, and siRNA #1 was the most effective. Therefore, we used 
#1 in the following experiments. Flow cytometric analysis revealed that PU.1 knockdown significantly suppressed 
cell surface expression of FcεRI on BMMCs when the PU.1 mRNA level decreased under 10% compared with 
that of the control (Fig. 1(b)). Although the suppressive effect of PU.1 siRNA on the cell surface FcεRI level 
was commonly observed in humans15 and mice (Fig. 1(b)), surprisingly, PU.1 knockdown decreased the FcεRI 
β-chain mRNA level, whereas the mRNA levels of the FcεRI α- and γ-chains increased in PU.1 knockdown cells 
(Fig. 1(c)). Considering that PU.1 knockdown in human MCs decreased the mRNA level of the human α-chain, 
but did not affect the mRNA levels of human β- and γ-chains15, the role of PU.1 in the transcription of FcεRI 
subunits appears to be different between humans and mice. To evaluate the effect of PU.1 knockdown on the 
expression of signal transduction molecules and on IgE-mediated activation in MCs, we determined the mRNA 
levels of signal transduction molecules, the degree of IgE-mediated degranulation, and IgE-mediated TNF-α 
release in BMMCs. Using DNA microarray analysis, we found that Syk mRNA showed the greatest decrease in 
PU.1 knockdown cells (data not shown). Further detailed analysis using quantitative RT-PCR confirmed that the 
Syk mRNA level was substantially reduced in PU.1 knockdown cells (Fig. 1(d)). We also found that transcripts of 
the phosphatases SHIP-1 and SHIP-2 were markedly increased by PU.1 siRNA knockdown, whereas the mRNA 
levels of Lyn, PLCγ1, PLCγ2, Fyn, and Stat5 were not affected by PU.1 knockdown (Fig. 1(d)). Using Western 
blotting analyses, we confirmed that the protein levels of PU.1, Syk, and FcεRIβ were significantly decreased 
by PU.1 knockdown (Fig. 1(e)). The staining of permeabilized cells showed that FcεRIα protein levels in PU.1 
knockdown cells were lower than those in control cells (Fig. 1(f)), suggesting that the mRNA increase in FcεRIα 
by PU.1 knockdown was not reflected in the total amount of FcεRIα protein (Fig. 1(c)). The reduction of FcεRIβ 
protein level may result in suppression of cell surface expression of FcεRIα (Fig. 1(b)) by affecting the formation 
and/or stability of the FcεRI complex. After down-regulation of Syk expression and cell surface FcεRI and up-reg-
ulation of SHIP-1 and SHIP-2, PU.1 knockdown suppressed IgE-mediated degranulation (Fig. 1(g)) and TNF-α 
production (Fig. 1(h)).

PU.1 directly bound to and transactivated the Syk promoter.  The abovementioned results suggest 
that PU.1 regulates the Syk expression in MCs. Although Syk plays a key role in signal transduction just down-
stream of the cell surface receptor, the regulatory mechanism of cell type-specific expression of Syk is largely 
unknown. Thus, we analyzed the role of PU.1 in Syk expression as follows. First, we excluded the possibility of an 
off-target effect by the three siRNAs. As shown in Fig. 2(a), the level of Syk mRNA in transfectants was decreased 
in parallel with the degree of PU.1 mRNA reduction (see Fig. 1(a)). This result demonstrates that suppression of 
the Syk transcription was due to PU.1 knockdown and not an off-target effect.

