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Abstract: RNAs may act as competing endogenous RNAs (ceRNAs), a critical mechanism in
determining gene expression regulations in many cancers. However, the roles of ceRNAs in thyroid
carcinoma remains elusive. In this study, we have developed a novel pipeline called Molecular
Network-based Identification of ceRNA (MNIceRNA) to identify ceRNAs in thyroid carcinoma.
MNIceRNA first constructs micro RNA (miRNA)–messenger RNA (mRNA)long non-coding RNA
(lncRNA) networks from miRcode database and weighted correlation network analysis (WGCNA),
based on which to identify key drivers of differentially expressed RNAs between normal and tumor
samples. It then infers ceRNAs of the identified key drivers using the long non-coding competing
endogenous database (lnCeDB). We applied the pipeline into The Cancer Genome Atlas (TCGA)
thyroid carcinoma data. As a result, 598 lncRNAs, 1025 mRNAs, and 90 microRNA (miRNAs)
were inferred to be differentially expressed between normal and thyroid cancer samples. We then
obtained eight key driver miRNAs, among which hsa-mir-221 and hsa-mir-222 were key driver RNAs
identified by both miRNA–mRNA–lncRNA and WGCNA network. In addition, hsa-mir-375 was
inferred to be significant for patients’ survival with 34 associated ceRNAs, among which RUNX2,
DUSP6 and SEMA3D are known oncogenes regulating cellular proliferation and differentiation in
thyroid cancer. These ceRNAs are critical in revealing the secrets behind thyroid cancer progression
and may serve as future therapeutic biomarkers.

Keywords: competing endogenous RNA; long non-coding RNA; regulatory network; WGCNA;
differentially expressed RNAs; thyroid carcinoma

1. Introduction

Thyroid cancer is the most common malignancy of endocrine organs with enormous heterogeneity
in terms of morphological features and prognosis [1]. Although most thyroid carcinomas tend to be
biologically indolent and have a good prognosis, there are a few associated with more aggressive
clinical manifestations [2]. Thyroid carcinoma is popularly classified into four classes including
anaplastic thyroid carcinoma (ATC), follicular thyroid carcinoma (FTC), medullary thyroid carcinoma
(MTC), and papillary thyroid carcinoma (PTC) [3], among which PTC is most common [4,5]. In 2017,
there are approximately 56,870 new thyroid cancer incidences, representing about 3.4% of all new
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cancer cases worldwide [6]. Similarly, in the United States, the incidences of thyroid carcinoma
increased steadily by around 6.6% each year from 2002 to 2009, which is the highest among all
cancers [7]. In fact, thyroid cancer has become the fifth most common cancer in women [7,8].

Even though thyroid cancer harbors several highly universal genetic alterations, some of which
are unique to this cancer [3], it is still very challenging to predict this cancer due to the complex disease
progression process and complicated molecular interactions involved in it. Over the past decades,
numerous studies have been performed to predict this cancer based on molecular, morphological, and
immunological features [9], most of which focused on the detection of cancer-related protein-coding
genes. However, it is known that protein-coding RNAs only cover approximately 2% of the total
transcripts in mammalian [10], which urges the need to study the functions of non-coding RNAs
(ncRNAs), especially long ncRNAs (lncRNAs) [11].

Recently, significant progresses have been achieved in exploring lncRNA biology [12].
For example, the lncRNA PVT1 was shown to be up-regulated in PTC, FTC, and ATC; MALAT1
was inferred to be involved in the regulation of cell cycle and migration [13]. However, most studies
only focus on a subset of lncRNAs with specific regulatory mechanisms, while less is known on a
transcriptome wide scale [14]. Moreover, the interaction mechanism between many kinds of RNAs are
still elusive. Recent studies suggest that RNAs regulate each other’s expression levels by competing
for a limited pool of microRNAs (miRNAs) in some circumstances [15,16]. In particular, Poliseno
and his colleagues proposed a hypothesis: there exists an intricate post-transcriptional regulatory
network mediated by miRNAs, in which non-coding RNAs and protein-coding RNAs compete for
binding to miRNAs and regulate each other’s expression via sharing one or more miRNA response
elements (MREs) [15]. The ncRNAs and protein-coding RNAs are called competing endogenous RNAs
(ceRNAs) in the hypothesis.

