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Practical device-independent quantum
cryptography via entropy accumulation
Rotem Arnon-Friedman1, Frédéric Dupuis2,3, Omar Fawzi4, Renato Renner1 & Thomas Vidick5

Device-independent cryptography goes beyond conventional quantum cryptography by

providing security that holds independently of the quality of the underlying physical devices.

Device-independent protocols are based on the quantum phenomena of non-locality and the

violation of Bell inequalities. This high level of security could so far only be established under

conditions which are not achievable experimentally. Here we present a property of entropy,

termed “entropy accumulation”, which asserts that the total amount of entropy of a large

system is the sum of its parts. We use this property to prove the security of cryptographic

protocols, including device-independent quantum key distribution, while achieving essentially

optimal parameters. Recent experimental progress, which enabled loophole-free Bell tests,

suggests that the achieved parameters are technologically accessible. Our work hence pro-

vides the theoretical groundwork for experimental demonstrations of device-independent

cryptography.
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Device-independent (DI) quantum cryptographic protocols
achieve an unprecedented level of security—with guar-
antees that hold (almost) irrespective of the quality, or

trustworthiness, of the physical devices used to implement them1.
The most challenging cryptographic task in which DI security has
been considered is quantum key distribution (QKD); we will use
this task as an example throughout the manuscript. In DIQKD,
the goal of the honest parties, called Alice and Bob, is to create a
shared key, unknown to everybody else but them. To execute the
protocol, they hold a device consisting of two parts: each part
belongs to one of the parties and is kept in their laboratories.
Ideally, the device performs measurements on some entangled
quantum states it contains.

In real life, the manufacturer of the device, called Eve, can have
limited technological abilities (and hence cannot guarantee that
the device’s actions are exact and non-faulty) or even be mal-
icious. The device itself is far too complex for Alice and Bob to
open and assess whether it works as Eve alleges. Alice and Bob
must therefore treat the device as a black box with which they can
only interact according to the protocol. The protocol must allow
them to test the possibly faulty or malicious device and decide
whether using it to create their keys poses any security risk. The
protocol guarantees that by interacting with the device according
to the specified steps, the honest parties will either abort, if they
detect a fault, or produce identical and secret keys (with high
probability).

Adopting the DI approach is not only crucial for the paranoid
cryptographers; even the most skilled experimentalist will
recognise that a fully characterised, stable at all times, large-scale
quantum device that implements a QKD protocol is extremely
hard to build. Indeed, implementations of QKD protocols have
been attacked by exploiting imperfections of the devices2–5.
Instead of trying to come up with a “patch” each time an
imperfection in the device is detected, DI protocols allow us to
break the cycle of attacks and countermeasures.

The most important (in fact necessary) ingredient, which forms
the basis of all DI protocols, is a “test for quantumness” based on
the violation of a Bell inequality6–9. A Bell inequality10,11 can be
thought of as a game played by the honest parties using the device
they share (Fig. 1). Different devices lead to different winning
probabilities when playing the game. The game has a special
“feature”—there exists a quantum device which achieves a win-
ning probability ωq greater than all classical, local, devices. Hence,
if the honest parties observe that their device wins the game with
probability ωq they conclude that it must be non-local11. A recent

sequence of breakthrough experiments have verified the quantum
advantage in such “Bell games” in a loophole-free way12–14 (in
particular, this means that the experiments were executed without
making assumptions that could otherwise be exploited by Eve to
compromise the security of a cryptographic protocol).

DI security relies on the following deep but well-established
facts. High winning probability in a Bell game not only implies
that the measured system is non-local, but more importantly that
the kind of non-local correlations it exhibits cannot be shared: the
higher the winning probability, the less information any eaves-
dropper can have about the devices’ outcomes. The tradeoff
between winning probability and secret randomness, or entropy,
can be made quantitative15,16.

The amount of entropy, or secrecy, generated in a single round
of the protocol can therefore be calculated from the winning
probability in a single game. The major challenge, however,
consists in establishing that entropy accumulates additively
throughout the multiple rounds of the protocol and use it to
bound the total secret randomness produced by the device.

A commonly used assumption17–21 to simplify this task is that
the device held by the honest parties makes the same measure-
ments on identical and independent quantum states in every
round i ∈ {1, …, n} of the protocol. This implies that the device is
initialised in some (unknown) state of the form σ⊗n, i.e., an
independent and identically distributed (i.i.d.) state, and that the
measurements have a similar structure. In that case, the total
entropy created during the protocol can be easily related to the
sum of the entropies generated in each round separately (as
further explained below).

Unfortunately, although quite convenient for the analysis, the i.
i.d. assumption cannot be justified a priori. When considering
device-dependent protocols, such as the BB84 protocol22, de
Finetti theorems23,24 can often be applied to reduce the task of
proving the security in the most general case to that of proving
security with the i.i.d. assumption. This approach was unsuc-
cessful in the DI scenario, where known de Finetti theorems23–26

do not apply. Hence, one cannot simply reduce a general security
statement to the one proven under the i.i.d. assumption.

Without this assumption, however, very little is known about
the structure of the untrusted device and hence also about its
output. As a consequence, previous DIQKD security proofs had
to address directly the most general case27–29. This led to security
statements which are of limited relevance for practical experi-
mental implementations; they are applicable only in an unrealistic
regime of parameters, e.g., small amount of tolerable noise and
large number of signals.

The work presented here resolves this situation. First, we
provide a general information-theoretic tool that quantifies the
amount of entropy accumulated during sequential processes
which do not necessarily behave identically and independently in
each step. We call this result the “Entropy Accumulation Theo-
rem” (EAT). We then show how it can be applied to essentially
reduce the problem of proving DI security in the most general
case to that of the i.i.d. case. This allows us to establish simple and
modular security proofs for DIQKD that yield tight key rates. Our
quantitative results imply that the first proofs of principle
experiments implementing a DIQKD protocol are within reach
with today’s state-of-the-art technology. Aside from its applica-
tion to security proofs, the EAT can be used in other scenarios in
quantum information such as the analysis of quantum random
access codes.

Results
In the following, we start by explaining the main steps in a
security proof of DIQKD under the i.i.d. assumption using well-
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Fig. 1 The Clauser–Horne–Shimony–Holt game34. Alice and Bob input bits,
separately, into their parts of the shared device. Each part of the device
supplies an output. The game is won if a ⊕ b= x ⋅ y. The optimal winning
probability in this game for a classical device is 75%. A quantum device can
get up to approximately 86% by measuring the maximally entangled state
Φþj i= 00j i þ 11j ið Þ= ffiffiffi

2
p

with the following measurements: Alice’s
measurements x= 0 and x= 1 correspond to the Pauli operators σz and σx,
respectively, and Bob’s measurements y= 0 and y = 1 to σz þ σxð Þ= ffiffiffi

2
p

and
σz � σxð Þ= ffiffiffi

2
p

, respectively
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established techniques. We then present the EAT and show how
it can be used to extend the proof and achieve full security (i.e.,
without assuming an i.i.d. behaviour of the device).

Security under the independent and identically distributed
device assumption. The central task when proving the security of
cryptographic protocols consists in bounding the information
that an adversary, called Eve, may obtain about certain values
generated by the protocol, which are supposed to be secret. For
QKD, the appropriate measure of knowledge, or rather uncer-
tainty, is given by the smooth conditional min-entropy30

Hε
min KjEð Þ, where K is the raw data obtained by the honest

parties, E the quantum system held by Eve, and ε a parameter
describing the security of the protocol. The quantity Hε

min KjEð Þ
determines the maximal length of the secret key that can be
created by the protocol. Hence, proving the security amounts to
establishing a lower bound on Hε

min KjEð Þ. Evaluating Hε
min KjEð Þ

can be a daunting task, as the adversary’s system E is out of our
control; in particular, it can have arbitrary dimension and share
quantum correlations with the users’ devices.

