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Abstract

Background—Methylated gene markers have shown promise in predicting breast cancer 

outcomes and treatment response. We evaluated whether baseline and change in tissue and serum 

methylation would predict pathological complete response (pCR) in patients with HER2-negative 

early breast cancer undergoing preoperative chemotherapy.

Methods—The TBCRC008 trial investigated pCR following 12 weeks of preoperative 

carboplatin and albumin-bound paclitaxel + vorinostat/placebo (n=62). We measured methylation 

of a 10 gene panel by quantitative multiplex methylation-specific polymerase chain reaction (QM-

MSP) and expressed results as cumulative methylation index (CMI). We evaluated association 

between CMI level (baseline, day 15 [D15], and change) and pCR using univariate and 
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multivariable logistic regression models controlling for treatment and hormone receptor (HR) 

status, and performed exploratory subgroup analyses.

Results—In univariate analysis, one log unit increase in tissue CMI levels at D15 was associated 

with 40% lower chance of obtaining pCR (odds ratio, OR=0.60, 95% CI 0.37-0.97; p=0.037). 

Subgroup analyses suggested a significant association between tissue D15 CMI levels and pCR in 

vorinostat-treated (OR 0.44 [0.20, 0.93], p=0.03), but not placebo-treated patients.

Conclusion—In this first study investigating the predictive role of tissue and serum CMI in 

patients with early breast cancer, we demonstrate that high D15 tissue CMI levels may predict 

poor response. Larger studies and improved analytical procedures to detect methylated gene 

markers in early stage breast cancer are needed.
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Introduction

Long term outcomes for the majority of patients with breast cancer are excellent, due to 

early detection and the widespread availability of local and systemic therapies [1]. 

Nonetheless, some patients will experience recurrence of their breast cancer despite standard 

treatment approaches. Others will have an excellent prognosis, and may be over treated [2]. 

The identification of biomarkers that are prognostic and predictive of response to therapy is 

therefore of the utmost importance in the management of this disease [3-5]. Potential 

biomarkers may be identified through collection of baseline and serial blood and tumor 

samples incorporated as part of prospectively designed studies.

Aberrant methylation of DNA is characteristic of breast cancer, where hypermethylation of 

hundreds of cancer specific genes provides a rich source of biomarkers of detection, 

prognosis and prediction of response to therapy [6-9]. Hypermethylation often results in 

silencing of important genes such as tumor suppressor genes and those involved with growth 

regulation that are active in non-cancerous breast tissue. Various quantitative techniques 

[10-12], including quantitative multiplex methylation-specific PCR (QM-MSP) [13-16], 

have the ability to robustly detect gene methylation in tumor samples. Tumor tissue 

methylation has shown promise as a biomarker to predict response to therapy and to 

prognosticate outcome of disease. In patients with glioma treated with preoperative 

temozolomide, tissue MGMT methylation predicted favorable progression-free survival 

(PFS, p < 0.0001) [17]. Fiegl et al suggested that NEUROD1 methylation is a 

chemosensitivity marker in estrogen receptor-negative breast cancer [18]. Other studies in 

breast cancer have been performed in locally advanced disease to investigate pharmaco-

epigenetic effects following preoperative chemotherapy [19, 20].

Our group and others have recently identified methylated cell-free DNA in serum, shed 

presumably by circulating or dying tumor cells, as a promising prognostic biomarker, and a 

predictive biomarker of response to treatment in breast cancer (cMethDNA) [21, 22] and 

other methylation assays [23-27]. Unlike technologies used by others, cMethDNA is a 
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quantitative multiplex methylation-specific PCR assay consisting of a panel of up to 10 

novel known breast cancer hypermethylated markers. It uses spiked standards for each gene, 

provides absolute quantitation, and consistently detects cell-free tumor-specific DNA in 

peripheral blood of patients with metastatic breast cancer with high sensitivity and 

specificity [21]. In a small validation clinical study of patients with metastatic breast cancer 

initiating a new course of treatment (n=140), the assay predicted patient response to 

chemotherapy early in the course of treatment, and prognosticated outcome [22]. Although 

established in patients with metastatic breast cancer, cMethDNA has not been previously 

evaluated in the early breast cancer setting.