ceRNA hypothesis demonstrates a new level of post-transcriptional regulation [17]. Given that
even complete relief from repression by a miRNA usually has only mild effects on an individual
mRNA, this theory highlights the importance of sharing binding sites for different miRNAs to yield
substantial crosstalk [18–20]. ceRNAs may play a major role in certain dis-regulated or transient
cellular states. For instance, it has been shown that the expression of tumor-suppressor gene PTEN can
be regulated by its miRNA-mediated competitors VAPA, CNOT6L, SERINC1 or ZNF460 [21]. Especially,
such mechanisms seem to be of particular relevance in cancer. For example, the lncRNA linc-MD1 has
been shown to regulate the skeletal muscle cell differentiation clock by sponging miRNAs from its
competitors, thereby enacting a ceRNA mechanism. In this ceRNA mechanism, MAML1 and MEF2C
compete with linc-MD1 for miR-133 and miR-135, respectively [22,23]. Nevertheless, it is very difficult
to build the exact ceRNA network and use it to understand RNA competing mechanisms. Fortunately,
there are many well-established RNA databases such as long-non-coding RNA-associated diseases
(LncRNADisease) database [24], the Human miRNA Disease Database (HMDD) [25], and database
of Differentially Expressed MiRNAs in human Cancers dbDEMC [26]. In addition, miRNA-target
interaction databases including miRcode [27] and miRanda [28–35], and ceRNA databases such as
long non-coding competing endogenous database (lnCeDB) [36] have been developed, which provide
much useful information.

In this study, we develop a novel pipeline called Molecular Network-based Identification of
ceRNA (MNIceRNA) to identify ceRNAs in thyroid carcinoma. MNIceRNA first performs differential
RNA analyses using edgeR [37], and then constructs gene co-expression and regulatory networks
using machine learning based methods such as weighted correlation network analysis WGCNA [38]
and known interaction data downloaded from databases such as miRcode. Finally, MNIceRNA focuses
on thyroid carcinoma associated key driver genes (KDGs) and constructs a ceRNA network according
to the lnCeDB [36]. The functions of the identified KDGs are also explored.
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2. Materials and Methods

2.1. Data Collection and Pre-Processing

We downloaded RNA expression profiles of thyroid cancer and control samples from the Genomic
Data Commons (GDC) data portal [39,40] and patient’s clinical information (see Table 1) from The
Cancer Genome Atlas (TCGA) database [39,40]. Specifically, there are 559 samples used in this study,
including 501 primary tumor samples and 58 solid tissue normal samples. The Genome research
project of ENCyclopedia of DNA Elements (GENCODE) (GRCh38) (v25) catalogue (http://www.
gencodegenes.org/) was used as a reference to quantify lncRNAs and mRNAs. In summary, 15,540
lncRNAs and 19,848 mRNAs from RNA-Sequencing (RNA-Seq) and 1881 miRNAs from miRNA-Seq
were retrieved.

Table 1. Clinical information of the 559 samples used in this study.

Characteristic Numbers

Sample type Primary tumor 501
Solid tissue normal 58

Age Median 47
Range [years] 15~89

Sex Male 152
Female 407

Vital status Alive 539
Dead 20

Stage I 315
II 59
III 124
IV 2

2.2. Differential Gene Expression Analysis

We applied edgeR to identify differentially expressed RNAs [37]. Specifically, the gene read
counts were first processed with one scaling normalized factor from Trimmed Mean of M values
(TMM) [41]. The negative binomial (NB) model was then applied to calculate the significance of RNAs,
followed by an adjustment of p-values using the Benjamini–Hochberg method [42]. The cut-off values
for significantly expressed RNAs were: (1) the false discovery rate (FDR, the adjusted p value) < 0.001;
and (2) |log2 fold change (FC)| > 2 [5].