PU.1 transactivates target genes in two ways: one is as a monomeric transcription factor, and the other is as 
a heterodimeric complex with the transcription factor IRF4 or IRF8. To investigate the role of IRF4 and IRF8 in 
Syk expression, we analyzed the effect of knockdown of IRF4 or IRF8 on Syk expression. Introduction of siRNAs 
for IRF4 and IRF8 significantly decreased the mRNA levels of IRF4 and IRF8, respectively. In this experimental 
condition, Syk mRNA and protein levels were maintained (Fig. 2(b) and (c)), indicating that IRF4 and IRF8 are 
not involved in Syk expression and that PU.1 activates the Syk promoter as a monomeric transcription factor. 
Then, we performed a chromatin immunoprecipitation (ChIP) assay to investigate whether PU.1 directly binds 
to the Syk promoter in MCs. As shown in Fig. 3(a), a significant amount of the chromosomal DNA containing 
the Syk minimum promoter was immunoprecipitated with anti-PU.1 Ab compared with the control Ab, whereas 
PU.1 binding was not detected further upstream. Next, luciferase assays using Syk promoter regions of various 
lengths were performed. As shown in Fig. 3b, the deletion between −125 and −93 markedly reduced luciferase 
activity in the MC line PT18. A nucleotide replacement at an Ets-motif (−100/−97) significantly decreased the 
luciferase activity of PT18 transfectants (Fig. 3(b)). Further luciferase assays with co-expression plasmids showed 
that exogenous expression of PU.1 transactivated the luciferase activity driven by the wild-type promoter but 
not that from the mutant promoter lacking the Ets-motif (Fig. 3(c)), suggesting that PU.1 transactivated the 
Syk promoter through the identified Ets-motif. Furthermore, we performed electrophoretic mobility shift assays 
(EMSAs) to confirm whether PU.1 directly binds to the Ets-motif at −100/−97 (Fig. 3(d)). A band shift appeared 
when the PU.1 protein was added to the reaction mixture containing probe DNA (lane 2). This band disappeared 
in the presence of excess amounts of a non-labeled wild-type competitor (lane 3, and 4), whereas the specific band 
remained when a mutant competitor lacking the Ets-motif was used instead of the wild-type competitor (lane 5, 
and 6), indicating that PU.1 bound to the Syk promoter via the Ets-motif. As the addition of anti-PU.1 Ab resulted 
in the disappearance of the specific band shift and the appearance of a new band showing lower mobility (lane 8), 
we confirmed that PU.1 was contained in this complex.

From these results, we concluded that PU.1 transactivates the Syk promoter by directly binding to the 
Ets-motif at −100/−97, which was identified as a critical cis-element.

Involvement of PU.1 in the expression of Syk is commonly observed in dendritic cells (DCs) 
and human cells.  Syk is expressed in other immune-related cells including B cells and monocytes, which 
play important roles in signal transduction from cell surface immunoreceptors, such as the B-cell receptor and 
C-type lectin family members. The apparent amount of PU.1 is detected in monocyte lineages and B cells. From 
these observations, we hypothesized that the Syk gene is transactivated by PU.1 not only in MCs but also in other 
lineages. To confirm this hypothesis, we determined the mRNA levels of PU.1 and Syk in PU.1 siRNA-treated 
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Figure 1.  Effect of PU.1 siRNA on mouse MCs. (a) mRNA level of PU.1. *1, p = 0.00064; *2, p = 0.00061; 
*3, p = 0.0011. n = 3–4. (b) Cell surface expression level of FcεRI. MFI; Mean fluorescence intensity. 
*, p = 0.000016. n = 5. (c) mRNA levels of the α−, β−, and γ-chains of FcεRI. *1, p = 0.0000056; *2, 
p = 0.0000017; *3, p = 0.00000055. n = 8. (d) mRNA levels of intracellular molecules. *1, p = 0.029; *2, 
p = 0.0025; *3, p = 0.0018. n = 3. (e) Western blotting analyses of whole cell lysates. Full-length blots are 
included in Supplemental Fig. S1. *1, p = 0.024; *2, p = 0.012; *3, p = 0.023. n = 3–4. (f) Intracellular staining 
of FcεRIα. A typical result is shown at left. Quantitative analysis data of MFI obtained in three independent 
experiments are shown at right. *p = 0.0017. (g) IgE-mediated degranulation degree. *p = 0.032. n = 11.  
(h) IgE-mediated TNF-α release. *p = 0.037. n = 3. The data in Fig. 1 represent the mean ± SD of independent 
experiments (“n” times repeated) performed with duplicate samples.
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BMDCs and found that the Syk mRNA levels were significantly reduced in PU.1 knockdown DCs (Fig. 4(a)). 
Furthermore, a ChIP assay showed that a significant amount of PU.1 binds to the above-identified region of the 
Syk promoter in DCs (Fig. 4(b)). Although IRF4 and IRF8 are also expressed in DCs, Syk expression was not 
affected by infection of IRF4 or IRF8 (data not shown), demonstrating that monomeric PU.1 transactivates the 
Syk gene in DCs in the same manner as that in MCs.

