
rsos.royalsocietypublishing.org

Research
Cite this article:Matthews RAJ. 2018 Beyond
‘significance’: principles and practice of the
Analysis of Credibility. R. Soc. open sci.
5: 171047.
http://dx.doi.org/10.1098/rsos.171047

Received: 2 August 2017
Accepted: 6 December 2017

Subject Category:
Mathematics

Subject Areas:
statistics

Keywords:
statistical inference, significance testing,
credibility, replication crisis, Bayesian methods

Author for correspondence:
Robert A. J. Matthews
e-mail: rajm@physics.org

Beyond ‘significance’:
principles and practice of
the Analysis of Credibility
Robert A. J. Matthews
Department of Mathematics, Aston University, Birmingham B4 7ET, UK

RAJM, 0000-0002-1253-6107

The inferential inadequacies of statistical significance testing
are now widely recognized. There is, however, no consensus
on how to move research into a ‘post p < 0.05’ era. We present
a potential route forward via the Analysis of Credibility,
a novel methodology that allows researchers to go beyond
the simplistic dichotomy of significance testing and extract
more insight from new findings. Using standard summary
statistics, AnCred assesses the credibility of significant and
non-significant findings on the basis of their evidential weight,
and in the context of existing knowledge. The outcome is
expressed in quantitative terms of direct relevance to the
substantive research question, providing greater protection
against misinterpretation. Worked examples are given to
illustrate how AnCred extracts additional insight from the
outcome of typical research study designs. Its ability to cast
light on the use of p-values, the interpretation of non-significant
findings and the so-called ‘replication crisis’ is also discussed.

1. Introduction
Statistical inference plays a key role in the scientific enterprise
by providing techniques for turning data into insight. It is
therefore striking that the most commonly used technique—
statistical significance testing—has prompted grave concern
among statisticians almost since its inception [1–3]. Prominent
coverage of the so-called replication crisis [4–5] has catalysed
widespread debate about the use of significance testing in
general, and p-values in particular. In March 2016, the American
Statistical Association (ASA) issued an unprecedented Statement
expressing concern that p-values are ‘commonly misused and
misinterpreted’ and calling for researchers to ‘steer research
into a ‘post p < 0.05’ era’ [6]. However, the ASA Statement
gives no explicit guidance on how this should be accomplished,
stating only that some statisticians ‘supplement or even replace
p-value’ using methods such as estimation via confidence
intervals (CIs), Bayesian methods and false discovery rates. This
lack of specific guidance reflects long-standing debate among
statisticians about the relative merits of different inferential
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methods. Yet as various commentators have noted (e.g. [7]), without such guidance research workers
can hardly be expected to abandon familiar methods whose output, however unreliable, is regarded as
necessary for publication in peer-reviewed journals.

There is unlikely ever to be agreement on a single inferential technique to replace significance testing,
not least because of the multi-faceted nature of inference. Nevertheless, both the ASA Statement and its
associated Commentaries point to a consensus on the desirable features of any acceptable alternatives:

— They should move the assessment of research findings beyond simplistic ‘pass/fail’
dichotomization. Significance testing notoriously focuses on the p-value threshold of 0.05, below
which findings are deemed ‘significant’ and worth further study, and above which they are
rejected as both ‘non-significant’ and (often unjustifiably) evidence of no effect.

— They should allow individual study findings to be put into the context of existing knowledge,
allowing their intrinsic plausibility to be assessed in transparent and quantitative terms.
Significance testing offers no such mechanism beyond arbitrary shifting of the p = 0.05 threshold
in an attempt to reflect greater or lesser degrees of scepticism.

— Their output should have a clear and intuitive interpretation of direct relevance to the
substantive (i.e. non-null) hypothesis, in contrast to p-values, whose definition is notoriously
convoluted and of only indirect relevance even to the null hypothesis.

— Ideally, their application should require only conventional summaries of evidence familiar to
non-specialists, while still allowing the use of more sophisticated inferential methods without
substantial additional information.

In what follows, we introduce a novel methodology designed to meet these requirements: the Analysis
of Credibility (AnCred). Its origins lie in a technique originally developed for assessing statistically
significant outcomes of clinical trials [8,9] which has since found application in healthcare evaluation [10],
epidemiology [11], health risk assessment [12] and interpretive issues in inference [13]. The technique
leads to a simple metric, the Critical Prior Interval (CPI) that allows new findings to be set in the context
of existing knowledge and insight.

This paper presents the generalization of this technique into a methodology capable of assessing
claims of both statistical significance and non-significance in both the presence and absence of existing
insight. The result is an inferential toolkit which can be used alongside standard statistical significance
testing, extracting extra insight from findings expressed using conventional summary statistics.

2. Moving beyond the p-value dichotomy
The principal concern about conventional significance testing is its promotion of simplistic assessments
of new findings (see [14–16]). This is most starkly demonstrated by the p-value threshold, widely adopted
following publication of R. A. Fisher’s classic Statistical Methods for Research Workers [17], according to
which results are either statistically significant (p ≤ 0.05) or non-significant (p > 0.05). By encouraging
practices such as ‘data dredging’, this pass/fail dichotomy has been identified as leading to ‘considerable
distortion of the scientific process’ [6].