2.3. Construction of Gene Regulatory Network

We reconstructed the regulatory network using data combining lncRNAs, mRNAs, and
miRNAs. The lncRNA–miRNA interactions and miRNA–mRNA interactions were downloaded
from miRcode [27]. We then adopted a software called key driver analysis (KDA) [43] to identity key
drivers in the regulatory network. Specifically, KDA takes a set of genes G and a directed gene network
N as inputs. In our study, G is the differentially expressed RNAs and N is the regulatory network [44].

2.4. Construction of Gene Co-Expression Network

We inferred the co-expression network for a set of 32,209 RNAs including lncRNA, miRNA
and mRNA using weighted gene co-expression network (WGCNA) algorithm [45], which was then
visualized by Cytoscape 3.4.0 [12,46].

2.5. Survival Analysis

Survival analysis was performed using Cox proportional hazards regression models, with RNA
expression in samples established as a binary variable. Because patient’s age and tumor stage have
been interpreted to deeply influence molecular traits and clinical effect in thyroid cancer, we limited
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our initial cohort to primary tumor >Stage I patients. Specifically, we performed survival analyses
for 9 (8 miRNA from miRcode, and 1 miRNA from WGCNA) miRNA, 80 lncRNA, and 190 mRNA
(Table S1). p-values generated under this model were corrected for multiple-hypothesis testing using
the Benjamini–Hochberg correction, with a significance threshold of FDR < 0.05 [47].

2.6. Function Enrichment

For clustering analysis of the significantly expressed RNAs, a pairwise complete-linkage
hierarchical clustering method was employed to calculate the Euclidean distance. The results were
shown using a heat map generated from the software packages cluster 3.0 [48] and TreeView [49].
In addition, differentially expressed genes (DEGs) were annotated by the Database for Annotation,
Visualization and Integrated Discovery (DAVID) tool (V6.8) [50,51], and Kyoto Encyclopedia of Genes
and Genomes (KEGG) analysis was also used to discover the potential pathways involved [12].

3. Results

3.1. Differentially Expressed RNAs between Primary Tumor and Control Samples

A total of 60,488 genes from RNA-Seq including 15,540 (26%) lncRNAs and 19,848 (33%) mRNAs
were detected according to GENCODE (GRCh38) (v25) annotation. We also obtained 1881 miRNAs
from miRNA-Seq. Similar to the genotype-tissue expression (GTEx) study [52], we performed a few
data processing steps to require that genes to have at least 0.1 fragments per kilobase million (FPKM)
in 2 or more individuals followed by quantile normalization across genes. In total, 14,848 lncRNAs,
16,575 mRNAs, and 786 miRNAs were left after the filtering. Based on the differential analyses,
we inferred 463 up-regulated differentially expressed lncRNAs and 135 down-regulated differential
lncRNAs, 812 up-regulated differential mRNAs and 213 down-regulated differential mRNAs, and
82 up-regulated differential miRNAs and eight down-regulated miRNAs respectively (Table S2).
We selected a few top differential RNAs in each category and plotted their expression heat-maps in
Figure 1.

3.2. Enriched Functions of Differentially Expressed RNAs

mRNAs: The functional enrichment analysis revealed that up-regulated DEGs were significantly
enriched in the synthesis and degradation of extracellular matrix (ECM) related terms such as ECM
organization (GO:0030198, FDR = 7.76 × 10−7) and ECM disassembly (GO:0022617, FDR = 0.05),
collagen catabolic process (GO:0030574, FDR = 2.85 × 10−5), and cell adhesion (GO:0007155,
FDR = 4.3 × 10−7) (Table S3). Based on the pathway enrichment analysis, the over-represented
pathways of up-regulated DEGs was Neuroactive ligand-receptor interaction (hsa04080,
FDR = 7.05 × 10−5) (Table S4). We also plotted the top enriched gene ontology (GO) and KEGG
terms in Figure 2 for a better view. Our results are basically in line with Qiu et al. [5], especially
ECM–receptor interaction, activation of MAPK activity and positive regulation of MAPK cascades [53].