Most protocols consist of a basic building block, or “round”,
which is repeated a large number, n, of times; in each round i, the
classical data Ki is generated. The structure of a DIQKD protocol
is shown in Box 1. The i.i.d. assumption means that the raw key
Kn
1 ¼ K1; ¼ ;Kn can be treated as a sequence of i.i.d. random

variables Ki. That is, all the Ki are identical and independent of

one another. The eavesdropper has side information Ei about
each Ki. In this case, the total conditional min-entropy
Hε

min Kn
1

��En
1

� �
can be directly related to the single-round

conditional von Neumann entropy H KijEið Þ using the quantum
asymptotic equipartition property31 (AEP), which asserts that

Hε
min Kn

1 En
1

��� � � nH Ki Eijð Þ � cε
ffiffiffi
n
p

; ð1Þ

where cε depends only on ε (see the Methods section).
To get a bound on Hε

min Kn
1 En

1

��� �
, we therefore need to analyse

the secrecy, H Ki Eijð Þ, resulting from a single round of the
protocol. Depending on the considered scenario, a lower bound
on H Ki Eijð Þ can be found using different techniques. For discrete-
and continuous-variable QKD, for example, one can use the
entropic uncertainty relations32,33. When dealing with DIQKD, a
quantum advantage in a Bell game implies a lower-bound on
H Ki Eijð Þ as discussed above.

The Clauser–Horne–Shimony–Holt (CHSH) game34 (pre-
sented in Fig. 1) forms the basis for most DIQKD protocols.
For this game, a tight bound on the secrecy as a function of the
winning probability in the game was derived19. The bound
implies that for any quantum state that wins the CHSH game
with probability ω, the entropy evaluated on the state of the
system after the game has been played is at least

H Ki Eijð Þ � 1� h
1
2
þ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16ω ω� 1ð Þ þ 3

p� �
; ð2Þ

where h(⋅) is the binary entropy function. This relation is shown
in Fig. 2.

To compute the bound on H Ki Eijð Þ, Alice and Bob need to
collect the statistics they observe while running the protocol and
estimate the winning probability ω appearing in Eq. (2); assuming
the i.i.d. structure this is easily done using Hoeffding’s inequality.

The conclusion of this section is the following. The i.i.d.
assumption plays a crucial role in the above line of proof: it allows
us to reduce the problem of calculating the total secrecy of the
raw key created by the device to that of bounding the secrecy
produced in one round. Instead of dealing with large-scale
quantum systems, we are only required to understand the physics
of small systems associated with just one round (as in Eq. (2)).
The AEP appearing as Eq. (1) does the rest.

Extending to full security. Assuming the device behaves in an
i.i.d. way goes completely against the DI setting by imposing a
severe and even unrealistic restrictions on the implementation of
the device. In particular, the assumption implies that the device
does not include any, classical or quantum, internal memory (i.e.,
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Fig. 2 Secrecy for the Clauser–Horne–Shimony–Holt game vs. winning
probability. The amount of secret randomness is quantified by the
conditional von Neumann entropy H A Ejð Þ. As soon as the winning
probability is above the classical threshold of 75% some secret randomness
is produced. The analytical bound19 is stated as Eq. (2)
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Fig. 3 An independent and identically distributed device vs. a general one. An independent and identically distributed (i.i.d.) device (left) is initialised in
some (unknown) i.i.d. state σ⊗n; each “small device” is described by one copy of the same bipartite state σ and all copies are measured in the same way. A
general device (right) is described by a bipartite quantum state ρ; in contrast to the i.i.d. case, any further division into subsystems is unknown. During the
protocol, the state is measured through a sequential process: Alice and Bob use the device in the first round of the protocol and only then proceed to the
second round, and so on
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its actions in one round cannot depend on the previous rounds)
and cannot display time-dependent behaviour.

Our main contribution can be phrased as follows.
Theorem (Security of DIQKD, informal): Security of DIQKD in

the most general case follows from security under the i.i.d.
assumption. Moreover, the dependence of the key rate on the
number of exchanged signals, n, is the same as the one in the i.i.d.
case, up to terms that scale like 1=

ffiffiffi
n
p

. The key rates are plotted
below.

We now explain the above theorem and how it is derived in
more detail. A general device is described by an (unknown)
tripartite state ρQAQBE, where the bipartite quantum state ρQAQB

is
shared between Alice and Bob and ρE belongs to Eve, together
with the measurements applied to ρQAQB

when the device is used.
No additional structure is assumed (see Fig. 3).

As mentioned above, the standard DIQKD protocol proceeds
in rounds (recall Box 1): Alice and Bob use their components in
the first round of the protocol and only then proceed to the
second round, etc. We leverage this structure to bound the
amount of entropy produced during a complete execution of the
protocol.

To do so, we prove a generalisation of the AEP given in Eq. (1)
to a scenario in which, instead of the raw key Kn

1 ¼ K1; ¼ ;Kn
being produced by an i.i.d. process, its parts Ki are produced one
after the other. In this case, each Ki may depend not only on i-th
round of the protocol but also on everything that happened in
previous rounds (but not on the subsequent ones). We explain
our tool, the EAT, in the following.

The entropy accumulation theorem (EAT). We describe here a
simplified and informal version of the EAT, sufficient to under-
stand how it can be used to prove the security of DI protocols; for
the most general statements see the Methods section.

We consider processes which can be described by a sequence of
n mapsM1; ¼ ;Mn, called “EAT channels”, as shown in Fig. 4.
Each Mi outputs two systems, Oi, which describes the
information that should be kept secret, and Si, describing some
side information leaked by the map, together with a “memory”
system Ri, which is passed on as an input to the next mapMiþ1.
The systems Sn1 describe the side information created during the
process. A further quantum system, denoted by E, represents
additional side information correlated to the initial state in the
beginning of the considered process. The systems On

1 are then the
ones in which entropy is accumulated conditioned on the side
information Sn1 and E.

To bound the entropy of On
1 , we take into account global

statistical properties. These are inferred by tests carried out by the
protocol on a small sample of the generated outputs. To
incorporate such statistical information, we consider for each
round an additional classical value Ci computed from Oi and Si.

Additionally, in each step of the process, the previous outcomes
Oi�1

1 are independent of future information Si given all the past
side information Si�11 E. By choosing Oi and Si properly, this
condition can be satisfied by sequential protocols such as DIQKD.

The EAT relates the total amount of entropy to the entropy
accumulated in one step of the process. The latter is quantified by
the minimal, or worst-case, von Neumann entropy produced by
the mapsMi when acting on an input state that reproduces the
correct statistics on Ci, i.e., states that satisfyMiðσÞCi

¼ freqðcn1Þ
where freqðcn1Þ is the empirical statistics, or frequency distribu-
tion, on C defined by freqðcn1ÞðcÞ ¼ fi2f1;¼ ;ng:ci¼cgj j

n .
To state the explicit result, we define a “min-tradeoff function”,

fmin, from the set of probability distributions over C to the real
numbers; fmin should be chosen as a convex differentiable
function which is bounded above by the worst-case entropy just
described:

fmin freqðcn1Þ
� � � H Oi SiEjð Þ: ð3Þ

An event Ω is defined by a subset of Cn and we write
pΩ ¼

P
cn12ΩðρOn

1S
n
1E;C

n
1¼cn1 Þ for the probability of the event Ω and

ρjΩ ¼
1
pΩ

X
cn12Ω

cn1
�� �

cn1
	 ��� ρOn

1S
n
1E;C

n
1¼cn1 ð4Þ

for the state conditioned on Ω. We further define a set Ω̂ over the
set of frequencies such that for all cn1 , freqðcn1Þ 2 Ω̂ if and only if
cn1 2 Ω.

