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We will argue here that there is net lactate
transfer from astrocytes to neurons and
that this transfer is important for brain
function. Following CrossTalk guidelines,
we will focus on data published over the
last decade.

Experiments in cultured cells

The astrocyte-to-neuron lactate shuttle
(ANLS) hypothesis was proposed based on
glutamate experiments with cultured cells
(Pellerin & Magistretti, 1994). Later on,
comparative NMR spectroscopy confirmed
that cultured astrocytes are more glycolytic
than neurons (Bouzier-Sore et al. 2006),
a metabolic divergence that has later been
explained by constitutive inhibition of
phosphofructokinase in neurons but not
in astrocytes, which diverts the neuronal
glucose flux towards the pentose phosphate
pathway (Herrero-Mendez et al. 2009).
Since then, other neuronal signals have
been found to be capable, like glutamate,
of commanding the production and/or
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release of lactate by astrocytes, specifically
potassium and ammonium (Bittner et al.
2011; Choi et al. 2012; Lerchundi et al. 2015;
Sotelo-Hitschfeld et al. 2015). In all cases,
the findings in culture were confirmed in
slices or in vivo (see below). In contrast,
we could not find any reports of lactate
release by neurons in the presence of physio-
logical lactate, either at rest or during
electrical stimulation. But to what extent
are cells in culture representative of cells in
vivo? According to transcriptomic analysis
of adult brain cells, the metabolic difference
between astrocytes and neurons described
in culture is also found in vivo (Zhang
et al. 2014), a difference that becomes
accentuated if astrocytes and neurons are
cultured together and even more so upon
induction of neuronal activity (Mamczur
et al. 2015; Hasel et al. 2017).

Glucose flux experiments in brain tissue

Because lactate is made from glucose,
the uptake of glucose informs on the
question in hand. Measured in tissue slices,
Bergmann glia and astrocytes were found
to transport and metabolise fluorescent
glucose analogues, NBDGs, faster than
neighbouring neurons (Barros et al. 2009;
Jakoby et al. 2014). In a separate study
in vivo, whisker stimulation caused a
stronger increase in NBDG accumulation
in astrocytes than in neurons of the
somatosensory cortex (Chuquet et al.
2010). These results are in line with the
much higher cytosolic NADH/NAD+ of
hippocampal astrocytes relative to neurons
(Mongeon et al. 2016), indicative of stronger
astrocytic glycolysis, and with the decrease
in neuronal cytosolic NADH/NAD+ after
blocking the neuronal monocarboxylate

transporter MCT2 (Diaz-Garcia et al.
2017). Also in hippocampal slices, astrocytic
glucose consumption could be induced
by neuronal stimulation, a phenomenon
mediated by the sodium/bicarbonate
cotransporter NBCe1 (Ruminot et al. 2017).
Astrocytic uptake of glucose in vivo is
further supported by an increased fluoro-
deoxyglucose (FDG) uptake in response
to pharmacological stimulation of the
astrocytic glutamate transporter GLT-1
(Zimmer et al. 2017). Glial support for
neuronal energy metabolism was demon-
strated in compact white matter (Saab
et al. 2016). Activity-dependent glutamate
release from axons leads to increased oligod-
endroglial glucose uptake and energetic
support of spiking axons in the form of
lactate. As it is widely accepted that most
glucose metabolised by brain tissue ends
up as CO2 in neurons and not in glial
cells, the preferential uptake of glucose by
glial cells implies net carbon transfer from
astrocytes to neurons in the form of lactate.
Furthermore, direct evidence of lactate
consumption by orexinergic neurons in
the hypothalamus was shown very recently
(Clasadonte et al. 2017).

A contrasting conclusion was reached from
two other studies. In one of them, fore-
brains of animals injected with FDG were
used to prepare nerve terminal vesicles.
The radioactivity present in the vesicles
was compared with the concentration
of the neuronal marker N-acetylaspartate
(NAA) and found to be similar to that
of the starting tissue homogenate (Patel
et al. 2014). Taken at face value, this
similarity would mean that glial cells do
not consume any glucose, a rather extreme
proposition. Without information about
isotope and NAA leakage and degradation
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during membrane disruption/resealing and
prolonged density gradient centrifugation,
the meaning of the FDG/NAA ratio does not
seem straightforward to us. In the second
study, the glucose analogue IR2DG800 was
found to preferentially stain neurons over
astrocytes (Lundgaard et al. 2015) when
administered into the cerebrospinal fluid,
thus bypassing the physiological and more
efficient pathway of glucose entry from the
circulation via astrocytic endfeet. Critically,
IR2DG800 may not be a transported sub-
strate because of its size (molecular mass
1300 Da), which is larger than the GLUT
blocker cytochalasin B (molecular mass

480 Da) and much larger than NBDGs
(342 Da). Based on its inhomogeneous sub-
cellular distribution, it was concluded that
IR2DG800 probably enters cells by end-
ocytosis (Kovar et al. 2009). Because of these
technical issues, we are doubtful that these
two articles provide compelling evidence
against ANLS.