When we compared the nucleotide sequences of the mouse and human Syk genes, we found that the homol-
ogy of the promoter sequences is not high and that the cis-enhancing element identified in the mouse gene was 

Figure 2.  Effects of knockdown of PU.1, IRF4, and IRF8 on Syk expression. Relative mRNA levels of siRNA-
target genes and Syk in siRNA transfectants. BMMCs were transfected with siRNA for PU.1 and its control (a), 
for IRF4 and its control (b), and for IRF8 and its control (c). Data are expressed as the ratio of the expression 
level of the respective control siRNA-introduced cells (cont in each graph). Western blotting profiles of 
IRF4 and IRF8 knockdown cells are shown at the bottom of Fig. 2(b) and (c), respectively. Full-length blots 
are included in Supplemental Fig. S2. The data represent the mean ± SD of “n” times repeated independent 
experiments performed with duplicate samples. (a). *1, p = 0.0077; *2, p = 0.017; *3, p = 0.0099. n = 3–4. (b). 
*p = 0.025. n = 3. (c). *p = 0.0082. n = 3.
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not observed in the human gene. Then, to investigate the role of PU.1 in human SYK gene expression, we trans-
fected siRNAs for human PU.1 into the human MC line LAD2. As shown in Fig. 4(c), these siRNAs effectively 
knocked down human PU.1 mRNA levels and subsequently reduced Syk mRNA levels in LAD2 cells. In addition, 
a ChIP assay indicated that PU.1 bound to the proximal region of the human SYK gene in LAD2 (Fig. 4(d)).

Figure 3.  Involvement of PU.1 in the transactivation of the Syk promoter. The Syk promoter structure was 
analyzed by a ChIP assay (a), reporter assays (b) and (c), and EMSA (d). (a) ChIP assays were performed with 
control goat IgG (IgG) or anti-PU.1 Ab (α-PU.1). The amount of chromosomal DNA immunoprecipitated with 
control IgG (open bars) or anti-PU.1 Ab (closed bars) is shown. *p = 0.026; N.S., not significant. n = 3. (b) and (c) 
Relative luciferase activity is displayed as the ratio of luciferase activity versus that observed in cells transfected 
with promoter-less reporter plasmid (b) or mock vector (c). (b) *1, p = 0.0021; *2, p = 0.0013. n = 3. (c) *p = 0.012. 
n = 3. The data represent the mean ± SD of three independent experiments performed with duplicate samples (a), 
(b), and (c). (d) A typical result obtained from EMSA in one of three independent experiments. IgG, control goat 
IgG; PU.1, anti-PU.1 Ab. Competitive oligonucleotide with the wild-type sequence (WT) or the mutant sequence 
lacking Ets-motif (Mut) was added at two (x2)- or five (x5)-fold molar concentration of the probe DNA. Specific 
bands corresponding to the complex of the probe and PU.1 and a super-shift band corresponding to the complex 
of the probe, PU.1, and anti-PU.1 Ab are marked with an asterisk and double asterisks, respectively. A full-length 
gel with the lowest contrast is included in Supplemental Fig. S3.
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From these results, we concluded that PU.1 is involved in Syk expression in MCs and DCs and in mice and 
humans.