We hypothesized that both tissue and serum methylation would be valuable predictive 

biomarkers in earlier stages of the disease. Specifically, we hypothesized that baseline and 

change in tumor tissue (QM-MSP) and serum methylation (cMethDNA) would predict 

pathologic complete response (pCR) in women receiving preoperative chemotherapy. To test 

this hypothesis, we performed an exploratory planned biomarker study in women with 

HER2-negative breast cancer who received preoperative carboplatin and albumin-bound 

paclitaxel with or without the histone deacetylase (HDAC) inhibitor, vorinostat, through the 

prospective TBCRC008 clinical trial [28].

Materials and Methods

Clinical Trial Design

TBCRC008 was a multicenter placebo-controlled trial that compared pCR following 12 

weeks of preoperative chemotherapy with or without vorinostat in 62 patients with HER2-

negative breast cancer (Figure 1) [28]. Participants received 12 weeks of preoperative 

carboplatin (AUC 2 weekly) and nab-paclitaxel (100 mg/m2 weekly) with vorinostat (400 

mg oral daily, days 1-3 of every 7-day period) or a matched placebo. The primary end point 

was pCR, defined as no viable invasive cancer in the breast and axilla.

Eligible participants for TBCRC008 were women 18 years of age or older, with 

histologically-proven infiltrating carcinoma of the breast who presented with operable, 

clinical stage T1c, N1-3 or T2-4 lesions, any N; and M0. Tumors must have been HER2-

negative and grade 2 or 3, with any estrogen (ER) or progesterone receptor (PR)-status.

After a brief phase I run-in portion, participants in the phase II portion of the study were 

randomly assigned 1:1 to receive carboplatin and nab-paclitaxel with vorinostat or placebo 

using permuted block randomization, stratified by hormone receptor status (ER and PR < 

1% vs. ER or PR ≥1%) [28]. Additional non-study chemotherapy (doxorubicin and 

cyclophosphamide, AC) was allowed per treating physician discretion prior to definitive 

surgery, for patients with incomplete response or disease progression on study treatment. 

Women signed an informed consent approved by the Institutional Review Boards of 

participating institutions.

Sample Collection and Methylation Analysis

A study-specific core biopsy and blood sampling (serum) were obtained at baseline and 15 

days after the first treatment (D15), preferably about 4 hours after taking vorinostat/placebo 
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and prior to receiving carboplatin and nab-paclitaxel. Core biopsy specimens were 

suspended in 10% buffered formalin, and subsequently embedded in paraffin. Serum 

samples were processed and stored at -80° C or below prior to analysis. Tissue and serum 

DNA was extracted and then treated with sodium bisulfite as previously described [13, 21]. 

Methylation was measured using CMI in quantitative multiplex methylation-specific 

polymerase chain reaction assays, cMethDNA assay for serum [21] and QM-MSP for tissue 

[13]. The cumulative methylation index (CMI) was calculated as a sum of all gene-specific 

methylation indexes within a panel of 10 genes which included: HIST1H3C, AKR1B1, 

GPX7, HOXB4, TMEFF2, RASGRF2, COL6A2, ARHGEF7, TM6SF1, and RASSF1A. 

These 10 genes were selected in a previous study following genome wide methylome 

analysis (Illumina Infinium HumanMethylation27 BeadChip) in tissue and serum, as they 

were frequently highly methylated in breast tumors of all stages and in serum from patients 

with metastatic breast cancer. These genes were unmethylated or methylated at low levels in 

normal breast tissue [29] and in cell-free circulating serum DNA of normal individuals [21].

Statistical Analysis

The objectives of this pre-planned exploratory analysis were to evaluate: 1) the association 

of baseline methylation (tissue and serum) with pCR; 2) the association of change (baseline 

versus D15) in methylation (tissue and serum) with pCR; 3) the effect of vorinostat and 

other clinical variables on the association between methylation status and pCR [30].

The analysis population included all patients for whom complete CMI data were available 

(Table 1). Only samples where methylation results were available for all genes were 

evaluated. CMI at baseline and D15 were natural log-transformed as log (Baseline CMI+1) 

and log (D15 CMI+1), respectively. Change in CMI was defined as log (D15 CMI+1/

Baseline CMI+1).