Theorem (EAT, informal): For any EAT channels, an event Ω
such that Ω̂ is a convex set, and a convex min-tradeoff function
for which fmin freqðcn1Þ

� � � t for any freqðcn1Þ 2 Ω̂,

Hε
min On

1 Sn1E
��� �

>nt � v
ffiffiffi
n
p

; ð5Þ

where the conditional smooth min-entropy is evaluated on ρ|Ω
and v depends on the values ∇fmink k1; ε; pΩ, and the maximal
dimension of the systems Oi.

Equation (5) asserts that, to first order in n, the total
conditional smooth min-entropy is at least n times the value of
the min-tradeoff function, evaluated on the empirical statistics
observed during the protocol (and hence linear in the number of
rounds). In the special case where the EAT channels are
independent and identical, the EAT is reduced to the quantum
AEP; Eq. (5) is thus a generalisation of Eq. (1).

DIQKD security via the EAT. To gain intuition on how the EAT
can be applied to DIQKD, note the following. Define the maps
Mi to describe the joint behaviour of the honest parties and their
respective uncharacterised device while playing a single round of
a Bell game such as the CHSH game. Let Ω be the event of the
protocol not aborting or a closely related event, e.g., the event that

Box 1 | Device-independent quantum key distribution protocol (simplified example)

Given: A device for Alice and Bob that can play the chosen Bell game repeatedly

1. For every round i∈ [n] do Steps 2–4:
2. Alice and Bob choose Xi,Yi at random.
3. They input Xi,Yi to the device and record the outputs Ai, Bi.
4. Alice sets Ki= Ai

5. Parameter estimation: Alice and Bob estimate the average winning probability in the game from the observed data. If it is below the expected
winning probability, ωT, they abort.

6. Classical post processing: Alice and Bob apply an error correction protocol and a privacy amplification protocol (both classical) on their raw keys K
and B.
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the fraction of CHSH games won is above some threshold ωT.
The state for which the smooth min-entropy is evaluated is ρ|Ω,
i.e., the state at the end of the protocol conditioned on not
aborting. This implies, in particular, a bound on Hε

min Kn
1 Ej� �

.
Furthermore, the condition on the min-tradeoff function stated

in Eq. (3) corresponds to the requirement that the distribution of
Ci equals cn1 , which ensures that the entropy in Eq. (3) is evaluated
on states that can be used to win the CHSH game with probability
ωT. Thus, in order to devise an appropriate min-tradeoff
function, we can use the relation appearing in Eq. (2); the exact
details are given in the Methods section. This results in a tight
bound on the amount of entropy created in each step of the
protocol. In this sense, we reduce the problem of proving the
security of the whole protocol to that of a single round.

Using the EAT we get a bound on Hε
min Kn

1 Ej� �
which, to first

order in n, coincides with the one derived under the i.i.d.
assumption and is thus optimal. The final key rate r ¼ ‘=n (where
‘ is the length of a key) produced in a DIQKD protocol depends
on this amount of entropy and the amount of information leaked
during standard classical post-processing steps. We plot the
results for specific choices of parameters in Fig. 5.

To calculate the key rate, one must have some honest
implementation of the protocol in mind; this is given by what
the experimentalists think (or guess) is happening in their
experiment when an adversary is not present. It does not, in any
way, restrict the actions of the adversary or the types of
imperfections in the device. We consider the following honest

implementation, but the analysis can be adapted to any other
implementation of interest.

In the realisation of the device, in each round, Alice and Bob
share the two-qubit Werner state ρQAQB

¼ ð1� νÞ Φþj i Φþh j þ
νI=4 resulting from a depolarisation noise acting on the
maximally entangled state Φþj i. In every round, the measure-
ments for Xi, Yi ∈ {0, 1} are as described in Fig. 1 and for Yi = 2
Bob’s measurement is σz. The winning probability in the CHSH
game (restricted to Xi, Yi ∈ {0, 1}) using these measurements on
ρQAQB

is ωexp ¼ 2þ ffiffiffi
2
p ð1� νÞ
 �

=4. The quantum bit error rate
Q ¼ Pr Ai≠Bij Xi;Yið Þ ¼ ð0; 2Þ½ � for the above state and measure-
ments is given by Q = ν/2.

The key rate r is plotted in Fig. 5. For n = 1015, the curve
essentially coincides with the rate achieved in the asymptotic i.i.d.
case19. Since the latter was shown to be optimal19, it provides an
upper bound on the key rate and the amount of tolerable noise.
Hence, for large enough n our rates become optimal and the
protocol can tolerate up to the maximal error rate Q = 7.1%. For
comparison, the previously established explicit rates28 are well
below the lowest curve presented in Fig. 5, even when the number
of signals goes to infinity, with a maximal noise tolerance of 1.6%.
Moreover, our key rates are comparable to those achieved in
device-dependent QKD protocols35.

Discussion
The information theoretic tool, the EAT, reveals a novel property
of entropy: the operationally relevant total uncertainty about an
n-partite system created in a sequential process corresponds to
the sum of the entropies of its parts, even without an indepen-
dence assumption.

Using the EAT, we show that practical and realistic protocols
can be used to achieve the unprecedented level of DI security. The
next major challenge in experimental implementations is a field
demonstration of a DIQKD protocol. This would provide the
strongest cryptographic experiment ever realised. The work pre-
sented here provides the theoretical groundwork for such
experiments. Our quantitative results imply that the first proofs of
principle experiments, with small distances and small rates, are
within reach with today’s state-of-the-art technology, which
recently enabled the violation of Bell inequalities in a loophole-
free way.

Methods
We state here the main theorems of our work and sketch the proofs. Using the
explicit expressions given below, one can reproduce the key rates presented in
Fig. 5.
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Fig. 4 Sequential processes. Each map in the sequenceMi outputs Oi,
which describes the information that should be kept secret, and Si,
describing some side information leaked by the map, together with a
“memory” system Ri, which gets passed on to the next mapMiþ1. In each
step, an additional classical value Ci is calculated from Oi and Si
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Fig. 5 Key rate in a DIQKD protocol. The plots show the key rate r as a function of a the quantum bit error rate Q and b the number of signals n. The
completeness error, i.e., the probability that the protocol aborts when using an honest implementation of the device, e.g., due to statistical fluctuations, was
chosen to be εcQKD ¼ 10�2. The soundness error, which quantifies the maximum tolerated deviation of the actual protocol from a hypothetical one where a
perfectly random and completely secret key is produced for Alice and Bob, is taken to be εsQKD ¼ 10�5. Both of these values are considered to be realistic
and relevant for actual applications. The rates are calculated using Eq. (35) which is derived in the Methods section
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The formal statement and proof idea of the EAT. In this section, we are
interested in the general question of whether entropy accumulates, in the sense that
the operationally relevant total uncertainty about an n-partite system On

1 corre-
sponds to the sum of the entropies of its parts Oi. The AEP, given in Eq. (1),
implies that this is indeed the case to first order in n—under the assumption that
the parts Oi are identical and independent of each other. Our result shows that
entropy accumulation occurs for more general processes, i.e., without an inde-
pendence assumption, provided one quantifies the uncertainty about the individual
systems Oi by the von Neumann entropy of a suitably chosen state.