Effects of PU.1 knockdown or the immunomodulatory drug pomalidomide on in vivo function 
of MCs.  To evaluate the effect of MC-specific knockdown of PU.1 on the in vivo response, we transfused 
BMMCs, in which PU.1 siRNA or its control was introduced, into the mouse footpad and determined the footpad 
thickness before and after an i.v. injection of antigen. The thickness of the control footpad after antigen injection 
was significantly greater than that before injection, whereas no thickening was observed in the footpad transfused 

Figure 4.  PU.1 is involved in the expression of Syk in mouse DCs and human MCs. (a) mRNA levels of PU.1 
and Syk in siRNA-introduced BMDCs. *1, p = 0.0048; *2, p = 0.034. n = 3. (b) ChIP assay data demonstrating 
the amount of chromosomal DNA immunoprecipitated with anti-PU.1 Ab (α-PU.1) or control goat IgG 
(IgG) in BMDCs. *p = 0.0025; N.S., not significant. n = 3. (c) mRNA levels of PU.1 and Syk in siRNA-
introduced LAD2 cells. *1, p = 0.00050; *2, p = 0.041. n = 3. (d) ChIP assay data demonstrating the amount 
of chromosomal DNA immunoprecipitated with anti-PU.1 Ab (α-PU.1) or control goat IgG (IgG) in LAD2 
cells. *p = 0.041. n = 3. The data represent the mean ± SD of three independent experiments performed with 
duplicate samples.
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with PU.1 knockdown cells (Fig. 5(a)). These results suggested that PU.1 knockdown is effective for suppression 
of MC-mediated responses in vivo.

Several studies have reported that the immunomodulatory drug pomalidomide down-regulates PU.1, which 
is one mechanism by which pomalidomide can be used to treat multiple myeloma17–19. To evaluate the effect of 
pomalidomide on expression and function of PU.1 in MCs, we treated LAD2 cells with pomalidomide. Western 
blotting analysis showed that the protein levels of PU.1 and Syk were decreased in LAD2 cells exposed to poma-
lidomide for 2–3 days (Fig. 5(b)). These results prompted us to investigate whether pomalidomide has a protective 

Figure 5.  PU.1 siRNA and pomalidomide suppressed MC-mediated allergic responses in vivo. (a) The 
thickness of the mouse footpad before (−) and after (+) challenge with PBS containing TNP-BSA (Ag). PU.1 
siRNA (PU.1)- and control siRNA (cont)-transfected BMMCs were pre-injected into the left and right footpads, 
respectively. *1, p = 0.00085; *2, p = 0.024. n = 5. (b) Western blotting analysis of whole cell lysates of LAD2 
cells incubated in the presence (+) or absence (−) of pomalidomide for 1–3 days. A typical result is shown at 
left. Quantitative analysis data of the band density obtained in three independent experiments are shown at 
right. *1, p = 0.024; *2, p = 0.0079. Full-length blots are included in Supplemental Fig. S4. (c) IgE-mediated 
anaphylaxis in pomalidomide-administered mice. Rectal temperature was measured every 15 min. Data 
represent the mean ± SEM of individual mice (control; n = 12, pomalidomide; n = 11). *p = 0.0097.
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effect on the MC-mediated allergic response in vivo. Then, we analyzed the degree of passive systemic anaphy-
laxis, which is a well-established mouse model of the IgE-mediated reaction. As shown in Fig. 5(c), decreased 
body temperature due to the anaphylactic reaction was ameliorated by oral administration of pomalidomide.

These results suggest that down-regulation of PU.1 suppresses the MC-mediated in vivo allergic response.

Discussion
Previously, we found that the transcription factor PU.1 transactivates the FCER1A gene (encoding FcεRIα) and 
that knockdown of PU.1 reduced expression of FcεRI and subsequently suppressed FcεRI-mediated activation of 
human MCs15. However, the role of PU.1 in the expression of signal transduction-related intercellular molecules 
in MCs was largely unknown. It was also unclear whether PU.1 knockdown suppresses FcεRI-mediated activation 
of mouse MCs, as observed in human MCs. To clarify these points, we evaluated the effect of PU.1 knockdown 
on the gene expression and function of mouse MCs in vitro and in vivo. PU.1 knockdown reduced cell surface 
expression of FcεRI and subsequently suppressed IgE-mediated activation of mouse MCs. Among various signal 
transduction-related molecules, Syk was identified as a target gene for PU.1. A series of promoter analyses showed 
that PU.1 directly transactivated the Syk gene. PU.1 knockdown using siRNA and an immunomodulatory drug 
suppressed MC activation in vitro and in vivo.