Lactate studies in vivo

Given the choice, neurons in vivo prefer
lactate over glucose, as shown by equi-
caloric substitution of glucose- by lactate-
consumption during intravenous infusion

of lactate (Van Hall et al. 2009; Wyss et al.
2011). A similar conclusion was reached
based on the rapid use of tissue lactate
upon withdrawal of anaesthesia, which
was quantified by NMR spectroscopy to
be approx. 5 µM/s (Funfschilling et al.
2012). As the metabolism of lactate to
CO2 is strictly coupled to the use of
oxygen and most oxygen consumption
in brain tissue is neuronal, it follows
that in these three studies lactate was
oxidised by neurons. But what is the
source of lactate for neurons under normal
conditions, when blood lactate and tissue
lactate are low? Neural activation triggers
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Figure 1. Working model of glucose and lactate exchange between astrocytes and neurons
Dashed arrows connect the relevant pathways with the respective published work. For the sake of simplicity,
only the main findings of the papers are considered. Please refer to the main text for details. We apologise to
authors of relevant work that had to be omitted because of the maximum 30 references allowed by CrossTalk
guidelines. GLUT1, GLUT3: glucose transporters GLUT1 and GLUT3; lac channel: lactate channel; MCT2, MCT4:
monocarboxylate transporters MCT2 and MCT4; PPP: pentose phosphate pathway; PYR: pyruvate.
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a surge in brain tissue lactate, which is
detected in humans and rodents by multiple
techniques, including NMR spectroscopy,
microdialysis, enzyme-based microprobes
and genetically encoded sensors. For
example, a memory task caused a rapid
increase in interstitial lactate (Newman
et al. 2011) that, assuming a resting lactate
level of 1 mM, may be estimated to be
about 10 µM/s. This means that some cells
released lactate at a speed commensurate
with the rate of glucose consumption
of the tissue. Our interpretation is that the
lactate was released by astrocytes, which
have preferential access to blood-borne
glucose and also contain glycogen that
may be metabolised to lactate. Moreover,
astrocytes maintain high resting levels of
intracellular lactate, a dynamic reservoir
that can be quickly mobilised upon neuro-
nal demand via a lactate-permeable ion
channel gated by extracellular potassium
(Sotelo-Hitschfeld et al. 2015; Ruminot
et al. 2017). In contrast, neurons, which are
separated from blood glucose by astrocytes
and do not possess glycogen stores, are
poised to import lactate, as they maintain
lower resting lactate levels (Machler
et al. 2016) and lower NADH/NAD+

than astrocytes, thus favouring lactate
to pyruvate conversion (Mongeon et al.
2016). Stimulation of neuronal glycolysis
by electrical activity was inferred from
a rise in neuronal NADH/NAD+ that
was insensitive to MCT2 blockage, which
was interpreted as evidence against ANLS
(Diaz-Garcia et al. 2017). However, the
same study reported a parallel rise in
neuronal lactate that was also unaffected
by MCT2 blockage, which implies lack of
lactate release. Thus, if neurons do not
contribute to the activity-dependent inter-
stitial lactate surge, the surge may only
come from glial cells. Worthy of note is
that neurons remained much more oxidised
than resting astrocytes even at the peak of
their activity-dependent NADH/NAD+ rise
(Mongeon et al. 2016; Diaz-Garcia et al.
2017), which also conspires against reversal
of pre-stimulation ANLS. Furthermore,
astrocytes are likely to become even
more reduced during activity, as judged
by their NADH/NAD+ response to high
extracellular potassium (Sotelo-Hitschfeld
et al. 2015).

Genetic and pharmacological evidence

In between the lactate pools of glial cells
and neurons are the monocarboxylate

transporters (MCTs), which would be
redundant were there no intercellular lactate
transfer. However several studies have
reported perturbation of neuronal function
and viability in response to pharmacological
or genetic disruption of MCTs in
astrocytes, oligodendrocytes or neurons
(Newman et al. 2011; Suzuki et al. 2011;
Funfschilling et al. 2012; Lee et al. 2012;
Mazuel et al. 2017). Significantly, the
deletion of MCTs in glial cells but not
in neurons could be rescued by lactate,
meaning that maintaining function
requires neurons to have access to extra-
cellular lactate. In the same vein, inhi-
bition of glycogen degradation resulted in
memory deficits that were also rescued by
exogenous lactate (Newman et al. 2011;
Suzuki et al. 2011). Even more dramatic
are the effects of genetic inhibition of
mitochondrial respiration in mice, which
is lethal for neurons and innocuous for
astrocytes (Funfschilling et al. 2012; Supplie
et al. 2017), and also the genetic deletion
of glycolytic enzymes in fruit fly, which
is deleterious in glia but innocuous in
neurons (Volkenhoff et al. 2015).

In summary, while some of the jurors
on ANLS may still be out, we are of the
opinion that fresh evidence from numerous
laboratories using diverse techniques and
experimental models, in vitro and in vivo,
supports an important transfer of lactate
from astrocytes and other glial cells to
neurons (Fig. 1). We look forward to
quantitative measurement of these fluxes
and their dependence on brain states in the
near future.

Call for comments

Readers are invited to give their views on this
and the accompanying CrossTalk articles in this
issue by submitting a brief (250 word) comment.
Comments may be submitted up to 6 weeks after
publication of the article, at which point the
discussion will close and the CrossTalk authors
will be invited to submit a ‘LastWord’. Please
email your comment, including a title and a
declaration of interest, to jphysiol@physoc.org.
Comments will be moderated and accepted
comments will be published online only as
‘supporting information’ to the original debate
articles once discussion has closed.
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