The type of processes that we consider are those that can be described by a
sequence of channels, as illustrated in Fig. 4. Such channels are called EAT
channels and are formally defined as follows.

Definition 1 (EAT channels): EAT channelsMi : Ri�1 ! RiOiSiCi , for i ∈ [n],
are CPTP (completely positive trace preserving) maps such that for all i ∈ [n]:

1. Ci are finite-dimensional classical systems (random variables). Oi, Si, and Ri

are quantum registers. The dimension of Oi is dOi :
2. For any input state σRi�1R′ , where R′ is a register isomorphic to Ri−1, the output

state σRiOiSiCiR′ ¼ Mi � IR′ð Þ σRi�1R′ð Þ has the property that the classical value
Ci can be measured from the system σOiSi without changing the state.

3. For any initial state ρ0R0E
, the final state ρOn

1S
n
1C

n
1 E
¼

TrRn �Mn � ¼ �M1ð Þ � IEð Þρ0R0E fulfils the Markov chain condition
Oi�1
1 $ Si�11 E$ Si for each i ∈ [n].

In the above definition, Oi�1
1 $ Si�11 E$ Si if and only if their conditional

mutual information is 0, I Oi�1
1 : Si Si�11

�� E
� � ¼ 0.

Next, one should find an adequate way to quantify the amount of entropy which
is accumulated in a single step of the process, i.e., in an application of just one
channel. To do so, let p be a probability distribution over C, where C denotes the
common alphabet of C1; ¼ ;Cn , and R′ be a system isomorphic to Ri−1. We define
the set of states

ΣiðpÞ ¼ σOiSiCiRiR′ ¼ Mi � IR′ð Þ τRi�1R′ð Þ :f
τ 2 D Ri�1 � R′ð Þ and σCi ¼ pg; ð6Þ

where σCi denotes the probability distribution over C with the probabilities given by
ch jσCi cj i.
The tradeoff functions for the EAT channels are defined below.
Definition 2 (Tradeoff functions): A real function is called a min- or max-

tradeoff function forMi if it satisfies

fminðpÞ � inf
σ2Σ iðpÞ

H OijSiR′ð Þσ ð7Þ

or

fmaxðpÞ � sup
σ2ΣiðpÞ

H Oi SiR′jð Þσ ; ð8Þ

respectively, and if it is convex or concave, respectively. If the set Σi(p) is empty,
then the infimum and supremum are by definition equal to ∞ and −∞, respectively,
so that the conditions are trivial.

To get some intuition as to why the above definition is the “correct” one,
consider the following classical example. Each EAT channel outputs a single bit Oi

without any side information Si about it; the system E is empty as well. Every bit
can depend on the ones produced previously. We would like to extract randomness
out of the sequence On

1 ; for this we should find a lower bound on Hε
min On

1

� �
.

We ask the following question—given the randomness of O1 which is already
accounted for, how much randomness does O2 contribute? One possible guess is
the conditional von Neumann entropy H O2jO1ð Þ ¼ Eo1 ;o2 �log Pr o2jo1ð Þ½ �. If,
however, O1 is uniform while O2 is fixed when O1 = 0 and uniform otherwise, then
H O2jO1ð Þ is too optimistic; the amount of extractable randomness is quantified by
the smooth min-entropy, which depends on the most probable value of O1O2, and
not by an average quantity as the von Neumann entropy.

Another possible guess is a worst-case version of the min-entropy
Hw:c:

min ¼ mino1 ;o2 �log Pr o2jo1ð Þ½ �. This, however, is too pessimistic; when the Oi’s
are independent of each other, the extractable amount of randomness behaves like
the von Neumann entropy in first order, and not like the min-entropy.

We therefore choose an intermediate quantity—
mino1 Eo2 �log Pr o2jo1ð Þ½ � ¼ mino1 H O2jO1 ¼ o1ð Þ. That is, this quantity is the von
Neumann entropy of O2, evaluated for the worst-case state in the beginning of the
second step of the process. The min-tradeoff function defined above is the
quantum analogue version of this.

Informally, the min-tradeoff function can be understood as the amount of
entropy available from a single round, conditioned on the outputs of the previous
rounds. Since we condition on the previous rounds, one can think of the
randomness of the current round as independent from past events. Intuitively, this
suggests that, by appropriately generalising the proof of the AEP, one can argue
that the entropy that is contributed by this independent randomness in each round
accumulates.

The formal statement of the EAT is as follows.

Theorem 3 (EAT, formal): LetMi : Ri�1 ! RiOiSiCi for i ∈ [n] be EAT
channels, ρ be the final state, Ω an event defined over Cn , pΩ the probability of Ω in
ρ, and ρ|Ω the final state conditioned on Ω. Let εs ∈ (0, 1).

For fmin, a min-tradeoff function for Mif g, Ω̂ ¼ freqðcn1Þ
��cn1 2 Ω

� 

convex,

and any t 2 R such that fmin freqðcn1Þ
� � � t for any cn1 2 Cn for which Pr cn1


 �
ρjΩ

>0,

Hε
min On

1 Sn1E
��� �

ρjΩ
>nt � v

ffiffiffi
n
p

; ð9Þ

where

v ¼ 2 log 1þ 2dOið Þ þ ∇fmink k1
� �� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2 log εs � pΩð Þ
p

: ð10Þ

Similarly, for fmax a max-tradeoff function and t 2 R such that fmax freqðcn1Þ
� � � t

for any c 2 Cn for which Pr c½ �ρjΩ>0,
Hε

max On
1 Sn1E
��� �

ρjΩ
<nt � v

ffiffiffi
n
p

: ð11Þ

The two most important properties of the above statement are that the first-
order term is linear in n and that t is the von Neumann entropy of a suitable state
(as explained above). This implies that the EAT is tight to first order in n.

We remark that the Markov chain conditions are important, in the sense that
dropping them completely would render the statement invalid.

We now give a rough proof sketch of the Hε
min case; the bound for Hε

max follows
from an almost identical argument. The proof has a similar structure to that of the
quantum AEP31, which we can retrieve as a special case. The proof relies heavily on
the “sandwiched” Rényi entropies36,37, which is a family of entropies that we will
denote here by Hα, where α is a real parameter ranging from 1

2 to ∞, and which
corresponds to the max-entropy at α ¼ 1

2, to the von Neumann entropy when α = 1,
and to the min-entropy when α = ∞.