Syk is a non-receptor tyrosine kinase that plays an important role in signal transduction initiated by cell 
surface immunoreceptors, including BCR, FcεRI, FcγR, and C-type lectins20. In the present study, we showed 
that PU.1 is critical for expression of Syk as a transcactivator that directly targets the Syk gene in MCs and DCs. 
PU.1 expression is observed in hematopoietic cells, especially monocytes, B cells, and neutrophils and is also 
detected in T cells and MCs. The cell-type specificity of Syk-expressing cells, such as B cells, MCs, neutrophils, 
macrophages, DCs, osteoclasts, and immature T cells, is similar to that of PU.1 expression. Although we used 
MCs and DCs to demonstrate the involvement of PU.1 in Syk expression, the role of PU.1 in Syk expression may 
be common in other hematopoietic lineages, such as B cells. Syk inhibitors exhibit therapeutic effects on allergic 
diseases, autoimmune diseases, and B lymphocyte malignancies20. Therefore, PU.1 suppression may be useful for 
preventing these diseases by inhibiting Syk-mediated signaling accompanied by suppressing the expression of 
several cell type-specific genes.

In addition to Syk reduction, PU.1 knockdown suppressed the expression of cell surface FcεRI due to a 
decrease in Ms4a2 mRNA (encoding FcεRIβ), along with a substantial increase in SHIP-1 and SHIP-2. In classical 
promoter analyses, GATA1 and FOG-1 were identified as transcriptional regulators of the mouse Ms4a2 gene9,16, 
whereas Oct-1 and MZF-1 were originally identified as regulators of the human MS4A2 gene10,13. This difference is 
likely because the nucleotide sequences of the promoters are not conserved between humans and mice. Recently, 
we demonstrated that the mRNA level of the human MS4A2 gene was decreased in GATA2 siRNA-introduced 
MCs but was not affected by PU.1 siRNA15. Therefore, the down-regulation of Ms4a2 mRNA by PU.1 knockdown 
is a mouse-specific observation. Further detailed analysis is required to clarify the mechanism underlying PU.1 
involvement in the transcription of the Ms4a2 gene, for instance, as a direct transactivator or an indirect regulator 
through transcription of another factor. PU.1 knockdown has not been found to up-regulates SHIP-1 expression 
in any cells thus far. Interestingly, several transcription factors were identified as suppressive regulators of SHIP 
gene expression; for example, Ikaros binds to the promoter of the SHIP-1 gene in B cells, and a deficiency of Ikaros 
up-regulates SHIP-1 expression21, whereas Fli-1 suppresses SHIP-1 transcription in erythroleukemia22. Although 
the molecular mechanism underlying how these hematopoietic cell-specific transcription factors function as sup-
pressors of the SHIP-1 gene is largely unknown, detailed analysis regarding of the role of PU.1 in SHIP-1 expres-
sion may clarify this issue. Regardless, we concluded that PU.1 knockdown suppressed FcεRI-mediated signaling 
with a decrease in positive regulators (Syk and FcεRI) and an increase in suppressors (SHIPs).

In the present study, we used two models to demonstrate that PU.1 knockdown suppressed in vivo aller-
gic responses. In the first experiment, to evaluate the effect of MC-specific knockdown of PU.1, we transfused 
siRNA-pre-injected MCs into mice. Although MC-deficient mice, such as Wsh/sh, would be a better recipient to 
exclude the involvement of endogenous MCs, we showed a significant effect of PU.1 siRNA on the MC-mediated 
response in vivo, even in this experimental condition. As a preliminary experiment, we examined the degree 
of anaphylactic reaction of Wsh/sh mice injected with PU.1 siRNA-introduced MCs or control cells and found 
that the degree of rapid body temperature decrease was reduced by MC-specific knockdown of PU.1 (data 
not shown). For the second approach, we administered the immunomodulatory drug pomalidomide to mice. 
Although pomalidomide reduced the protein levels of PU.1 and Syk in human MC cells, several issues remain 
to be clarified, such as the possibility that pomalidomide modulates the expression of other molecules involved 
in the activation of MCs. In addition, whether the protein levels of PU.1 and Syk in MCs were reduced by the 
pomalidomide treatment should be examined. Further detailed analysis regarding the effect of pomalidomide on 
allergic responses is required.