lncRNAs: There are only 3 differentially expressed lnRNAs annotated in GO, namely
RP11-161M6.2, ELFN2 and LINC00473. ELFN2 and LINC00473 were assigned to GO term “negative
regulation of phosphatase activity (GO:0010923)” and “transcription, DNA-templated (GO:0006351)”,
respectively. RP11-161M6.2, also called lipase maturation factor 1 (LMF1), played significant roles in
many GO terms including triglyceride metabolic process (GO:0006641), endoplasmic reticulum (ER) to
Golgi vesicle-mediated transport (GO:0006888), protein secretion (GO:0009306), protein glycosylation
in Golgi (GO:0033578), chylomicron remnant clearance (GO:0034382), lipid digestion (GO:0044241),
positive regulation of lipoprotein lipase activity (GO:0051006), protein maturation (GO:0051604),
regulation of cholesterol metabolic process (GO:0090181), and regulation of triglyceride metabolic
process (GO:0090207). In addition, there is only one lncRNA MIR205HG annotated in KEGG pathway
“MiRNAs in cancer (hsa05206)”.
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Figure 1. Heat-maps on expressions of top differential RNAs for thyroid cancer: (A) differential long 
non-coding RNAs (lncRNAs); (B) differential micro RNAs (miRNAs); and (C) differential messenger 
RNAs (mRNAs). X-axis represents samples, while Y-axis represents the biological elements studied.  

Figure 1. Heat-maps on expressions of top differential RNAs for thyroid cancer: (A) differential long
non-coding RNAs (lncRNAs); (B) differential micro RNAs (miRNAs); and (C) differential messenger
RNAs (mRNAs). X-axis represents samples, while Y-axis represents the biological elements studied.
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Figure 2. Plot of the differentially expressed genes enriched GO and KEGG: (A) The plot of the 
enriched GO (biological process) with DEGs of the mRNAs. X-axis represents the percentage of 
enriched genes. (B) The plot of the enriched KEGG with DEGs of the mRNAs. GO: Gene Ontology; 
KEGG: Kyoto Encyclopedia of Genes and Genomes; DEGs: Differentially expressed genes; FDR: False 
discovery rate. miRNAs: The differentially expressed miRNAs were significantly enriched in 
miRNAs in cancer (hsa05206, FDR = 4.44 × 10ିଵସ), which include hsa-mir-221, hsa-mir-222, 
hsa-mir-31, hsa-mir-34a, hsa-mir-373, hsa-mir-375, hsa-mir-451a, hsa-mir-483, hsa-mir-
520a, hsa-mir-520c, hsa-mir-520g, and hsa-mir-520h. Among them, Wu et al. [54] found that 
miR-31 was significantly down-regulated in papillary thyroid carcinoma patients. 
Furthermore, down regulation of miR-31 increased the proliferation, migration, and 
invasion of ovarian carcinoma cells. In addition, they revealed that the human antigen R 
(HuR) was a target for miR-31 and knock down of HuR resulted in enhanced cell viability 
and decreased cell migration rate. 
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Figure 2. Plot of the differentially expressed genes enriched GO and KEGG: (A) The plot of the enriched
GO (biological process) with DEGs of the mRNAs. X-axis represents the percentage of enriched genes.
(B) The plot of the enriched KEGG with DEGs of the mRNAs. GO: Gene Ontology; KEGG: Kyoto
Encyclopedia of Genes and Genomes; DEGs: Differentially expressed genes; FDR: False discovery
rate. miRNAs: The differentially expressed miRNAs were significantly enriched in miRNAs in cancer
(hsa05206, FDR = 4.44 × 10−14), which include hsa-mir-221, hsa-mir-222, hsa-mir-31, hsa-mir-34a,
hsa-mir-373, hsa-mir-375, hsa-mir-451a, hsa-mir-483, hsa-mir-520a, hsa-mir-520c, hsa-mir-520g, and
hsa-mir-520h. Among them, Wu et al. [54] found that miR-31 was significantly down-regulated
in papillary thyroid carcinoma patients. Furthermore, down regulation of miR-31 increased the
proliferation, migration, and invasion of ovarian carcinoma cells. In addition, they revealed that the
human antigen R (HuR) was a target for miR-31 and knock down of HuR resulted in enhanced cell
viability and decreased cell migration rate.