Distributions of CMI levels at baseline and D15 were evaluated with descriptive statistics, 

and compared using Wilcoxon matched-pairs signed rank test. The difference in tissue CMI 

levels at D15 by treatment arm and by pCR status was compared using nonparametric 

Mann-Whitney U test. Furthermore, associations between CMI level (baseline, D15, change) 

and pCR were evaluated using univariate as well as multivariable logistic regression models 

controlling for treatment arm and hormone receptor status. Additional subgroup analyses 

were performed to assess the association of CMI level with pCR using logistic regression 

models, stratified by ER status and treatment arm, respectively.

All tests were considered statistically significant at p<0.05. No multiplicity adjustment was 

made. Analyses were performed using SAS 9.4 (SAS Institute, Cary, NC) and GraphPad 

Prism (version 5.00 for Windows, GraphPad Software, San Diego, CA, 

www.graphpad.com).

Results

Patient Characteristics

Demographic and clinical variables from TBCRC008 have been previously published and 

are summarized in Supplementary Table 1 [28]. Approximately 60% of participants had 
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ER/PR-positive tumors and 60% had positive axillary lymph nodes at study entry. pCR data 

were available for 60 of 62 patients for this analysis. Two patients with unknown response 

were considered non-responders following the intent-to-treat principle. Overall pCR was 

27% and was similar in both arms (29% placebo vs. 26% vorinostat). AC chemotherapy was 

administered prior to definitive surgery in 18 patients deemed to have incomplete response 

or disease progression on study treatment.

Patient Tissue and Serum Methylation

Available tissue methylation data were evaluated in 58 (baseline), 50 (D15) and 48 (both) 

patients, and serum methylation data were available in 59 (baseline), 61 (D15), 58 (both) 

patients (Figure 2). Median tissue CMI levels were 50 (range 0, 417) at baseline and 25 

(range 0, 163) at D15, and median CMI change within individuals between baseline and D15 

was 14 (range -310, 69). Median serum CMI levels were 3 (range 0, 124) at baseline and 4 

(range 0, 90) at D15, and median CMI change was 0 (range -120, 29) (Figure 2). Within 

individuals, we observed significant changes in tumor content (% tumor in biopsy section, 

p<0.0001; paired T-test) and tumor methylation (CMI, p<0.0001; Wilcoxon matched pairs 

test) from baseline to D15 (Figure 3).

Associations Between CMI Level and Response to Therapy

Baseline methylation was not associated with pCR for either tissue or serum. Tissues from 

patients who achieved pCR had significantly lower methylation at D15 compared to those 

with no pCR (p=0.0143) (Figure 4A). Supported by the univariate analysis, a one log unit 

increase in tissue CMI levels at D15 was associated with a 40% lower chance of obtaining a 

pCR (odds ratio, OR=0.60, 95% CI 0.37-0.97; p=0.037) (Table 1). A similar association was 

not observed for serum methylation (Table 1).

The distribution of tissue CMI at D15 was further evaluated in vorinostat-treated patients 

compared to patients receiving placebo. Within individuals, we observed significant 

decrease in tumor content (p<0.0001; paired T-test) and in tumor methylation (LogCMI, 

p<0.0001; paired T-test) from baseline to D15 irrespective of treatment assignment (Figure 

3). No significant difference was observed in D15 tissue CMI between treatment arms 

(tissue: p=0.607; Figure 4B, Figure S1). Tumor methylation levels of individual genes did 

not significantly differ between vorinostat and placebo groups, either at baseline or on D15 

(Figure S1).

Interestingly, D15 tumors from individuals who achieved pCR after receiving vorinostat had 

significantly lower CMI than those that failed to achieve pCR (p=0.0157). This trend 

appeared to be less profound in tumors from patients in the placebo arm that did or did not 

achieve pCR (p=0.408) (Figure 4C, Supplementary Table 2), suggesting a potential 

interaction between the treatment effect and D15 methylation in tumors.