Any methodology capable of moving beyond this dichotomy must be capable of extracting more
insight from study data. This, in turn, means adopting a more informative metric than p-values, which
have no simple relationship to effect size or weight of evidence, and offer no simple means of being
combined with other sources of insight. These deficiencies have led to the increasing use of confidence
intervals (CIs), now widely recognized as concise but more informative summary statistics (e.g. [18,19]).
Expressed in terms of lower and upper bounds (L, U), a 95% CI can be ‘unpacked’ to give a central
estimate of the effect size and a measure of evidential weight. That, in turn, allows the CI from a specific
study to be combined with CIs representing other sources of insight, allowing the results to be set in
context. The means to do this lie within the framework of Bayesian inference (e.g. [20]), the use of which
bring the added benefit of allowing CIs to be interpreted as so-called credible intervals. Unlike CIs, these
represent the range of values within which the effect size lies with the stated probability (e.g. 95%);
despite widespread misconceptions [21] conventional CIs can only be interpreted in this way on the
assumption of a complete absence of pre-existing insight. Given the accumulation of quantitative insight
across many disciplines, such an assumption is rarely justifiable.

This combination of CIs and Bayesian methods forms the mathematical framework of AnCred.
However, to achieve its goal of extracting greater insight from findings, this framework must be turned
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into an inferential process. To this end, we introduce the novel concept of subjecting claims of significance
and non-significance to fair-minded challenge.

3. Inference based on fair-minded challenge
Bayesian methods provide the mathematical framework for combining existing (prior) insight with
new findings to arrive at an updated (posterior) level of insight. Symbolically, the process can be
represented as

Prior insight + Data likelihood → Posterior insight. (3.1)

Conventionally, the process runs from left to right: a prior probability distribution representing
existing knowledge is combined using Bayes’s Theorem with the so-called likelihood capturing the
evidential weight provided by the new data. If the 95% credible interval of the resulting posterior
distribution then excludes no effect, the findings are said to be credible at the 95% level. This process
is open to various well-known objections: the prior distribution could be based on misguided subjective
opinion, for example, or be hand-picked to ensure that the resulting posterior achieves credibility. This
‘Problem of Priors’ has generated a substantial literature dating back centuries (see [22]). However, as
Good pointed out nearly 70 years ago [23], it is entirely legitimate to run (3.1) from right to left, and thus
deduce the prior needed to produce a posterior distribution implying the findings are credible. Having
been extracted from the (objective) findings of the study, the standard criticisms of the choice of prior
then no longer arise.

This inversion of Bayes’s Theorem provides the mathematical framework by which AnCred goes
beyond the dichotomous process of significance testing. It does this by challenging the claim that a
finding is significant or non-significant as follows:

1. The summary statistic for the findings is used to deduce the range of prior effect sizes—the CPI—
capable of challenging the credibility of the claim of significance/non-significance, in the sense
of leading to a posterior interval that includes/excludes no effect.

2. Comparison of this CPI with effect sizes supported by prior evidence then allows the credibility
of the claim to be assessed in transparent and quantitative terms.

As is shown in the appendix, the inversion of Bayes’s Theorem requires the form and location of
the prior distribution to be specified. This in turn depends on whether the claim being challenged is of
significance or non-significance. In both cases, the necessary characteristics of the prior distribution can
be established by invoking the Principle of Fair-Minded Challenge.

In the case of statistically significant results, this implies challenge on the basis of fair-minded
scepticism. That is, the claim of statistical significance is challenged by a prior modelling the belief of
a hypothetical sceptic who regards the absence of an effect to be the most likely reality. Clearly, even the
most compelling evidence can be dismissed by adopting a suitably restrictive prior. Such gaming of the
inferential process is countered via the concept of fair-mindedness, by which the sceptic accepts that while
believing no effect to be the most likely reality, there remains a finite probability of an effect of some
magnitude.

Similarly, non-significant findings are challenged on the basis of fair-minded advocacy. This requires a
prior modelling belief in the existence of an effect of some non-zero magnitude, while accepting that this
magnitude cannot exceed some reasonable bound.

As we now show, in both cases this process of fair-minded challenge moves the assessment of findings
beyond the usual simplistic pass/fail dichotomy to focus instead on the significance or otherwise of a
finding in the context of current knowledge and insight.

4. AnCred for statistically significant findings
Following [9], we model the stance of fair-minded scepticism using a Normal distribution centred on no
effect, whose 95% tails are set by the requirement that when combined with the likelihood from the data,
the resulting posterior distribution renders the finding no longer credible at the 95% level. The range of
prior values capable of achieving this constitutes the CPI; only if existing knowledge supports values
lying outside the CPI can the claim of statistical significance be deemed to be credible at the 95% level.