3.3. Key Driver Analysis

We have miRNA targets on 79,940 lncRNAs and 375,324 mRNAs and a total of 455,264 interaction
pairs were collected from miRcode. We called this regulatory network the Database Network.
We then mapped DEGs onto the Database Network, and performed key driver analysis to infer
key genes driving the DEGs. As a result, we identified eight key driver miRNAs: hsa-mir-507,
hsa-mir-375, hsa-mir-31, hsa-mir-144, hsa-mir-221, hsa-mir-222, hsa-mir-184, and hsa-mir-187. As
annotated in DAVID database, hsa-mir-375, hsa-mir-31, hsa-mir-221, hsa-mir-222 and hsa-mir-184
were miRNAs in cancer, among which hsa-mir-184 was also relevant to endothelial dystrophy-iris
hypoplasia-congenital cataract-stromal thinning (EDICT) syndrome. Interestingly, Zhang et al. [13]
found that hsa-mir-375 [55] was up-regulated in PTC and MTC; hsa-mir-144 was up-regulated in PTC;
hsa-mir-187 was up-regulated in PTC and FTC; and hsa-mir-221 [56,57] and hsa-mir-222 [56,58] were
up-regulated in PTC, FTC, and ATC [55], which confirm the intimate association of our key drivers to
thyroid cancer.
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To study the influence of network structure to MNIceRNA, we reconstructed the co-expression
network for the set of 32,209 RNAs using WGCNA. Sixty-five modules were identified, among
which blue module is contains the largest number of DEGs. These genes of module were enriched
in oxidation-reduction process and thyroid hormone synthesis. We then used this network to
infer key driver genes and acquired 273 key drivers, including three miRNAs, 190 mRNAs and
80 lncRNAs, among which two (out of three) miRNAs, hsa-mir-221 and hsa-mir-222, overlapped
with previous key driver miRNAs. The miR221-222 cluster is located on the X chromosome. Many
previous studies have shown that the miR221-222 cluster was in the downstream of the MAPK
pathway and involved in the regulation of cell cycle and apoptosis [13]. They were well known
for deregulation in various malignancies and were among the first group of miRNAs shown to be
deregulated in thyroid carcinoma [58,59]. In terms of mechanism, it was shown that miR221-222
cluster plays functions in PTC through negatively regulating p27 [60] and in ATC through their
interaction with p27, RECK, and PTEN [59]. Similar other malignancies, up-regulation of miR221-222
cluster was associated with increased treatment resistance and recurrence rate, worse prognosis, and
more invasive disease course [59,61,62]. It was likely that their tumorigenic property in thyroid was
associated with their functions in tumor invasion and epithelial-mesenchymal transition (EMT) as
shown in other malignancies [61,63]. They also act as potential biomarkers of thyroid malignancy with
worse prognosis.