Multivariable analysis adjusting for treatment arm and hormone receptor status did not show 

a statistically significant association of tissue or serum CMI with pCR, although a similar 

trend in magnitude towards association with pCR was observed for D15 and change in 

tumor tissue CMI (OR 0.67 and 0.57, p=0.129 and 0.147 respectively) (Table 2a). Additional 
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multivariable analyses also failed to demonstrate a statistically significant association of 

tissue or serum CMI with pCR (Table 2b and 2c).

Subgroup analyses (univariate) suggested a significant association between tissue CMI 

levels at D15 and pCR in the group treated with vorinostat [tissue OR: 0.44 (0.20, 0.93), 

p=0.03; serum OR 0.37 (0.13, 1.07), p=0.07] but not in the placebo group (Supplementary 

Table 3c, 3d). There was no significant association between CMI levels and pCR in patients 

with hormone receptor-positive breast cancer versus those with triple-negative disease 

(Supplementary Table 3a, 3b).

Discussion

In a planned exploratory biomarker analysis from the prospectively designed preoperative 

TBCRC008 trial, we have evaluated for the first time the predictive role of tissue and serum 

CMI in patients with early stage HER2-negative breast cancer treated with preoperative 

chemotherapy with or without an HDAC inhibitor. We have demonstrated in univariate 

analysis that an increase in tissue CMI level at D15 was associated with poor response to 

this therapy and may potentially have a predictive role in the preoperative setting. Our data 

suggest that lack of an early and robust tumor response to preoperative therapy will result in 

a greater burden of DNA methylation at this D15 timepoint, i.e., an association of DNA 

methylation as early as D15 with pCR.

Epigenetic alterations, including abnormal methylation of DNA in the promoter region of 

important genes, are prevalent in breast cancers and often result in silencing of gene 

expression [31]. This knowledge has prompted investigation into their clinical significance 

and whether they can be manipulated to improve patient outcomes [32]. While a few studies 

have reported the utility of single methylated markers in tissue or serum in predicting 

response to chemotherapy in both the preoperative and adjuvant setting, there have been no 

follow up validation studies to further support their findings.

DNA methylation in breast cancer gene promoters has been evaluated by QM-MSP in 

archival tumor and blood samples [22, 23, 33-37]. Genome-wide methylation array analysis 

has also been performed on 103 primary invasive breast cancers and on 21 normal breast 

samples, using the Illumina Infinium HumanMethylation27 array [29]. A higher frequency 

of methylation was noted in hormone receptor-positive tumors when compared to HR-

negative tumors. The hypermethylated loci in ER-negative tumors, however, were closer to 

the transcriptional start sites, perhaps indicating a tighter control of transcriptional 

repression. These studies indicate that methylation of promoter regions of breast cancer-

related genes may have utility as potential prognostic biomarkers in breast cancer.

Patients, advocates and physicians are increasingly aware of the importance of obtaining 

tumor biopsies, including serial samples, for correlative analyses with the hope of 

individualizing therapy for future patients. Blood-based biomarkers, however, may offer a 

non-invasive and more convenient way to assess prognosis or monitor therapy, which may be 

more acceptable to patients. cMethDNA underwent preliminary validation in a multisite 

prospective study TBCRC005 using serum samples from 141 women at baseline, at week 4, 
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and at first restaging. A CMI was generated on the basis of 6 of the 10 genes tested. In 

multivariable analyses, an increase in the CMI from baseline to week 4 was associated with 

worse PFS (p < 0.001) and progressive disease at first restaging (p< 0.001). CMI at week 4 

was a strong predictor of PFS, even in the presence of circulating tumor cells (p=0.004). 

Thus, serum cMethDNA assay can detect advanced breast cancer, may serve as a prognostic 

biomarker, and has the potential to monitor tumor burden and treatment response in patients 

with advanced breast cancer [21]. Based on these promising results, we were keen to 

investigate this blood-based assay in our early breast cancer dataset as described above. 

Alternative approaches which continue to be studied in the early breast cancer setting 

include the use of plasma tumor DNA (ptDNA) to predict prognosis and response to therapy 

[38, 39].