The appendix derives the CPI for findings from comparative studies (e.g. intervention versus
control groups) expressed in the two most widely encountered formats: differences between means or
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‘no effect’
increasing
effect size

small study large study

broad CPI implies relatively
high prior effect sizes needed
for findings to be 95% credible

tighter CPI implies smaller
prior effect sizes needed to
make findings 95% credible

Scepticism Limit (SL) Scepticism Limit (SL)

‘no effect’

CPI
CPI

increasing
effect size

Figure 1. The sceptical CPI used to challenge claims of statistical significance. Large studies have relatively low SLs, making sceptical
challenge harder to sustain using existing evidence.

proportions, and ratios. In the case of a statistically significant difference stated as a 95% CI of (L, U), the
CPI has lower and upper bounds (−SL, +SL) where SL is the Scepticism Limit calculated from the data
via (see appendix §A.2 below, or [24])

SL = (U − L)2

4
√

UL
. (4.1)

Only if prior evidence exists for differences lying outside the range (−SL, +SL) can the claim of
significance be deemed credible at the 95% level. In the case of statistically significant ratios the CPI
has bounds of (1/SL, SL) where

SL = exp

[
ln2 (U/L)

4
√

ln( U) ln( L)

]
. (4.2)

Note that the CPI in both expressions depends on both the lower and upper bounds of the CI
summarizing the data. This reflects the fact that the credibility of a finding depends critically on
evidential weight, as indicated by the width of the interval (L, U). Findings from small studies with
broad CIs will have broad CPIs. As these encompass relatively large effect sizes, they offer considerable
latitude for successful challenge by a fair-minded sceptic using existing insight. By contrast, findings
from large studies will typically have tighter CPIs, reflecting their greater evidential weight. This in turn
narrows the range of effect sizes available to the sceptic for a successful challenge (figure 1).

The concept of fair-minded challenge is both intuitive and makes use of all the evidential content
in the CI summarizing the finding. It also requires that a claim of statistical significance be set in the
context of existing knowledge. This can come from, for example, previous studies of the same research
question, studies of broadly similarly phenomena, elicitation from experts, or combinations of these
and other sources of insight. AnCred allows all such sources to be used to substantiate a claim of
credible significance. However, it also requires their explicit specification in quantitative terms, in order
to demonstrate the existence of effect sizes outside the Scepticism Limit (SL). This feature of AnCred
thus makes an important extra demand of conventional significance testing, which focuses solely on
whether a summary CI excludes values corresponding to no effect, while taking no quantitative account
of evidential weight or existing knowledge.

5. AnCred for non-significant findings
Under AnCred, claims of non-significance are challenged on the basis of fair-minded advocacy, modelled
by a prior distribution that depends on the nature of the substantive hypothesis. For simplicity, we
will focus on cases where the substantive hypothesis implies differences in means exceed zero, and
ratios exceed unity (e.g. better test scores, or higher odds ratios for mortality); the results where these
inequalities are reversed follow by symmetry.

In these cases, the advocacy distribution has a lower bound set by the absence of an effect; this
reflects the advocate’s view that there is most likely some positive effect. The upper bound is set by the
advocate’s acceptance that the magnitude of any positive effect must be bounded (figure 2). In the case of
differences between means and proportions, these two conditions imply that claims of non-significance
can be challenged by advocates of a (positive) effect if they are able to cite prior evidence of effect sizes
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small study large study

broad CPI allows wide
range of prior effect sizes
to challenge claim of 
non-significance

tighter CPI narrows
range of prior effect sizes
able to challenge claim of 
non-significance

Advocacy Limit (AL)
Advocacy Limit (AL)

‘no effect’

CPI
CPI

increasing
effect size‘no effect’

increasing
effect size

Figure 2. The advocacy CPI for assessing claims of statistical non-significance. Non-significant findings from large studies have relatively
low ALs, limiting the range of effect sizes available to advocates to challenge the claim of non-significance.

lying within the advocacy CPI of (0, AL) where AL is the Advocacy Limit. For differences between means
and proportions stated as a CI of (L, U) the value of AL is (see appendix §A.3)

AL = −(U + L)
2UL

(U − L)2, (5.1)

while for findings expressed as ratios, the CPI is (1, AL) where

AL = exp

[
− ln( UL) ln2 (U/L)

2ln( U) ln( L)

]
. (5.2)

As with the sceptical prior, the presence of both U and L in (5.1) and (5.2) shows that AnCred reflects
the intuition that the credibility of non-significant findings depends on their evidential weight as reflected
by the width of their 95% CI. Studies with weak levels of non-significance will lead to broad CPIs
with considerable latitude for successful challenge using existing knowledge. By contrast, strongly non-
significant findings will lead to more restrictive ALs and narrower CPIs, as only these have enough
evidential weight to produce posterior distributions that exclude the null. AnCred thus highlights the
dangers of regarding non-significance as a sharp cut-off, beyond which a finding can be summarily
dismissed as ‘negative’. Rather, non-significance is, like significance, a matter of degree: some findings are
more compellingly non-significant than others. The stronger (weaker) the negative evidence, the harder
(easier) it becomes for advocates to challenge claims of non-significance (figure 2).

The criterion for determining the credibility of a claim of non-significance follows from the
requirement that advocates of the reality of an effect are not able to cite values within the advocacy
CPI capable of challenging the claim. As the advocacy CPI is necessarily asymmetric about no effect, the
criterion depends on the nature of the substantive hypothesis, but remains simple and intuitive: the non-
significance of a finding is credible if the central estimate M lies on the opposite side of the null line from
effect sizes consistent with the substantive hypothesis. Thus, for differences of means or proportions, if
the substantive hypothesis is for effect sizes greater (less) than zero, a non-significant finding with M less
(greater) than zero is also credible. The criterion for ratios follows by replacing zero with unity.