The basic idea is to first lower bound the Hε
min term by Hα using the following

general bound31,38–40:

Hε
min AjBð Þ>Hα AjBð Þ � 1

α� 1
Oðlogð1=εÞÞ: ð12Þ

Then, we lower bound the Hα term by the von Neumann entropy using the
following31,39:

Hα AjBð Þ>H AjBð Þ � ðα� 1ÞO log dAð Þ2� �
: ð13Þ

Now, we could simply chain these two inequalities and apply them to
Hε

min On
1

��Sn1E� �
. However, this would result in a very poor bound due to the

O log dAð Þ2� �
term in Eq. (13), which in our case would be O(n2). To get the bound

we want, we need to reduce this term to O(n); choosing α 	 1þ 1ffiffi
n
p would then

produce a bound with the right scaling.
The trick we use to achieve this is to decompose Hα On

1 Sn1E
��� �

into n terms of
constant size before applying Eq. (13). In the quantum AEP31, this step is
immediate since the state is i.i.d. Here, we must use more sophisticated techniques.
Specifically, we use the following chain rule for the sandwiched Rényi entropy to
decompose Hα On

1 Sn1E
��� �

into n terms:
Theorem 4: Let ρ0RA1B1

be a density operator on R ⊗ A1 ⊗ B1 andM¼
MA2B2 R be a CPTP map. Assuming that ρA1B1A2B2

¼Mðρ0RA1B1
Þ satisfies the

Markov condition A1↔B1↔B2,we have

Hα A1jB1ð Þρþ inf
ω

Hα A2jB2A1B1ð ÞMðωÞ� Hα A1A2jB1B2ð Þρ; ð14Þ

where the infimum ranges over density operators ωRA1B1 on R ⊗ A1 ⊗ B1.
Moreover, if ρ0RA1B1

is pure, then we can optimise over pure states ωRA1B1 .
Implementing this proof strategy then yields the following chain of inequalities:

Hε
min On

1

��Sn1E� �
ρ

>Hα On
1

��Sn1E� �
ρ
� 1
α� 1

Oðlogð1=εÞÞ

�
X
i

inf
ωR′Ri

Hα OijSiR′ð ÞMiðωÞ�
1

α� 1
Oðlogð1=εÞÞ

>
X
i

inf
ω

H OijSiR′ð ÞMiðωÞ�
1

α� 1
Oðlogð1=εÞÞ

� nðα� 1ÞO log dOið Þ2� �
�

X
i

inf
ω

H OijSiR′ð ÞMiðωÞ�O
ffiffiffi
n
p� �

:

ð15Þ

However, this does not yet take into account the sampling over the Ci subsystems.
To do this, we tweak the EAT channelsMi to output two extra systems Di and Di

which contain an amount of entropy that depends on the value of Ci observed. To
define this, let g be an affine lower bound on fmin, let gmin; gmax½ � be the smallest
interval that contains the range of g, and set g :¼ 1

2 gmin þ gmaxð Þ. Then, we define
Di : Ci ! CiDiDi as

DiðXÞ ¼
X
c

ch jX cj i � cj i ch jCi
�τðcÞDiDi

; ð16Þ
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where τ(c) is a mixture between a maximally entangled state and a fully mixed state
such that the marginal on Di is uniform, and such that Hα Di Di

��� �
τðcÞ¼ g � gðδcÞ

(here δc stands for the distribution with all the weight on element c). To ensure that
this is possible, we need to choose dDi large enough, and it turns out that setting
dDi ¼ 2k∇gk1

� �
suffices. We can then define a new sequence of EAT channels by

Mi ¼ Di �Mi.
Armed with this, we apply the above argument to our new EAT channels. On

the one hand, a more sophisticated version of Eq. (12) yields:

Hε
min On

1

��Sn1E� �
ρjΩ
�Hα On

1D
n
1

��Sn1EDn
1

� �
ρ

� ng þ nt � O
ffiffiffi
n
pð Þlog 1

pΩ

� � ð17Þ

On the other hand, the argument from Eq. (15) can be used here to give

Hα On
1D

n
1

��Sn1EDn
1

� �
ρ
>ng � O

ffiffiffi
n
p� �

log dOi dDið Þ2� �
: ð18Þ

Combining these two bounds then yields the theorem.
We remark that some of the concepts used in this work generalise techniques

proposed in the recent security proofs for DI cryptography29.

Entropy accumulation protocol. To analyse the key rates of the DIQKD protocol,
we first find a lower bound on the amount of entropy accumulated during the run
of the protocol, when the honest parties use their device to play the Bell games
repeatedly. To this end, we consider the “entropy accumulation protocol” shown in
Box 2. This protocol can be seen as the main building block of many DI crypto-
graphic protocols.

The entropy accumulation protocol creates m blocks of bits, each of maximal
length smax. Each block ends (with high probability) with a test round; this is a
round in which Alice and Bob play the CHSH game with their device so that they
can verify that the device acts as expected. The probability of each round to be a
test round is γ. The rest of the rounds are generation rounds, in which Bob chooses
a special input for his component of the device. In the end of the protocol, Alice
and Bob check whether they had sufficiently many test rounds in which they won
the CHSH game. If not, they abort.

We note that the protocol is complete, in the sense that there exists an honest
implementation of it (possibly noisy) which does not abort with high probability.
Denoting the completeness error, i.e., the probability that the protocol aborts for an
honest implementation of the devices D, by εcEA, one can easily show using
Hoeffding’s inequality that for an honest i.i.d. implementation εcEA � exp �2nδ2est

� �
.

Next, we show that the protocol is also sound. That is, for any device D, if the
probability that the protocol does not abort is not too small, then the total amount
of smooth min-entropy is sufficiently high.

The EAT can be used to bound the total amount of smooth min-entropy,
Hεs

min An
1B

n
1

��Xn
1Y

n
1 T

n
1 E

� �
ρjΩ

, created when running the entropy accumulation
protocol, given that it did not abort. Here n denotes the expected number of rounds
of the protocol and εs is one of the security parameters (to be fixed later).

Below we use the following notation. For each block j ∈ [m], ~Aj denotes the
string that includes Alice’s outputs in block j (note that the length of this string is
unknown, but it is at most smax). ~Bj; ~Xj , and ~Yj are defined analogously. To use the

EAT, we make the following choices of random variables:

Oi ! ~Aj~Bj ð19Þ

Si ! ~Xj~Yj
~Tj ð20Þ

Ci ! ~Cj ð21Þ

E! E : ð22Þ

The event Ω is the event of not aborting the protocol, as given in Step 11 in Box 2:

Ω ¼ ~Cm
1 j

X
jj~Cj¼1

1< ωexp 1� ð1� γÞsmaxð Þ � δest

 � �m

8<
:

9=
;: ð23Þ

The EAT channels are chosen to be

Mj : Rj�1 ! Rj~Aj~Bj~Xj~Yj~Cj; ð24Þ

whereMj describes Steps 2–10 of block j in the entropy accumulation protocol
(Box 2). These channels include both the actions made by Alice and Bob as well as
the operations made by the device D in these steps. Note that the Device’s
operations can always be described within the formalism of quantum mechanics,
although we do not assume we know them. The registers Rj−1 and Rj hold the
quantum state of the device in the beginning and the end of the j’th step of the
protocol, respectively.

Lemma 5: The channelsMj described above are EAT channels.
Proof. For the channels to be EAT channels, they need to fulfil the conditions

given in Definition 1. We show that this is indeed the case. First, ~Cj are classical
registers with ~Cj 2 f0; 1;?g and d~Aj

´ d~Bj
� 6smax . Second, ~Cj is determined by the

classical registers ~Aj;~Bj; ~Xj; ~Yj; ~Tj as shown in Box 2. Therefore, ~Cj can be calculated
without modifying the marginal on those registers. The third condition is also
fulfilled since the inputs are chosen independently in each round and hence
~A1¼ j�1~B1¼ j�1 $ ~X1¼ j�1~Y1¼ j�1~T1¼ j�1E$ ~Xj~Yj~Tj trivially holds.