3.4. Competing Endogenous RNA Network Reveals Competing Endogenous Mechanisms of Long Non-Coding
RNAs and Messenger RNAs

We focused on KDGs and constructed a ceRNA network according to lnCeDB database. As a
result, 97 ceRNAs were obtained, most of which were also KDGs identified using the WGCNA network.
Specifically, there were 34 ceRNAs related to hsa-mir-375, among which 11 were significant in the
survival analysis (Figure 3). As examples, RUNX2 and SEMA3D are known oncogenes [5] and DUSP6
is critical for PTC and the MAPK pathway [64,65].
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mRNAs and 13 significant lncRNAs (p value < 0.05) in the survival analyses. Among them, lncRNAs 
RP5-1024C24.1 and LINC01539 were verified to be differentially expressed in PTC and exhibit 
specific topological characteristics in the lncRNA–mRNA co-expression network [66]. LncRNA RP5-
1024C24.1 is an antisense transcript of metallophosphoesterase domain containing 2 (MPPED2). A 
previous study has shown that MPPED2 functions as a tumor suppresser in neuroblastoma 
tumorigenesis, and thus the low expression of RP5-1024C24.1 might promote tumor progression [66]. 
In addition, LINC01539 are deregulated in PTC [13]. 

Figure 3. Key drivers for Thyroid carcinoma in the long non-coding competing endogenous database
(lnCeDB): (A) yellow nodes represent miRNAs (diamond) and lncRNAs (ellipse), while the purple
represent mRNAs; and (B) yellow nodes represent lncRNAs, purple represent mRNAs, and diamond
represent significant RNAs in the survival analysis from key driver analysis (KDA) of the weighted
correlation network analysis (WGCNA). The above relationship are competing endogenous (ceRNAs)
from the lnCeDB database.
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3.5. Survival Analysis of Key Driver Genes

We studied the association of key driver RNAs with patients’ survival, which can be used to
evaluate their prognostic potential, and plotted in Figure 4 the Kaplan–Meier overall survival curves
for miR-375 and a few clinical traits including cancer stage, gender and age. As a result, Figure 4A
shows that cancer stage is significantly associated with overall survival with a p-value of 0.002, while
gender and age (59 and above) were not significantly associated. Interestingly, Figure 4E,F shows that
miR-375 is significantly associated to survival (p-value 0.03), indicating that it might be a prognostic
maker and drug target for thyroid cancer. In addition, we also identified 44 significant mRNAs and 13
significant lncRNAs (p value < 0.05) in the survival analyses. Among them, lncRNAs RP5-1024C24.1
and LINC01539 were verified to be differentially expressed in PTC and exhibit specific topological
characteristics in the lncRNA–mRNA co-expression network [66]. LncRNA RP5-1024C24.1 is an
antisense transcript of metallophosphoesterase domain containing 2 (MPPED2). A previous study has
shown that MPPED2 functions as a tumor suppresser in neuroblastoma tumorigenesis, and thus the
low expression of RP5-1024C24.1 might promote tumor progression [66]. In addition, LINC01539 are
deregulated in PTC [13].Genes 2018, 9, 44  9 of 15 
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Figure 4. Thyroid patients’ survival analyses on miR-375 and a few clinical traits: (A,B) survival
outcomes of different stages and gender; (C,D) different age groups have different effects on over-all
survival; and (E,F) survival outcomes according to relatively high and low expression, of which (E)
represents survival outcomes of has-mir-375 in all samples, and (F) represents survival outcomes of
has-mir-375 in higher than stage I tumor.