It should be emphasized that advocates of the existence of an effect can still challenge the non-
significance, but not within the definition of fair-minded advocacy defined by AnCred. Instead, they
must invoke custom-made priors to model their beliefs, and make the case for their choice on the basis
of prior knowledge and insight.

6. Unprecedented findings and intrinsic credibility
Thus far, we have assumed there exists quantitative prior evidence suitable for comparison with the
Scepticism and Advocacy Limits (ALs) generated by AnCred. This is not always the case, however; by
its very nature, scientific research can lead to findings without obvious precedent, and for which relevant
prior evidence does not exist. Such ‘out of the blue’ findings commonly emerge from exploratory studies,
and are perhaps most familiar in epidemiology, which is replete with claims of seemingly implausible
causal connections between some environmental exposure and negative health effects (see [25,26]).

As noted earlier, the assessment of evidence in the absence of relevant prior insight is a long-standing
challenge to inference in general, and Bayesian methods in particular, where it constitutes the notorious
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small study large study

broad CPI includes
most probable value
of effect size, M

tighter CPI no
longer includes
most probable
value, M

data
data

M

M

CPI CPI

‘no effect’ ‘no effect’
increasing
effect size

increasing
effect size

(b)(a)

Figure 3. Small studies (a) have CPIs so broad they may encompass the most probable effect size, M. Their statistical significance will
then lack intrinsic credibility. In contrast, large studies (b) have relatively narrow CPIs less likely to encompassM, and thus more likely to
make their statistical significance intrinsically credible.

‘Problem of Priors’. AnCred provides a framework for handling these problematic cases via the concept
of intrinsic credibility.

Recall that AnCred allows the credibility of claims of statistical significance to be challenged if existing
evidence points to effect sizes lying within the CPI of the findings. In the case of ‘out of the blue’ findings,
however, the only existing insight is from the study itself. The most probable magnitude of the effect size
is then given by the mode of the data-driven likelihood, which for normally distributed parameters is the
central estimate M. Findings with relatively low evidential weight will, however, have broad CPIs, and
these may be so large they include the central estimate M. This implies that the statistical significance
of the finding can only be deemed credible if there is already prior evidence for effect sizes greater than
that being claimed. This is clearly problematic for unprecedented ‘out of the blue’ findings, for which
there is no evidence other than that provided by the study itself. In such cases, the finding may be
said to be statistically significant but lacking intrinsic credibility. On the other hand, for unprecedented
findings whose central estimate lies outside the CPI, we can say that the claim of statistical significance
is intrinsically credible. Put colloquially, the unprecedented study has made its case ‘in its own terms’,
without needing pre-existing insight. This is clearly a more onerous demand for smaller studies: their
CPIs are broader, and thus require larger effect sizes to achieve intrinsic credibility (figure 3).

The criterion for a claim of statistical significance for an unprecedented finding being intrinsically
credible is that M lies outside the sceptical CPI, which for differences in means and proportions implies
that (see appendix §A.4)

M < αL, (6.1)

where α = 1 + ϕ + √
1 + 2ϕ ∼ 4.6757 and ϕ = (1 + √

5)/2 ∼ 1.618 . . .

For ratios the corresponding requirement is

M < L4.68. (6.2)

Remarkably, these inequalities can both be re-cast as a p-value threshold, below which a claim of
statistical significance may be said to be intrinsically credible. At the conventional 95% level the criterion
for intrinsic credibility is equivalent to a p-value threshold of

p ≤ 0.013. (6.3)

While convenient and familiar, it must be stressed that this p-value threshold serves an
entirely different purpose from those used in conventional significance testing. Through their (mis-)
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interpretation as a time-invariant measure of the inferential value of findings, p-value thresholds are used
to justify pass/fail categorizations which hold for all time, regardless of the emergence of new evidence.
Under AnCred, by contrast, (6.3) determines whether an unprecedented but statistically significant
finding requires support from external sources of evidence if it is also to achieve credibility at the 95%
level. Flagging this up is clearly valuable in assessing unprecedented studies where prior evidence is
lacking. Equally clearly, however, failure to meet the threshold for intrinsic credibility cannot be grounds
for dismissing a finding, as the necessary supporting evidence may emerge over time. As such, attempts
to interpret (6.3) in terms of conventional ‘significance’, evidential weight, Bayes Factor bounds etc. are
inappropriate.

The criterion for determining if the statistical non-significance of an unprecedented finding is also
intrinsically credible follows from the discussion at the end of the previous section.

7. Illustrative examples of the use of AnCred
Having described its fundamental concepts and their implications for conventional significance testing,
we now show how to apply AnCred to prototypical claims of statistical significance and non-significance.