Strengths of our study include the prospective design of the TBCRC008 preoperative clinical 

trial, with a preplanned exploratory analysis to evaluate the predictive value of serum and 

tumor methylation. All patients in the study (n=62) underwent baseline image-guided tumor 

biopsy, with the majority (59/62) also undergoing a short-interval follow up biopsy at D15 

[28]. Alongside successful serial collection of blood samples, this study highlights the 

feasibility of such sample collection for correlative analyses in the preoperative setting in 

patients with early breast cancer. Limitations of this analysis include the small sample size 

which may limit the interpretation of our positive findings regarding the association of tissue 

CMI levels at D15 and response to this therapy, as well as the extent to which interaction 

between tissue CMI levels at D15 and treatment response to preoperative therapy may be 

assessed.

Additional larger prospective studies will be needed to further define the role of gene 

methylation signatures in predicting clinical outcome and response to systemic therapy in 

patients with breast cancer, and indeed other tumor types. Much of the focus to date has 

been on the advanced breast cancer setting, where indeed ongoing analyses using 

prospectively collected serum will attempt to answer these important questions in regards to 

the cMethDNA assay. Based on our observation that there was a significant association 

between tissue CMI levels at D15 and pCR in those treated with vorinostat but not placebo, 

consideration should be given for investigating more potent demethylating agents in this 

setting. Investigations should also consider additional clinical scenarios such as the early 

detection of recurrent breast cancer after primary surgery. Finally, the development of more 

sensitive assays which can detect lower levels of DNA methylation in the early breast cancer 

setting are clearly needed. Close collaboration between basic scientists, clinical investigators 

and experts in biomarker development is essential moving forward in order to further 

personalize treatment approaches for patients with breast cancer.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. TBCRC008 Study Schema
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Figure 2. Tissue and Serum DNA Methylation
QM-MSP and cMethDNA analyses were performed on tissue (n=58 baseline and 50 D15) 

and serum (n=59 baseline and 61 D15) samples, respectively. Scatter plots show CMI 

methylation levels as the sum of methylation for each marker in 10-gene panel. Median 

methylation is indicated (bar) and only samples with methylation values for all 10 genes 

were evaluated.
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Figure 3. Tumor Content and DNA Methylation of Tumors in Vorinostat vs Placebo Arms
Tumor content in paired samples of the same individual. Change between baseline and D15 

tumor content (% tumor in biopsy section) and methylation was quantified using Wilcoxon 

matched pairs test. Significant reductions in both tumor content and methylation were 

observed at D15 within the study population (“All patients”), as well as vorinostat and 

placebo groups. Only samples having methylation values for all 10 genes were evaluated.
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Figure 4. Tissue CMI at D15 by pCR Status and Treatment Arm
CMI of the 10-gene panel is indicated by scatter plots for each treatment group (median 

shown as bar). For each individual sample (x-axis) the bar graphs indicate the level of CMI 

(height of the bar, y-axis) and the relative methylation of each gene (shown by colored 

segment). A. D15 methylation levels of tissue samples in pCR versus no pCR groups. B. 

D15 methylation levels of tissue and serum samples in vorinostat (V) versus placebo (P) 

groups. C. D15 methylation levels of tissue samples grouped pCR versus no pCR, ± 

vorinostat. Only samples having methylation values for all 10 genes were evaluated 

(nonparametric Mann-Whitney U test).
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Table 2
Multivariable analysis of association of CMI levels with pCR

a: Multivariable analysis adjusting for treatment arm and hormone receptor status (HR), by time point and by tissue and serum