To continue one should devise a min-tradeoff function. Let ~p be the probability
distribution describing ~Cj . We remark that due to the structure of our EAT
channels, it is sufficient to consider ~p for which ~pð1Þ þ ~pð0Þ ¼ 1� ð1� γÞsmax

(otherwise the set Σ defined in Eq. (6) is an empty set).
The following lemma gives a lower bound on the von Neumann entropy of the

outputs in a single block.
Lemma 6: Let s ¼ 1�ð1�γÞsmax

γ be the expected length of a block and h the binary
entropy function. Then,

H ~Aj~Bjj~Xj~Yj~TjR′
� �

� s 1� h
1
2
þ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16ω
ðω
 � 1Þ þ 3

p� �� �
; ð25Þ

where the entropy is evaluated on a state that wins the CHSH game, in the test

Box 2 | Entropy accumulation protocol (based on the CHSH game)

Given:
D—device that can play the CHSH game repeatedly
m 2 Nþ—number of blocks
smax 2 Nþ—maximal length of a block
γ∈ (0, 1]—probability of a test round
ωexp—expected winning probability in the honest implementation
δest∈ (0, 1)—width of the statistical confidence interval

1. For every block j∈ [m] do Steps 2–10:
2. Set i= 0 and ~Cj ¼ ?.
3. If i � smax:
4. Set i= i + 1.
5. Alice and Bob choose Ti∈ {0, 1} at random such that PrðTi ¼ 1Þ ¼ γ.
6. If Ti= 1 Alice and Bob choose inputs Xi∈ {0,1} and Yi∈ {0,1}.
7. If Ti= 0 they choose inputs Xi∈ {0, 1} and Yi= 2.
8. Alice and Bob use D with Xi,Yi and record their outputs as Ai, Bi.
9. If Ti= 0 Bob updates Bi to Bi=⊥.
10. If Ti= 1 they set ~Cj ¼ w Ai; Bi;Xi;Yið Þ and i ¼ smax þ 1.
11. Alice and Bob abort if

P
j2 m½ � ~Cj < ωexp 1� ð1� γÞsmaxð Þ � δest½ � �m.
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round, with probability

ω
 ¼ ~p 1ð Þ
1� 1� γð Þsmax

: ð26Þ

Proof sketch. The amount of entropy accumulated in a single round in a block is
given in Eq. (2) in the main text. To get the amount of entropy accumulated in a
block, one can use the chain rule for the von Neumann entropy. The result is then

H ~Aj~Bjj~Xj~Yj~TjR′
� �

� P
i2 smax½ �

1� γð Þ i�1ð Þ 1� h 1
2þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16ωi ωi � 1ð Þ þ 3

p� �
 �
;

ð27Þ

where the pre-factors (1 − γ)(i−1) are attributed to the fact that the entropy in each
round is non-zero only if the round is part of the block, i.e., if a test round was not
performed before the i’th round in the block, and ωi denotes the winning
probability in the i’th round (given that a test was not performed before).

The value of each ωi is not fixed completely given ω*. However, by the
operation of the EAT channels the following relation holds:

ω
 1� 1� γð Þsmaxð Þ ¼
X

i2 smax½ �
γ 1� γð Þ i�1ð Þωi: ð28Þ

To conclude the proof, we thus need to minimise H ~Aj~Bjj~Xj~Yj~TjR′
� �

under the
above constraint. Using standard techniques, e.g., Lagrange multipliers, one can see
that the minimal value of this entropy is achieved for ωi =ω* for all i and the
lemma follows.

The bound given in the above lemma can now be used to define the min-
tradeoff function fmin ~pð Þ. As the derivative of the function plays a role in the final
bound, we must make sure it is not too large at any point. This can be enforced by
“cutting” the function at a chosen point ~pt and “gluing” it to a linear function
starting at that point, as shown in Fig. 6. ~pt can be chosen depending on the other
parameters such that the total amount of smooth min-entropy is maximal.
Following this idea, the resulting min-tradeoff function is given by

g ~pð Þ ¼

s 1� h 1
2þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16 ~p 1ð Þ

1� 1�γð Þsmax
~p 1ð Þ

1� 1�γð Þsmax � 1
� �

þ 3

r� �� �
~p 1ð Þ

1� 1�γð Þsmax 2 0; 2þ
ffiffi
2
p
4

h i

s ~p 1ð Þ
1� 1�γð Þsmax 2 2þ ffiffi

2
p
4 ; 1

h i
;

8>><
>>:

ð29Þ

fmin ~p; ~ptð Þ ¼
g ~pð Þ ~p 1ð Þ � ~pt 1ð Þ
d

d~p 1ð Þg ~pð Þ
���
~pt
�~p 1ð Þ þ g ~ptð Þ � d

d~p 1ð Þg ~pð Þ
���
~pt
�~pt 1ð Þ

� �
~p 1ð Þ>~pt 1ð Þ:

8<
:

ð30Þ

Let εEA be the desired error probability of the entropy accumulation protocol. We
can then use Theorem 3 to say that either the probability of the protocol aborting is
greater than 1 − εEA or the following bound on the total smooth min-entropy holds:

Hεs
min An

1B
n
1 jXn

1Y
n
1 T

n
1 E

� �
ρjΩ

> m � ηopt εs; εEAð Þ
¼ n

s � ηopt εs; εEAð Þ;
ð31Þ

where

η ~p; ~pt ; εs; εeð Þ ¼ fmin ~p; ~ptð Þ � 1ffiffiffi
m
p 2 log 1þ 2 � 6smaxð Þð

þ d
d~p 1ð Þ g ~pð Þ

��� ���
1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2log εs � εeð Þp

;

ηopt εs; εeð Þ ¼ max
3
4<~pt 1ð Þ<2þ ffiffi

2
p
4

η ωexp 1� 1� γð Þsmaxð Þ � δest; ~pt ; εs; εe
� �

:

ð32Þ

To illustrate the behaviour of the entropy rate ηopt, we plot it as a function of the
expected Bell violation ωexp in Fig. 7 for γ = 1 and smax = 1. For comparison, we also
plot in Fig. 7 the asymptotic rate (n→ ∞) under the assumption that the state of the
device is an (unknown) i.i.d. state. In this case, the quantum AEP appearing in
Eq. (1) implies that the optimal rate is the von Neumann entropy accumulated in
one round of the protocol (as given in Eq. (2)). This rate, appearing as the dashed
line in Fig. 7, is an upper bound on the entropy that can be accumulated. One can
see that as the number of rounds in the protocol increases, our rate ηopt approaches
this optimal rate.

For the calculations of the DIQKD rates later on, we choose smax ¼ 1
γ

l m
. For this

choice, the first-order term of ηopt is linear in n and a short calculation reveals that
the second-order term scales, roughly, as

ffiffiffiffiffiffiffiffi
n=γ

p
.

Our DIQKD protocol, shown in Box 3, is based on the entropy accumulation
protocol described above. In the first part of the protocol Alice and Bob use their
devices to produce the raw data, similarly to what is done in the entropy
accumulation protocol. The main difference is that Bob’s outputs always contains
his measurement outcomes (instead of being set to ? in the generation rounds); to
make the distinction explicit, we denote Bob’s outputs in the DIQKD protocol with
a tilde, ~Bn

1 .
We now describe the three post-processing steps, error correction, parameter

estimation, and privacy amplification, in more detail.

Error correction. Alice and Bob use an error correction protocol EC to obtain
identical raw keys KA and KB from their bits An

1 , ~B
n
1 . In our analysis, we use a

protocol, based on universal hashing, which minimises the amount of leakage to
the adversary41,42. To implement this protocol, Alice chooses a hash function and
sends the chosen function and the hashed value of her bits to Bob. We denote this
classical communication by O. Bob uses O, together with his prior knowledge
~Bn
1X

n
1Y

n
1 T

n
1 , to compute a guess Ân

1 for Alice’s bits A
n
1 . If EC fails to produce a good

guess, Alice and Bob abort; in an honest implementation, this happens with
probability at most εcEC. If Alice and Bob do not abort, then they hold raw keys
KA ¼ An

1 and KB ¼ Ân
1 and KA = KB with probability at least 1 − εEC.