To demonstrate the use of AnCred we follow [27] and consider two sets of studies of the same research
question, in the form of five small (N = 100) and five large (N = 1000) randomized trials (table 1). Each
trial compares the response rates of the N/2 subjects in the intervention arm to those in the control
arm. There is a different response rate in each intervention arm, while that in the control arm is fixed at
20%, and the substantive hypothesis is for odds ratios (ORs) > 1. For both sets, the first two trials have
statistically significant differences; the next two have non-significant differences with central estimates
consistent with positive effects (i.e. ORs > 1), while the final variant has a central estimate consistent with
a negative effect (OR < 1). The table gives the resulting standard summary statistics, p-values and 95%
CI bounds, while the last two columns gives the outcome of applying AnCred. The first of these gives
the SL or AL capable of challenging the claim on the basis of existing knowledge and insight. These are
calculated from the 95% CI for the trial results using (4.2) and (5.2) above. The second shows whether the
claim of significance or non-significance for an unprecedented finding lacking prior support meets the
requirement for intrinsic credibility.

Conventionally, the assessment of such findings focuses on the central estimate of the 95% CI and
especially on whether its bounds exclude values implying no effect (or, equivalently, whether p < 0.05).
By those criteria, the most impressive finding in table 1 appears to be S1, with its large central estimate
OR of 4.33 and high level of significance (p = 0.001). Conventional analysis of the much larger trial L1,
meanwhile, would highlight its more modest central estimate. Nevertheless most researchers would
regard the outcome of L1 as in some sense more ‘convincing’, on the grounds that it is based on a much
larger trial. This intuition cannot be justified by appeal to the p-values, however, as they are the same for
both studies. The 95% CIs do give more justification for preferring L1 over S1, as the former is tighter
than the latter, reflecting its greater evidential weight.

AnCred replaces this kind of fuzzy, qualitative judgement with a principled and well-founded
quantitative assessment. First, the intuition that L1 is more compelling than S1 is confirmed by
comparison of their SLs. Trial S1 requires prior evidence of effect sizes exceeding an OR of 2.0 if its
claim of statistical significance is to be credible at the 95% level. By contrast, L1 requires prior evidence
for ORs above 1.24, a substantially less demanding value resulting directly from its greater evidential
weight. Second, AnCred allows assessment of whether S1 and/or L1 actually are credibly significant at
the 95% level to be performed transparently and quantitatively by comparing their SLs with effect sizes
based on extant evidence.

For trials S2 and L2, their p-values of approximately 0.03 show that both are again formally statistically
significant. As before, however, AnCred confirms the intuition that the larger trial L2 makes a stronger
case than S2, despite the similar p-values: while the latter requires prior support for effect sizes exceeding
an OR of 7.3, L2 can achieve credible significance from the much less demanding SL OR of 1.69. These
two trials also highlight the ability of AnCred to add value to standard significance testing in the case
of unprecedented findings. If S2 and L2 were both exploratory trials, both would be deemed to have
found statistically significant evidence of an ‘out of the blue’ effect. However, AnCred shows that neither
claim is credible as they both fail to meet the criterion for intrinsic credibility of p < 0.013. It is notable
that despite being 10 times larger than S2, the statistical significance of L2 still lacks intrinsic credibility.
It must await the emergence of evidence for effect sizes exceeding ORs of 1.69 before its statistical
significance can be deemed credible.
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Table 1. Prototypical examples of AnCred assessments of the credibility of statistically significant and non-significant findings in both
the presence and absence of prior evidence. OR, odds ratio.

AnCred

trial variant
intervention
response rate

central
estimate (OR) p-value

95% CI
lower
bound (OR)

95% CI
upper
bound (OR)

scepticism/
advocacy
limit (OR)

intrinsically
credible if no
prior evidence?

small trials (n= 100)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

statistically significant results
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

S1 52% 4.33 0.001 1.78 10.5 SL= 2.0 yes
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

S2 40% 2.67 0.03 1.09 6.52 SL= 7.3 no
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

statistically non-significant results
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

S3 36% 2.25 0.08 0.91 5.55 AL� 100 no
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

S4 26% 1.41 0.48 0.55 3.59 AL= 4.8 no
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

S5 18% 0.88 0.80 0.32 2.39 none available yes
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

large trials (n= 1000)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

statistically significant results
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

L1 29% 1.63 0.001 1.22 2.18 SL= 1.24 yes
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

L2 26% 1.41 0.025 1.045 1.89 SL= 1.69 no
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

statistically non-significant results
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

L3 25% 1.33 0.06 0.99 1.80 AL� 100 no
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

L4 23% 1.20 0.25 0.88 1.62 AL= 2.9 no
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

L5 19% 0.95 0.74 0.67 1.33 none available yes
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The implications of AnCred are also striking when applied to the outcome of trials S3 and L3,
whose p-values are in the range 0.05 < p < 0.10, leading to euphemistic descriptions such as ‘fairly
significant’, ‘approaching significance’ etc. [28]. Despite both being formally non-significant, the 95%
CIs of S3 and L3 lead to very high ALs. Thus neither trial puts useful constraint on advocates of the
substantive hypothesis who seek to challenge the claim of non-significance. This reflects the fact that
while the 95% CIs of both trials encompass no effect, their central estimates M both exceed unity.
As such, the bulk of their evidential weight remains consistent with the substantive hypothesis of
ORs > 1. AnCred thus confirms the widely held belief that findings lying in the inferential twilight
zone of 0.05 < p < 0.10 are inferentially unsatisfactory. Simply put, both S3 and L3 lack the evidential
weight to make a credible claim for or against statistical significance, and only more data can resolve
the ambiguity.