Variable
Tissue Serum

OR (95% CI) P-value OR (95% CI) P-value

Baseline CMI 0.83 (0.53, 1.30) 0.418 1.1 (0.75, 1.63) 0.615

Vorinostat vs. placebo 0.48 (0.12, 1.86) 0.287 0.8 (0.23, 2.77) 0.721

HR+ vs. TNBC 0.13 (0.03, 0.53) 0.004 0.17 (0.05, 0.6) 0.006

Variable
Tissue Serum

OR (95% CI) P-value OR (95% CI) P-value

D15 CMI 0.67 (0.39, 1.13) 0.129 0.85 (0.51, 1.42) 0.542

Vorinostat vs. placebo 0.75 (0.17, 3.29) 0.703 0.68 (0.19, 2.43) 0.555

HR+ vs. TNBC 0.28 (0.06, 1.25) 0.096 0.16 (0.05, 0.57) 0.005

Variable
Tissue Serum

OR (95% CI) P-value OR (95% CI) P-value

CMI change from baseline 0.57 (0.27, 1.22) 0.147 0.85 (0.57, 1.27) 0.431

Vorinostat vs. placebo 0.60 (0.13, 2.81) 0.519 0.69 (0.2, 2.41) 0.559

H+ vs. TNBC 0.26 (0.06, 1.2) 0.084 0.19 (0.05, 0.66) 0.009

b: Multivariable analysis adjusting for nodal status and hormone receptor status, by time point and by tissue and serum

Variable
Tissue Serum

OR (95% CI) P-value OR (95% CI) P-value

Baseline CMI 1.07 (0.62, 1.86) 0.802 1.29 (0.83, 2) 0.26

Node + vs. - 0.08 (0.02, 0.42) 0.003 0.16 (0.04, 0.65) 0.011

HR+ vs. TNBC 0.14 (0.03, 0.69) 0.016 0.2 (0.05, 0.77) 0.019

Variable
Tissue Serum

OR (95% CI) P-value OR (95% CI) P-value

D15 CMI 0.74 (0.43, 1.27) 0.27 0.87 (0.52, 1.43) 0.575

Node + vs. - 0.15 (0.03, 0.77) 0.023 0.2 (0.05, 0.74) 0.016

HR+ vs. TNBC 0.26 (0.05, 1.31) 0.104 0.2 (0.05, 0.74) 0.016

Variable
Tissue Serum

OR (95% CI) P-value OR (95% CI) P-value

CMI change from baseline 0.48 (0.22, 1.06) 0.069 0.68 (0.42, 1.1) 0.119

Node + vs. - 0.05 (0.01, 0.43) 0.006 0.14 (0.03, 0.64) 0.011

HR+ vs. TNBC 0.21 (0.03, 1.27) 0.088 0.21 (0.05, 0.8) 0.023

c: Multivariable analysis adjusting for tumor stage and hormone receptor status, by time point and by tissue and serum

Variable
Tissue Serum

OR (95% CI) P-value OR (95% CI) P-value

Baseline CMI 0.87 (0.55, 1.36) 0.537 1.18 (0.8, 1.76) 0.408

Stage III vs. II 0.52 (0.13, 2.15) 0.368 0.41 (0.1, 1.72) 0.225

HR+ vs. TNBC 0.15 (0.04, 0.59) 0.007 0.18 (0.05, 0.64) 0.008
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a: Multivariable analysis adjusting for treatment arm and hormone receptor status (HR), by time point and by tissue and serum

Variable
Tissue Serum

OR (95% CI) P-value OR (95% CI) P-value

Variable
Tissue Serum

OR (95% CI) P-value OR (95% CI) P-value

D15 CMI 0.69 (0.41, 1.15) 0.155 0.94 (0.57, 1.53) 0.796

Stage III vs. II 0.75 (0.15, 3.71) 0.725 0.37 (0.08, 1.61) 0.183

HR+ vs. TNBC 0.28 (0.06, 1.28) 0.1 0.18 (0.05, 0.66) 0.009

Variable
Tissue Serum

OR (95% CI) P-value OR (95% CI) P-value

CMI change from baseline 0.58 (0.28, 1.2) 0.141 0.84 (0.56, 1.25) 0.39

Stage III vs. II 0.62 (0.12, 3.16) 0.564 0.36 (0.08, 1.57) 0.173

HR+ vs. TNBC 0.25 (0.05, 1.17) 0.079 0.2 (0.06, 0.73) 0.015

CMI levels were natural log transformed.
Change from baseline, change of CMI defined as log (D15 CMI+1/Baseline CMI+1); CMI, cumulative methylation index; D15, 15 days after the 
first treatment; HR, hormone receptor PR; TNBC, triple-negative breast cancer; OR, odds ratio; CI, confidence interval;
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