We demonstrated that PU.1 knockdown significantly reduced the MC-mediated allergic response in vivo and 
in vitro. The development of nuclear medicine, which can specifically and effectively deliver siRNA or antisense 
oligonucleotide to target cells, is required to further evaluate the efficacy of PU.1 knockdown for the treatment 
of immune-related diseases. We will investigate drug delivery systems for nuclear medicine to specific immune 
cells in future studies.

Materials and Methods
Mice and cells.  BMMCs were generated from bone marrow cells of C57BL/6 mice (Japan SLC, Hamamatsu, 
Japan) by maintenance in RPMI 1640 (Sigma-Aldrich, St. Louis, MO) supplemented with 10% heat-inactivated 
fetal calf serum, 100 U/mL penicillin, 100 μg/mL streptomycin, 100 μM 2-mercaptoethanol, 10 μM minimum 
essential medium nonessential amino acid solution, and 5 ng/mL of murine IL-3 (PeproTech, London, United 
Kingdom) at 37 °C for more than 5 weeks. BMDCs were obtained by 10-day culture of BM cells in the medium 
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containing 20 ng/ml of murine GM-CSF (PeproTech) instead of IL-3 in the above-described medium for BMMCs. 
All animal experiments were performed in accordance with the approved guidelines of the Institutional Review 
Board of Tokyo University of Science, Tokyo, Japan. The Animal Care and Use Committees of Tokyo University 
of Science specifically approved this study. The human mast cell leukemia cell line LAD2 (kindly provided by Dr. 
Arnold Kirshenbaum)23, mouse mast cell line PT18, simian kidney cell line CV-1, and human embryonic kidney 
cell line HEK293T were maintained as previously described15,16.

Introduction of siRNA into cells.  Small interfering RNAs for mouse PU.1 (Spi1-MSS247676), human PU.1 
(Spi1-HSS186060), mouse IRF4 (MSS205501), and mouse IRF8 (MSS236848) and control siRNA (Stealth RNAi 
Negative Universal Control Lo GC, Med GC, and Hi GC (#12935–200, 300, and 400)) were purchased from 
Invitrogen (Carlsbad, CA). BMMCs of 2 × 106 (or 2 × 105) were transfected with 10 (or 1) μl of 20 μmol/L siRNA 
with a Neon 100 μl kit (or a Neon 10 μl kit) using a Neon transfection system (Invitrogen) set at Program #5. 
Introduction of siRNA into LAD2 cells and BMDCs was performed as previously described15,24. Briefly, a Neon 
transfection system was used for LAD2 cells15, and a Mouse Macrophage Nucleofector kit and Nucleofector II 
(Lonza, Basel, Switzerland) were used for BMDCs25,26.

Quantification of mRNA by real-time PCR.  Total RNA prepared from cells with an RNeasy kit 
(QIAGEN, Hilden, Germany) was reverse-transcribed using a Rever Tra Ace qPCR RT kit (TOYOBO, Osaka, 
Japan) to synthesize cDNA. The mRNA levels were quantified using a StepOne Real-Time PCR system (Applied 
Biosystems) with TaqMan Gene Expression Assays (Applied Biosystems) #Mm01270606_m1 for mouse Pu.1, 
#Mm00438867_m1 for mouse Fcer1a, #Mm00442780_m1 for mouse Ms4a2, #Mm00438869_m1 for mouse 
Fcer1g, #Hs02786711_m1 for human PU.1, #4352339E for rodent glyceraldehyde-3-phosphate dehydrogenase 
(Gapdh), and #4326317E for human GAPDH and a THUNDERBIRD probe qPCR Mix (TOYOBO).