By contrast, trials S4 and L4 show how AnCred can extract considerable insight from non-significant
findings, so often automatically dismissed as ‘negative’. The moderately high p-values of both S4 and
L4 (0.48 and 0.25, respectively) show that both are formally non-significant. However, as both also have
central estimates exceeding ORs of 1.0, it is clear that both still provide some support for the substantive
hypothesis. AnCred reflects this via ALs for these two studies of 4.8 and 2.9, respectively. Thus while the
studies are non-significant, the credibility of this claim can still be challenged by advocates who accept
effect sizes are unlikely to exceed ORs of 4.8 and 2.9, respectively. AnCred thus shows how the weight
of (negative) evidence in studies constrains the effect size that advocates can still defend. As with the
sceptical challenge of statistically significant results, advocates wishing to resist this constraint can do so
via appeal to prior evidence. As one would expect—and as we saw with S3 and L3—studies with modest
evidential weight against an effect—and thus high ALs—are more easily challenged by advocates than
large studies with tight ALs.

Finally, trials S5 and L5 illustrate the case of compelling evidence against the existence of an effect.
Their central values both lead to ALs lying outside the range used in AnCred to model fair-minded
advocacy. They therefore offer no effect sizes to advocates of ORs > 1 capable of challenging the claim of
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non-significance, which is therefore credible under AnCred. This is a direct consequence of both having
the bulk of their evidential weight at ORs < 1, contradicting the substantive hypothesis.

As noted earlier, advocates of the existence of an effect can of course still challenge the claim of non-
significance, but to do so they must invoke custom-made priors to model their beliefs, justifying their
choice on the basis of prior knowledge and insight.

8. AnCred and ‘discordant’ findings
One of the principal drivers of the ASA’s Statement was concern over the failure rate of attempted
replications of highly cited findings [6]. Such failures are usually judged on the basis of significance
testing, with discordant findings being those lying on opposing sides of the p = 0.05 threshold. AnCred
shows this to be an unreliable dichotomy.

Suppose trial S1 in table 1 was an exploratory study to investigate a substantive hypothesis such that
ORs > 1. Conventionally, the central OR of 4.3 combined with its high statistical significance (p = 0.001)
would be deemed impressive evidence of efficacy. AnCred adds further credence to the finding, by
showing that despite being exploratory and thus lacking prior evidential support, it possesses sufficient
evidential weight for its statistical significance to be intrinsically credible. Suppose now that an attempt
to replicate this claim was made in a second, much larger trial such as L3 in table 1. Attention would
typically focus on the fact that L3 has a 95% CI encompassing OR = 1 (or equivalently that the trial’s p-
value exceeds 0.05), implying the finding is not significant. This in turn would lead to L3 being classified
as a ‘negative’ finding, and thus to S1 and L3 being ‘discordant’. Furthermore, given the size of L3, its
apparent failure to confirm S1 would be regarded as strong evidence against the substantive hypothesis.

The unreliability of this reasoning is immediately apparent from the summary statistics of S1 and L3,
which shows that both trials have central estimates exceeding unity. Thus despite the small size of S1
and the non-significance of L3, in both cases the bulk of their evidential weight is consistent with the
substantive hypothesis.

This highlights the fallacy of confusing absence of evidence with evidence of absence [29,30]. AnCred
provides additional protection against this fallacy by taking explicit account of the full evidential content
of the summary statistics. First, it shows that despite being relatively small and lacking prior evidential
support, the effect size found in S1 is both statistically significant and intrinsically credible. Second,
it shows that despite its size, L3’s claim of non-significance lacks credibility at the 95% level for all
reasonable ALs. This is essentially because the central value of L3 is such that the bulk of its evidence is
still consistent with the existence of an effect.

AnCred thus shows that S1 and L3 are not discordant in the sense of providing impressive evidence
for opposing effects; indeed, the central—and thus most probable—effect size estimates are consistent
with each other, both pointing to the reality of a positive effect. This is supported by a simple ‘meta-
analysis’ of the two studies: combining the relevant numbers in the various arms of S1 and L3 leads to
an updated OR of 1.51, with a 95% CI of (1.14, 2.00), which remains highly statistically significant (0.004).
It is also credible at the 95% level for ORs exceeding 1.3, which is a somewhat tighter CPI than S1 alone.
Thus, rather than diluting the evidence for an effect, the addition of the supposedly ‘discordant’ larger
study has in fact pushed sceptics into a somewhat tighter corner. Indeed, an advocate of the existence
of an effect could challenge L3’s non-significance simply by pointing out that the entire 95% CI of the
original study S1 lies comfortably within L3’s AL.

The outcome of subjecting these two studies to AnCred is thus in stark contrast to the standard
assessment of discordancy, with its misguided focus on the location of tails and neglect of central values.