4. Discussion

MNIceRNA combines information of RNA co-expression, regulation, and competing endogenous
mechanisms to identify potential thyroid cancer biomarkers. It infers highly meaningful biomarkers
as validated by literature mining and survival analyses. Specifically, MNIceRNA identified a cohort
of 463 up-regulated differential lncRNAs, 812 differential mRNAs, and 82 differential miRNAs,
which were mainly enriched in the ECM organization and degradation pathway. Similarly, there
were 135 down-regulated differential lncRNAs, 213 down-regulated differential mRNAs, and eight
down-regulated differential miRNAs, mainly enriched in cancer (hsa05206). Five up-regulated mRNAs,
namely ELF3, HMGA2, LCN2, MET, and RUNX2, are known oncogenes [5]. In addition, as the
up-regulated differential RNA exhibiting the most TF activity, PLAU encodes a serine protease that acts
as an activator in the ECM degradation in tumor development [67]. PLAU also plays crucial roles in
tumor invasion and metastasis [68]. Its overexpression has been found in cancer associated fibroblasts,
which contribute to the tumor growth and progression [69]. Recently, a few studies suggested that
PLAU was induced by PTC [70]. In contrast, a set of down-regulated mRNAs such as EGR2, GPC3,
IGFBPL1, LRP1B, NR4A3, and PROX1 were identified as TSGs [5]. As a vital TF exhibiting higher
transcriptional activity in PTC samples than in control, EGR2 functions as a tumor suppressor that
is generally decreased in numerous cancer types such as ovarian [71] and gastric cancer [72]. These
collectively suggest that PLAU might server as a significant TF promoting PTC progression, while
EGR2 might be a tumor suppressor. However, more experimental validations are needed [5]. As for
lncRNA, AC007255.8 is an antisense transcript of proline rich 15 (PRR15), which is overexpressed in
advanced stage human colorectal cancer [73] and its expression was correlated with patient age [66].
AC079630.2 is mostly enriched in the pathway “Transcriptional misregulation in cancer”. Luo et
al. showed that AC079630.2 exhibited high diagnostic ability to distinguish normal tissue and PTC
tissue [74]. HOX transcript antisense RNA (HOTAIR) has been shown to be deregulated in a great
number of human cancers such as oral cancer, nasopharynx, breast, esophagus, lung, liver, pancreas,
colon, endometrium and cervix [75]. A study based on the TCGA and Gene Expression Omnibus
(GEO) showed that HOTAIR was associated with poor survival of thyroid cancer patients [76].

In addition, the KDA analysis revealed eight key miRNAs, hsa-mir-375/507/222/221/187/
184/144/31, among which hsa-mir-375 was significantly associated with patients’ survival. Previous
studies suggested that overexpression of miR-375 was frequently observed in thyroid cancer patients
and thus it might play a critical oncogenic role and be a potential diagnostic biomarker in thyroid
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cancer [77–81]. For example, the expression level of miR-375 was comparable between primary tumors
and matched lymph node metastases, suggesting that its expression pattern in nodal metastases
could prominently reflect that of the primary tumor in MTC [81]. Lassalle et al. found that the
up-regulation of miR-375 was accompanied by reduced cell growth and synergistically improved
sensitivity to vandetanib [80]. They also observed that miR-375 could enhance PARP cleavage and
decline AKT phosphorylation, which play vital roles in cell growth. In addition, Wang et al. indicated
that overexpression of miR-375 could inhibit the PTC cells proliferation and this inhibition was caused
by the induction of cell apoptosis [82]. Moreover, it was found that miR-375 was upregulated by more
than 35-fold in Follicular Variant Papillary Thyroid Carcinoma (FVPTC) and 20-fold in classic PTC,
and not upregulated in normal thyroid tissue, hyperplastic nodules, and follicular carcinomas [83].
Thus, hsa-mir-375 is associated with early- and late-stage malignant progression and might be a novel
clinical biomarker for thyroid cancer.

Moreover, using the lnCeDB database, MNIceRNA identified 34 ceRNAs (including six lncRNAs
and 28 mRNAs) associated with hsa-mir-375, among which 11 were significant in the survival analysis.
As examples, microarray analysis revealed that hypothyroidism induces significant reductions in
KCNK2 transcripts [84]. CLDN1 is an essential molecule in tight junctions, CLDN1 was highly expressed
in normal thyroid epithelium, but reduced in Hashimoto's Thyroiditis (HT) injured thyroid epithelial
cells [85]. In addition, SEMA3D had superior diagnostic accuracy independently of the cytology
in six datasets including The Cancer Genome Atlas (TCGA) thyroid dataset. This gene exhibited
differences in the correlation coefficients between benign and malignant samples and could be an
effective clinical biomarker for diagnosis of thyroid cancer [86]. Similarly, Steffen et al. [87] assembled
a miRNA–protein target network for 677 human miRNAs and 18,880 targets which are listed in the
TargetScan (http://www.targetscan.org). In this list, we found that hsa-mir-507 has a corresponding
protein complex, corum-1422, and hsa-mir-221-222 cluster regulates nine protein complexes, of which
ITGB1 [88], ITGB3 [88] and CD47 [89] were associated with the thyroid cancer. However, none of these
protein complexes were putative ceRNAs we predicted.