For analysis of mouse Syk, Inpp5d, Inppld, Lyn, Plcg1, Plcg2, Fyn, Stat5b, and human SYK, the fol-
lowing primers were used with THUNDERBIRD SYBR qPCR Mix: mouse Syk (forward primer: 
5′-CTACTACAAGGCCCAGACCC-3′, and reverse primer: 5′-TGATGCATTCGGGGGCGTAC-3′), Inpp5d  
(forward primer: 5′-CCACCTATCGATTTGAAAGACTG-3′, and reverse primer: 5′-GAGACGAATT 
GAGATGTGACTCC-3′) mouse Inppld (forward primer: 5′-TGCAGTCAATATGGAACATCAAG-3′, 
and reverse primer : 5 ′-CGAGTAGTCTTCTCATTCCCTGA-3 ′) mouse Lyn  (forward primer : 
5′-GCAGGGCAGTTTGGGGAAGTC-3′, and reverse primer: 5′-ACAGACATGGTGCCGGGCTTG-3′) 
mouse Plcg1 (forward primer: 5′-ACAAGCTGTGGAAGTGCTCTCTTTA-3′, and reverse primer: 
5′-GCCATCATAGAGGCCAGCAT-3′) mouse Plcg2 (forward primer: 5′-CGGCACCCAGTTTGTCCTCA-3′, 
and reverse  pr imer :  5 ′ -AGAGCCACT TCACCGCATCC-3 ′ )  mouse  Fyn  ( for ward pr imer : 
5′-CGTGACCTCCATCCCGAACT-3′, and reverse primer: 5′-AACTCAGGTCATCTTCCGTCCGT-3′) 
mouse Stat5b (forward primer: 5′-CAGGTGGTCCCCGAGTTTGCA-3′, and reverse primer: 5′- 
CAGATCGAAGTCCCCATCGGTA-3′), human SYK (forward primer: 5′-GGCAGGAGAATCGCTTGAAC-3′, 
and reverse primer: 5′-GGAGTGCAGTGGCATGATCTT-3′).

IgE-mediated activation of BMMCs.  The degranulation degree was determined as follows. BMMCs 
(5 × 105) were sensitized with 200 ng of anti-TNP mouse IgE (clone IgE-3, BD Bioscience, San Jose, CA) in 
1 ml of medium for 2 h at 37 °C and resuspended in 1 ml of Tyrode’s buffer containing 3 ng of TNP-BSA (LSL, 
Tokyo, Japan) after washing with Tyrode’s buffer. Beta-hexosaminidase activity in the supernatant at 30 min after 
TNP-BSA-stimulation was determined as previously described15.

Measurement of cytokine concentration.  The concentration of TNF-α in the culture media at 3 h after 
FcεRI cross-linking was determined using an ELISA kit (#MTA00B, R&D Systems, Minneapolis, MN).

ChIP assay.  ChIP assays were performed as previously described using a ChIP Assay Kit (Upstate, 
Lake Placid, NY) according to the manufacturer’s instruction with slight modifications14,27. Anti-PU.1 Ab 
(#D-19, Santa Cruz Biotechnology, Santa Cruz, CA) and goat IgG (#02-6202, Invitrogen) were used for 
immunoprecipitation. The amount of precipitated DNA was determined by quantitative PCR using an 
Applied Biosystems StepOne real-time PCR system. The nucleotide sequences of the primer sets for PCR 
were as follows: mouse Syk promoter −68/+93 (forward primer; 5′-AAGTTCTCCGGAGGAGGAAG-3′, 
and reverse primer; 5′-AGGCGGAGTGGCTCCTAC-3′), −1193/−1124 (forward primer; 5′-TTAAAG 
TGACACGGGAATTAGTTAGC-3′, and reverse primer; 5′-GCCACCAGAGCCTTACACAGA-3′), −1560/ 
−1496 (forward primer; 5′-CCTCTAGCCTCCACATGCATTT-3′, and reverse primer; 5′-GCAA 
TATGCACACGTATGTGGAT-3′), −4470/−4407 (forward primer; 5′-GGCTGGAGACCAAGTGTTCAA-3′, 
a n d  re v e r s e  pr i m e r ;  5 ′ - C C T G AG G C G C C TAT T G TA AT T T- 3 ′ ) ,  a n d  hu m a n  SY K  p ro -
moter −394/−325 (forward primer; 5 ′-CCAGGGAATATGCCATGCA-3 ′ ,  and reverse primer 
5′-CACCCAGCGGCCCTTT-3′), −730/−663 (forward primer; 5′-AGGTCTGGATGCCGTTTTGT-3′, and  
reverse primer ;  5 ′-CAACCCATCCCCCT T T TCC-3 ′) ,  and −1165/−1097 (for ward primer ; 
5′-GAAGGCAAAAGCCAACCTGTAA-3′, and reverse primer; 5′-GTGACATACAGAAATTGGAGGTAAGG-3′).