9. Conclusion
After decades of debate, there is now a consensus among statisticians that misuse and misinterpretation
of significance testing is routine, widespread and threatens the credibility of both the statistical
community and the scientific enterprise. In the words of Berry: ‘Patients with serious diseases have
been harmed. Researchers have chased wild geese . . . The effects extend to the public and affect the
lay person’s understanding and appreciation of science’ [31]. Nevertheless, there remains no consensus
on the way forward, despite a plethora of suggestions ranging from a simple tightening of the p-value
threshold [32] through false discovery risk methods [33,34] and Bayes Factors [35] to sophisticated
Bayesian hierarchical modelling [36].
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As a response to the call to move towards the ‘post p < 0.05 era’, the AnCred has been developed in the

spirit of evolution rather than revolution. Rather than requiring the wholesale replacement of familiar
methods and metrics, AnCred provides a framework for extracting more insight from them, while
reducing the risk of inferential misinterpretation. Its focus on CIs leads to more informative summaries of
findings than simple statements of p-values; these also allow more sophisticated techniques to be applied
without requiring substantial additional information. By incorporating them into a Bayesian framework,
AnCred also gives CIs a central role in the accumulation of insight of direct relevance to the substantive
hypothesis, again in marked contrast to p-values.

The application of AnCred allows findings to be categorized using the familiar labels of statistical
significance and non-significance, but crucially it does not end there. Instead, it subjects each claim to
fair-minded challenge, on the basis of scepticism of the substantive hypothesis in the case of statistically
significant results, and advocacy of the existence of an effect for non-significant results. Thus the
traditional simplistic dichotomization centred on p-values is replaced by a process that encourages
transparent discussion of findings in the context of existing knowledge. A finding may be statistically
significant, yet possess so little evidential weight that it lacks credibility according to current extant
evidence. However, this may change in the light of subsequent research; AnCred allows reconsideration
of findings in a way precluded by the one-shot, pass/fail dichotomization of conventional significance
testing. At the same time, the use of SLs and ALs compels researchers to be transparent and explicit in
their use of extant evidence to defend or challenge a specific finding.

Cutting-edge research necessarily produces findings lacking any obvious precedent, and assessing
such findings has been a long-standing inferential challenge. AnCred offers an approach based on the
concept of intrinsic credibility, by which claims of significance/non-significance can be assessed even in
the absence of external prior evidence.

As with any inferential method, AnCred rests on assumptions and models that are open to challenge.
Notably, it requires findings to be stated in terms of CIs, assumes (log)normality and models the concepts
of fair-minded scepticism and advocacy in ways that may not be appropriate in specific circumstances.
The basic AnCred framework can, however, be modified to incorporate more complex models, albeit
at the cost of ease of use and interpretation. Abandoning the use of conjugate distributions would, for
example, necessitate the use of computational methods beyond the capabilities of most research workers,
for whom AnCred has principally been devised. In addition, while the focus of this paper has been on
assessing comparative studies, there is clearly substantial scope for extending the same approach to other
aspects of inference, such as regression and correlation analysis.

In the meantime, AnCred already has the potential to cast new light on implausible, ‘negative’ and
‘discordant’ claims in the existing research literature. Given the proven inadequacies of conventional
significance testing, such retrospective analysis is likely to add urgency to calls to move to a ‘post p < 0.05
era’.
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Appendix
A.1. General framework
The purpose of AnCred is to move beyond standard significance testing by assessing findings on the
basis of their evidential weight, and their credibility in the context of existing knowledge. It does this by
determining the range of effect sizes capable of challenging a claim of significance or non-significance.
If effect sizes lying outside this range—known as the CPI—can be justified by the finding itself or by
existing insight and knowledge, then the finding can be deemed credibly significant/non-significant.
The process of challenge is operationalized via Bayes’s Theorem which is used to deduce the prior
distribution capable of producing a posterior distribution that just encompasses values corresponding
to no effect. The study finding itself is modelled using the Normal distribution N(μ, φ), leading to the
familiar format of a 95% CI of (L, U) where

L = μ − 1.96
√

φ and U = μ + 1.96
√

φ. (A 1)
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The prior distribution N(μo, φo) capable of mounting the challenge is deduced from the data by

inverting Bayes’s Theorem, subject to the constraint that the resulting posterior distribution N(μP, φP)
gives a 95% credible interval (LP, UP) that just includes no effect. The means and variances of the
likelihood, prior and posterior satisfy the standard equations (see [20])

1
φP

= 1
φ

+ 1
φo

,
μP

φP
= μ

φ
+ μo

φo
. (A 2)

The form of the CPI distribution depends on whether the claim being challenged is of statistical
significance or non-significance. We address each case in turn. For brevity and simplicity only the CPIs
for differences in means and proportions are derived; the corresponding expressions for ratios follow
directly from the transformation L → ln( L) etc. Unless otherwise stated, we also adopt the convention
that differences and ratios exceeding the null value constitute support for the substantive hypothesis.
While we focus on conventional 95% intervals, the credibility level of the CPI can take any value and
depends solely on that used to specify L and U; for example, if the latter are 99% bounds, the credibility
level of the CPI will also be 99%.