It is worth mentioning that, although MNIceRNA identified many literature- and
experiment-validated miRNAs, lncRNAs and mRNAs associated with thyroid cancer, the extent
and relevance of ceRNA effect in vivo is still poorly understood. Recent experimental studies have
suggested that the miRNA-mediated competition between ceRNAs could constitute an additional level
of posttranscriptional regulation, playing important roles in many biological contexts. The sensitivity
analysis shows that binding free energy and repression mechanisms are key ingredients for cross-talk
between ceRNAs to arise. Interactions emerging in specific ranges of repression values, can be
symmetrical (one ceRNA influences another and vice versa) or asymmetrical (one ceRNA influences
another but not the reverse), and may be highly selective, while possibly be limited by noise [90]. On the
other hand, the reporter assays demonstrated that [91] only active miRNA families with low total
miRNA:target ratios are susceptible to ceRNA inductions even up to approximately 10,000 additional
target copies per cell. In summary, there were many criteria for validating ceRNA, such as quantitative
measurements of miRNA and target abundance [92], miRNA concentration and the size and affinities
of the competing target pool [91], miRNA:target ratio, the absolute concentration of the effective
target pool [91], timescales, steady-state, kinetic parameters [23,93], cellular concentrations of RBPs
and miRNAs [20], and so on. In addition, PTR model was introduced in Figliuzzi et al. [90,93]
by characterizing the transient response of the system to perturbations to validate ceRNA. The
method was divided into two parts. The first part focuses on small perturbations by analyzing
(in Fourier space) the linearized dynamics of a system of N ceRNAs jointly targeted by a single miRNA
species. The second part focuses instead on large perturbations by using numerical analysis and
analytical estimations to characterize the emergence of nonlinear response. The PTR model can be
used to analyze the stoichiometric relationship of miR-375 and its target sites by manipulating TA
through controlled expression of a validated target of miR-375 in thyroid [92]. Finally, the titration
mechanism [93], argonaute individual-nucleotide resolution cross-linking and immune-precipitation
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(iCLIP) [91], Hermes systematically [94], stochastic model [95], Gillespie algorithm [95,96] and
dynamical method [93] could also be used to validate ceRNAs. In the future, we will adopt these
methods and perform experiments to validate the ceRNAs we predicted.

Taking together, our study identified many literature-validated RNAs critical to thyroid cancer
progression and proposed a few novel RNAs to function as competing endogenous RNAs for
thyroid cancer. However, we are fully aware that the limited sample size and information on
miRNA–lncRNA–mRNA interactions might restrict the power of our conclusions. More experimental
validations are suggested to confirm the contribution of our proposed RNAs in thyroid cancer.

5. Conclusions

In summary, we proposed a more multifaceted approach to construct ceRNAs network, and
identified a set of crucial genes that could be used as biomarkers for thyroid carcinoma therapy, such as
hsa-mir-375, AC012668.2, and SEMA3D. In the future, more attention should be paid to the construction
of ceRNA networks and the validation of biomarkers or RNA competing endogenous interactions.

Supplementary Materials: The following are available online at www.mdpi.com/2073-4425/9/1/44/s1. Table S1:
Survival analysis of key driver RNAs, Table S2: Up- and down-regulated differential RNAs, Table S3: Function
enrichment of differential expressed RNAs on Gene ontology biological processes, Table S4: Function enrichment
of differential expressed RNAs on KEGG pathways.
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