0

1

H

ƒmin

Tangent line at pt (1)

p~t (1)

p~ (1)

Fig. 6 The construction of the min-tradeoff function fmin. The plot shows the
values of the min-tradeoff function on a slice ~pð0Þ þ ~pð1Þ ¼ 1� ð1� γÞsmax
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i.i.d. asymptotic rate
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� = 105, �est = 10−2, �s = �EA = 10−3

� o
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Fig. 7 Entropy rate for entropy accumulation protocol. ηopt(ωexp) for γ= 1,
smax= 1 and several choices of δest, n, εEA, and εs. We optimise the rates
over all parameters which are not explicitly stated in the figure. The dashed
line shows the optimal asymptotic (n→∞) rate under the assumption that
the devices are such that Alice, Bob, and Eve share an (unknown) i.i.d. state
and n→∞
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Due to the communication from Alice to Bob, leakEC bits of information are
leaked to the adversary. The following guarantee holds for the described protocol42:

leakEC � Hε′EC
0 An

1 j~Bn
1X

n
1Y

n
1 T

n
1

� �þ log
1
εEC

� �
; ð33Þ

for εcEC ¼ ε′EC þ εEC and where Hε′EC
0 An

1 j~Bn
1X

n
1Y

n
1 T

n
1

� �
is evaluated on the state in

an honest implementation of the protocol. If a larger fraction of errors occur when
running the actual DIQKD protocol (for instance due to adversarial interference)
the error correction might not succeed, as Bob will not have a sufficient amount of
information to obtain a good guess of Alice’s bits. If so, this will be detected with
probability at least 1 − εEC and the protocol will abort. In an honest
implementation of the device, Alice and Bob’s outputs in the generation rounds
should be highly correlated in order to minimise the leakage of information.

Parameter estimation. After the error correction step, Bob has all of the relevant
information to perform parameter estimation from his data alone, without any
further communication with Alice. Using ~Bn

1 and KB, Bob sets ~Cj ¼
wCHSH Âi; ~Bi;Xi;Yi

� � ¼ wCHSH KBi; ~Bi;Xi;Yi
� �

for the blocks with a test round
(which was done at round i of the block) and ~Cj ¼ ? otherwise. He aborts if the
fraction of successful test rounds is too low, that is, ifP

j2 m½ � ~Cj< ωexp 1� ð1� γÞsmaxð Þ � δest

 � �m.

As Bob does the estimation using his guess of Alice’s bits, the probability of
aborting in this step in an honest implementation, εcPE, is bounded by εcEA þ εEC.

Privacy amplification. Finally, Alice and Bob use a (quantum-proof) privacy
amplification protocol PA (which takes some random seed S as input) to create
their final keys ~KA and ~KB of length ‘, which are close to ideal keys, i.e., uniformly
random and independent of the adversary’s knowledge.

For simplicity, we use universal hashing43 as the privacy amplification protocol
in the analysis below. Any other quantum-proof strong extractor, e.g., Trevisan’s
extractor44, can be used for this task and the analysis can be easily adapted.

The secrecy of the final key depends only on the privacy amplification protocol
used and the value of Hεs

min An
1 jXn

1Y
n
1 T

n
1OE

� �
, evaluated on the state at the end of the

protocol, conditioned on not aborting. For universal hashing, for every εPA,εs∈(0, 1),
a secure key of maximal length

‘ ¼ Hεs
min An

1 jXn
1Y

n
1 T

n
1OE

� �� 2log
1
εPA

ð34Þ

is produced with probability at least 1 − εPA − εs.
Correctness, secrecy, and overall security of a DIQKD protocol are defined as

follows45:
Definition 7 (Correctness): A DIQKD protocol is said to be εcorr-correct, when

implemented using a device D, if Alice and Bob’s keys, ~KA and ~KB respectively, are
identical with probability at least 1 − εcorr. That is, Pr ~KA≠~KB

� � � εcorr.

Definition 8 (Secrecy): A DIQKD protocol is said to be εsec-secret, when
implemented using a device D, if for a key of length l,
1� Pr abort½ �ð Þ ρ~KAE � ρUl

� ρE
�� ��

1
� εsec, where E is a quantum register that may

initially be correlated with D.
εsec in the above definition can be understood as the probability that some non-

trivial information leaks to the adversary45. If a protocol is εcorr-correct and εsec-
secret (for a given D), then it is εsQKD-correct-and-secret for any ε

s
QKD � εcorr þ εsec.

Definition 9 (Security): A DIQKD protocol is said to be εsQKD; ε
c
QKD; l

� �
-secure

if:

1. (Soundness) For any implementation of the device D it is εsQKD-correct-and-
secret.

2. (Completeness) There exists an honest implementation of the device D such
that the protocol does not abort with probability greater than 1� εcQKD.

Below we show that the following theorem holds.
Theorem 10: The DIQKD protocol described above is εsQKD; ε

c
QKD; ‘

� �
-secure,

with εsQKD � εEC þ εPA þ εs þ εEA, εcQKD � εcEC þ εcEA þ εEC, and

‘¼ n
s � ηopt εs=4; εEA þ εECð Þ

�leakEC � 3log 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� εs=4ð Þ2

q� �
� γðnþ tÞ

� ffiffiffiffiffiffiffiffiffiffiffi
nþ t
p

2log7
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2log εs=4� ffiffiffiffi

εt
p� � � εEA þ εECð Þ� �q

�2log ε�1PA

� �
;

ð35Þ

where t ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�m 1� γð Þ2 logεt=2γ2

q
for any εt ∈ (0, 1).

We now explain the steps taken to prove Theorem 10. The completeness part
follows trivially from the completeness of the “subprotocols”.

To establish soundness, first note that by definition, as long as the protocol does
not abort it produces a key of length ‘. Therefore, it remains to verify correctness,
which depends on the error correction step, and security, which is based on the
privacy amplification step. To prove security we start with Lemma 11, in which we
assume that the error correction step is successful. We then use it to prove
soundness in Lemma 12.

Let ~Ω denote the event of the DIQKD protocol not aborting and the EC
protocol being successful, and let ~ρAn

1
~Bn
1X

n
1 Y

n
1 T

n
1O

n
1Ej~Ω be the state at the end of the

protocol, conditioned on this event.
Success of the privacy amplification step relies on the min-entropy

Hεs
min An

1 jXn
1Y

n
1 T

n
1OE

� �
~ρj~Ω

being sufficiently large. The following lemma connects

this quantity to H
εs
4
min An

1B
n
1 jXn

1Y
n
1 T

n
1 E

� �
ρjΩ
, on which a lower bound is provided in

Eq. (31) above.
Lemma 11: For any device D, let ~ρ be the state generated in the protocol right

before the privacy amplification step. Let ~ρj~Ω be the state conditioned on not
aborting the protocol and success of the EC protocol. Then, for any εEA, εEC, εs,

Box 3 | DIQKD protocol (based on the CHSH game)

Given:
D—device that can play the CHSH game repeatedly
m 2 Nþ—number of blocks
smax 2 Nþ—maximal length of a block
γ∈ (0, 1]—probability of a test round
ωexp—expected winning probability in the honest implementation
δest∈ (0, 1)—width of the statistical confidence interval
EC—error correction protocol which leaks leakEC bits and has error probability εEC
PA—privacy amplification protocol with error probability εPA

1. For every block j∈ [m] do Steps 2–8:
2. Set i= 0 and ~Cj ¼ ?.
3. If i≤ smax:
4. Set i= i + 1.
5. Alice and Bob choose Ti∈ {0, 1} at random such that Pr(Ti= 1)= γ.
6. If Ti= 1 Alice and Bob choose inputs Xi∈ {0,1} and Yi∈ {0,1}.
7. If Ti= 0 they choose inputs Xi∈ {0, 1} and Yi= 2.
8. Alice and Bob use D with Xi, Yi and record their outputs as Ai, ~Bi.