A.2. The CPI for statistically significant results
The parameters of the prior distribution capable of challenging such findings are specified using the
Principle of Fair-Minded Challenge (see main text). For statistically significant results, this leads to the
fair-minded scepticism prior (figure 1, main text). The corresponding CPI is symmetrically centred on
μo = 0 corresponding to no effect being deemed the most likely value by the sceptic; then for a
substantive hypothesis of differences exceeding zero, the 95% upper bound is given by a Scepticism Limit
of SL = μo + 1.96

√
φo with prior variance φo. As μo = 0 we have

SL = 1.96
√

φo. (A 3)

For a finding to be credible at the 95% level, the posterior distribution must satisfy the inequality
μP − 1.96

√
φP ≥ 0. Thus at the critical value, we have

μP = 1.96
√

φP. (A 4)

The likelihood capturing the study findings is summarized via a 95% CI of (L, U), from which both μ

and ϕ can be extracted. We now have the means and variances needed to apply (A 2) and solve for the
CPI in the form of a 95% CI (−SL, +SL) where

SL = (U − L)2

4
√

UL
. (A 5)

The corresponding result for ratios follows by applying the transformation U → ln(U) etc. leading to
a CPI of (1/SL, SL), where SL is given by equation (4.2) in the main text.

A.3. The CPI for statistically non-significant results
For non-significant results, the Principle of Fair-Minded Challenge implies that the parameters of the
prior distribution capable of challenging such findings are given by the fair-minded advocacy prior
(figure 2, main text) appropriate to the substantive hypothesis under test. For studies where the
substantive hypothesis is that differences exceed zero, the advocacy CPI has a lower bound at μo = 0
and an upper bound set by the Advocacy Limit (AL) which satisfies the conditions

0 = μo − 1.96
√

φo, AL = μo + 1.96
√

φo. (A 6)

As before, the posterior distribution is required to be such that 0 = μP − 1.96
√

φP so that μP =
1.96

√
φP, while both μ and φ are extracted from the study outcome CI of (L, U). Inserting the various

terms into the Bayesian conditions (A 2) and solving for AL, we find that the CPI for non-significant
findings in this case is (0, AL) where

AL = − (U + L)(U − L)2

2LU
. (A 7)

If extant evidence points to effect sizes lying in the range (0, AL), advocates of the existence of a
(positive) effect can challenge the claimed non-significance of the finding. For the criterion necessary
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for non-significance to be credible, note that as L and U for non-significant results have opposing signs,
the denominator of (A 7) is always negative. Thus AL < 0 ∀ M < 0 which by definition cannot lie within
the advocacy CPI. Thus advocates of a (positive) effect cannot invoke any values from existing evidence
capable of challenging the non-significance. Hence when the substantive hypothesis is for differences
exceeding zero, a claim of non-significance is always credible under AnCred if M < 0. The equivalent
criterion for ratios follows from the usual transformation M → ln(M), leading to M < 1.

A.4. Intrinsic credibility of statistically significant findings
Intrinsic credibility determines whether an unprecedented finding possesses sufficient evidential weight
to be regarded as credible in its own right. In AnCred this is modelled by requiring that the most probable
value of the finding lies outside its own CPI, thus making it credible even in the absence of prior evidence.
In the case of statistically significant findings, let the central estimate and CI for the quantity of interest be
M(L, U), where L > 0. Then in the absence of prior insight, the most probable value for the effect size is the
mode of the likelihood, which in the case of the Normal distribution is M. Thus for a statistically significant
result to have intrinsic credibility, M must lie outside the CPI that models fair-minded scepticism. In the
case of differences in means and proportions, equation (4.1) in the main text implies

M >
(U − L)2

4
√

UL
. (A 8)

Let U = kL, k > 1. Then M = (k + 1)L/2, and (A 8) leads to a critical value k such that

(k + 1)
2

= (k − 1)2

4
√

k
.

This leads to a unique relevant root of

k = 2 +
√

5 + 2
√

2 +
√

5 ∼ 8.3524 . . .

As M = (k + 1)L/2, the criterion needed for a statistically significant result to be intrinsically credible
becomes

M < αL where α = 1 + ϕ +
√

1 + 2ϕ ∼ 4.6762 . . . , (A 9)

and ϕ = (1 + √
5)/2 ∼ 1.618 . . . is the so-called Golden Ratio. The appearance of an upper bound reflects

the fact that the likelihood representing the data must contain sufficient evidential weight—and thus be
sufficiently compact—to ‘make its case’ in its own terms. The equivalent result for the intrinsic credibility
of statistically significant ratios follows from the usual logarithmic transformation, leading to

M < L4.68. (A 10)

Remarkably, both (A 9) and (A 10) are equivalent to a specific p-value threshold. In the case of (A 9), for
findings stated as conventional 100 k% CIs of (L, U), the p-value is

pK = 2
{

1 − Φ

[
zK

(
U + L
U − L

)]}
, (A 11)

where Φ[ . . . ] is the Normal cumulative function and z0.90 = 1.645, z0.95 = 1.960, z0.99 = 2.576 etc. As
U = 2M − L and M < 4.6762L from (A 9), the threshold in the standard case of differences in means and
proportions summarized by a 95% CI is

p0.95 < 2
{

1 − Φ

[
1.96

(
1

1 − 1/4.6762

)]}
= 0.0127. (A 12)

The same threshold applies to findings expressed as 95% CI for ratios. Only unprecedented findings
with p-values meeting this upper bound possess sufficient evidential weight to be credibly statistically
significant without support from prior evidence.
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