Luciferase assay.  A series of reporter plasmids carrying mouse Syk promoter regions of various lengths 
just upstream of the luciferase cDNA was generated based on the pGL-4 Basic vector (Promega, Madison, 
WI). A PrimeSTAR Mutagenesis basal kit (TaKaRa Bio, Shiga, Japan) was used to generate mutant reporter 
plasmids. The expression plasmid pCR3-mPU.1 was generated by ligation of mouse PU.1 cDNA amplified 
by PCR using total RNA from BMDCs as a template and the following oligonucleotides designed for the out-
sides of the initiation codon and termination codon, as forward and reverse primers, respectively (5′-ATCCG 
CCTTGATCCCCACCGAA-3′ and 5′-CGGGCGACGGGTTAATGCTATG-3′) into pCR3.1 (Invitrogen).  
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The plasmid pCR3-mPU.1 or mock vector (pCR3.1) was introduced into cells with an internal control plas-
mid, pRL-CMV (Promega). Transfection of BMMCs and PT18 was performed using a Neon system in the 
same way as for siRNA transfection, and calcium phosphate was used for transfection of CV-1 and HEK293T 
cells. Briefly, plasmid DNA in 0.25 M CaCl2 solution was mixed with an equal volume of 2XHBSS, and the 
mixture was added dropwise to the cells after incubation for 20 min at room temperature. Determination of 
luciferase activity was performed as previously described using a 1420 Luminescence Counter ARVO Light 
(Perkin Elmer)25. For determination of β-galactosidase activity, cell lysates were incubated with a substrate, 
o-nitrophenyl-β-D-galactopyranoside (ONPG) (Thermo Scientific, Waltham, MA), for the appropriate time at 
37 °C, and the absorbance of the reaction mixture at 405 nm was measured.

EMSA.  EMSA was performed as previously described28,29. Fluorescence was detected using an image analyzer, 
Typhoon FLA7000 (GE Healthcare).

Western blot analysis.  Western blot analyses were performed as described previously24,28. Antibodies 
against Syk (#LR), FcεRIβ (#N-18), IRF4 (#M-17), and IRF8 (#C-19) were purchased from Santa Cruz 
Biotechnology, and anti-β-actin Ab (#AC-15) was from Sigma-Aldrich. Anti-PU.1 Ab was the same as that used 
in ChIP assays.

Flow cytometry.  The cell surface expression level of mouse FcεRI was determined by a MACS Quant 
(Miltenyi Biotech, Tubingen, Germany) using an anti-mouse FcεRIα Ab (MAR-1, eBioscience). For intracellular 
staining, a Foxp3/Transcription Factor Staining Buffer Kit (TONBO) was used.

IgE-mediated in vivo response.  PU.1 siRNA- or negative control siRNA-transfected BMMCs were sensi-
tized with 0.2 mg/ml IgE. After the cells were washed with PBS, they were injected into the left (PU.1 siRNA) and 
right (control siRNA) footpads of 8–9-week-old female mice. Five hours later, mice were injected intravenously 
with 200 μg of TNP-BSA. Footpad thickness was measured just before and 1 h after injection of TNP-BSA.

Passive systemic anaphylaxis.  Mice were orally administered 10 mg/kg/day of pomalidomide or saline 
for 6 days. On day 6, mice were injected intravenously with 3 μg/ml of TNP-specific IgE in 200 μl of saline and 
then injected with 200 μg of TNP-BSA intravenously at 5 h after IgE injection. The body temperature of each ani-
mal was measured every 15 min for 1 h after antigen injection.

Statistical analysis.  Statistical analysis was performed using a two-tailed Student’s t-test with p values < 0.05 
considered to be significant.
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