9. Error correction: Alice and Bob apply the error correction protocol EC on the outputs An
1 and ~Bn1 , communicating O in the process. If EC aborts they

abort the protocol. Otherwise, they obtain raw keys denoted by KA and KB.
10. Parameter estimation: Using ~Bn1 and KB, Bob sets ~Cj ¼ w Ai; Bi;Xi;Yið Þ for the blocks with a test round at round i and ~Cj ¼ ? otherwise. He aborts ifP

j2 m½ � ~Cj< ωexp 1� 1� γð Þsmaxð Þ � δest½ � �m.
11. Privacy amplification: Alice and Bob apply the privacy amplification protocol PA on KA and KB to create their final keys ~KA and ~KB of length ‘ as

defined in Eq. (9).
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εt ∈ (0, 1), either the protocol aborts with probability greater than 1 − εEA − εEC or

Hεs
min An

1 jXn
1Y

n
1 T

n
1OE

� �
~ρj~Ω
� n

s � ηopt εs=4; εEA þ εECð Þ

�leakEC � 3log 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� εs=4ð Þ2

q� �

�γ nþ tð Þ
� ffiffiffiffiffiffiffiffiffiffiffi

nþ t
p

2log7
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2log εs=4� ffiffiffiffi

εt
p� � � εEA þ εECð Þ� �q

:

ð36Þ

Proof sketch. Before deriving a bound on the entropy of interest, we remark that
the t is chosen such that the probability that the actual number of rounds in the
protocol, N, is larger than the expected number of rounds n plus t is εt. The above
value for t can be derived by noticing that the sizes of the blocks are i.i.d. random
variables which take values in [1, 1/γ].

The key idea of the proof is to consider the following events:

1. Ω: the event of not aborting in the entropy accumulation protocol. This
happens when the Bell violation, calculated using Alice and Bob’s outputs
(and inputs), is sufficiently high.

2. Ω̂: Suppose Alice and Bob run the entropy accumulation protocol, and then
execute the EC protocol. The event Ω̂ is defined by Ω and KB ¼ An

1 .
3. ~Ω: the event of not aborting the DIQKD protocol and KB ¼ An

1 .

The state ρjΩ̂ then denotes the state at the end of the entropy accumulation
protocol conditioned on Ω̂.

Using a sequence of chain rules for smooth entropies46 and the fact that
~ρAn

1X
n
1Y

n
1 T

n
1 Ej~Ω ¼ ρAn

1X
n
1 Y

n
1 T

n
1 EjΩ̂ (~Bn

1 and Bn
1 were traced out from ~ρ and ρ, respectively),

one can conclude

Hεs
min An

1 jXn
1Y

n
1 T

n
1OE

� �
~ρj~Ω
�H

εs
4
min An

1B
n
1 jXn

1Y
n
1 T

n
1 E

� �
ρjΩ̂

�H
εs
4
max Bn

1 jTn
1 E

� �
ρjΩ̂
�leakEC

�3log 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� εs=4ð Þ2

q� �
:

ð37Þ

H
εs
4
max Bn

1 jTn
1 E

� �
ρjΩ̂

can be bounded from above. The intuition is that Bi≠? only

when Ti = 0, which happens with probability γ. The exact bound can be calculated
using the EAT and is given by

H
εs
4
max Bn

1 jTn
1 E

� �
ρjΩ̂

< γ nþ tð Þ

þ ffiffiffiffiffiffiffiffiffiffiffi
nþ t
p

2log7
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2log εs=4� ffiffiffiffi

εt
p� � � εEA þ εECð Þ� �q

:

ð38Þ

The above steps together with Eq. (31) conclude the proof.
Using Lemma 11, one can prove that our DIQKD protocol is sound.
Lemma 12: For any device D let ~ρ be the state generated by the DIQKD

protocol. Then either the protocol aborts with probability greater than 1 − εEA −
εEC or it is (εEC + εPA + εs)-correct-and-secret while producing keys of length ‘, as
defined in Eq. (35).

Proof sketch. Assume the DIQKD protocol did not abort. We consider two
cases. First, assume that the EC protocol was not successful (but did not abort).
Then Alice and Bob’s final keys might not be identical. This happens with
probability at most εEC. Otherwise, assume the EC protocol was successful, i.e.,
KB ¼ An

1 . In that case, Alice and Bob’s keys must be identical also after the final
privacy amplification step.

The secrecy depends only on the privacy amplification step, and for universal
hashing a secure key is produced as long as Eq. (34) holds. Hence, a uniform and
independent key of length ‘ as in Eq. (35) is produced by the privacy amplification
step unless the smooth min-entropy is not high enough or the privacy
amplification protocol was not successful, which happens with probability at most
εPA + εs.

According to Lemma 11, either the protocol aborts with probability greater than
1 − εEA − εEC or the entropy is sufficiently high to create the secret key.

The expected key rates appearing in Fig. 5 in the main text are given by r ¼ ‘=n.
The key rate depends on the amount of leakage of information due to the error
correction step, which in turn depends on the honest implementation of the
protocol as mentioned above. To have an explicit bound, we consider the honest
implementation described in the main text. Using Eq. (33) and the AEP, one can

show that the amount of leakage in the error correction step is then given by

leakEC � nþ tð Þ � 1� γð Þh Qð Þ þ γh ωexp
� �
 �

þ ffiffiffiffiffiffiffiffiffiffiffi
nþ t
p

4log 2
ffiffiffi
2
p þ 1

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2log 8= ε′EC � 2

ffiffiffiffi
εt
p� �2� �r

þlog 8=ðε′ECÞ2 þ 2= 2� ε′ECð Þ� �þ log 1
εEC

� �
:

ð39Þ

To get the optimal key rates, one should fix the parameters of interest
(e.g., εsQKD, ε

c
QKD, and n) and optimise over all other parameters.

DI randomness expansion. The entropy accumulation protocol can be used to
perform DI randomness expansion as well. In a DI randomness expansion pro-
tocol, the honest parties start with a short seed of perfect randomness and use it to
create a longer random secret string. For the purposes of randomness expansion,
we may assume that the parties are co-located, therefore, the main difference from
the DIQKD scheme is that there is no need for error correction (and hence there is
no leakage of information due to public communication).

In order to minimise the amount of randomness required to execute the
protocol, we adapt the main entropy accumulation protocol by deterministically
choosing inputs in the generation rounds Xi,Yi∈{0,1}. In particular, there is no use
for the input 2 to Bob’s device, and no randomness is required for the generation
rounds. Aside from the last step of privacy amplification, the remainder of the
protocol is essentially the same as the entropy accumulation protocol.

The plotted entropy rates in Fig. 7 are therefore also the ones relevant for a DI
randomness expansion.

Since we are concerned here not only with generating randomness but also with
expanding the amount of randomness initially available to the users of the protocol,
we should also evaluate the total number of random bits that are needed to execute
the protocol. Random bits are required to select which rounds are generation
rounds, i.e., the random variable Tn

1 , to select inputs to the devices in the testing
rounds, i.e., those for which Ti = 0, and to select the seed for the quantum proof
extractor used for privacy amplification. All of these can be accounted for using
standard techniques and so we omit the detailed explanation and formulas.

Data availability. No data sets were generated or analysed during the current
study.
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