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Abstract

HIV-1-associated neurocognitive disorders (HAND) continue to be a major concern in the infected 

population, despite the widespread use of combined antiretroviral therapy (cART). Growing 

evidence suggests that an imbalance between matrix metalloproteinases (MMPs) and endogenous 

tissue inhibitors of MMPs (TIMPs) contributes to the pathogenesis of HAND. In our present study, 

we examined protein levels and enzymatic activities of MMPs and TIMPs in both plasma and 

cerebrospinal fluid (CSF) samples from HIV-1 patients with or without HAND and HIV-1-

negative controls. Imbalances between MMPs and TIMPs with distinct patterns were revealed in 

both the peripheral blood and CSF of HIV-1 patients, especially those with HAND. In the 

peripheral blood, the protein levels of MMP-2, MMP-9, TIMP-1, TIMP-2, and the enzymatic 

activities of MMP-2 and MMP-9 were increased in HIV-1 patients with or without HAND when 

compared with HIV-1-negative controls. The enzymatic activity of MMP-2, but not MMP-9, was 

further increased in plasma samples of HAND patients than that of HIV-1 patients without HAND. 

Notably, the ratio of MMP-2/TIMP-2 in plasma was significantly increased in HAND patients, not 
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in patients without HAND. In the CSF, MMP-2 activity was increased, but the ratio of MMP-2/

TIMP-2 was not altered. De novo induction and activation of MMP-9 in the CSF of HAND 

patients was particularly prominent. The imbalances between MMPs and TIMPs in the blood and 

CSF were related to the altered profiles of inflammatory cytokines/chemokines and monocyte 

activation in these individuals. In addition, plasma from HIV-1 patients directly induced integrity 

disruption of an in vitro blood-brain barrier (BBB) model, leading to increased BBB permeability 

and robust transmigration of monocytes/-macrophages. These results indicate that imbalances 

between MMPs and TIMPs are involved in BBB disruption and are implicated in the pathogenesis 

of neurological disorders such as HAND in HIV-1 patients.
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1. Introduction

The HIV-1 pandemic has claimed over 35 million lives, with approximately 37 million 

people worldwide living with HIV-1/AIDS (http://aidsinfo.unaids.org/), and will continue to 

contribute to human morbidity and mortality as there is no vaccine or curative treatment 

available. HIV-1 is neurovirulent, causing neurological diseases such as HIV-1-associated 

neurocognitive disorders (HAND) in roughly 20% of infected individuals and 60% of 

patients in the advanced stages of HIV-1 infection (Clifford, 2008; Lindl et al., 2010; 

Valcour et al., 2011). The incidence of a subclinical neurological phenotype is much higher. 

Autopsy studies of patients with AIDS, the most severe phase of HIV-1 infection, have 

revealed that pathologic abnormalities of the central nervous system (CNS) occur in 75–90% 

of cases examined (Kay et al., 1991; Trujillo et al., 2005). The widespread use of combined 

antiretroviral therapy (cART) has dramatically decreased the incidence of severe 

neurological diseases. However, milder forms of HIV-1-associated neurological disorders 

have become more prevalent as patients live longer due to the use of cART (Joska et al., 

2011; Woods et al., 2009). For example, cART has profoundly changed the clinical 

phenotypes of HAND that is classified into three categories including (1) asymptomatic 

neurocognitive impairment (ANI), (2) mild neurocognitive disorder (MND), and (3) HIV-1-

associated dementia (HAD). While the incidence of HAD, the most severe form of HAND, 

has significantly declined in the cART era, the incidence of the milder forms of HAND, such 

as ANI and MND, persists or even increases (Tan and McArthur, 2012). Pathological studies 

have indicated that neuroinflammation and neural cell death occur in HAND patients, 

possibly due to increased transmigration of infected and/or activated monocytes/

macrophages across the blood-brain barrier (BBB) into the brain (Lakhan et al., 2013; 

Louboutin et al., 2010a,b; Louboutin et al., 2011; Louboutin and Strayer, 2012; Power et al., 

1993a,b; Rosenberg et al., 1998; Spindler and Hsu, 2012; Strazza et al., 2011; Webster and 

Crowe, 2006). However, the pathogenesis of this progression remains largely unclear 

(Shawahna, 2015).

The BBB is a dynamic interface between the peripheral circulation and the CNS, which 

controls the influx and efflux of biological substances needed for brain metabolic processes 
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as well as neuronal functions. Thus, the structural and functional integrity of the BBB is 

vital in maintaining brain homeostasis (Bernacki et al., 2008). The BBB is composed of 

specialized brain microvascular endothelial cells (BMECs) that are surrounded by astrocytes 

and pericytes to cooperatively form and maintain the cerebral microvasculature (Itoh et al., 

2011). It has been reported that the BBB capillaries are 50–100 times tighter than peripheral 

microvessels as a result of complex tight junctions (TJs) between adjacent cells (Abbott, 

2002; Aijaz et al., 2006; Redzic, 2011). TJs are multiprotein complexes that mediate cell-

cell adhesion and regulate transportation through the extracellular matrix (ECM). The BBB 

cells and TJ proteins are linked to the ECM that forms a milieu, thereby playing a prominent 

role in maintaining the integrity of the BBB and in providing signaling to neural cells. 

Therefore, BMECs together with the closely associated astrocytes, pericytes, neurons, TJs, 

and the ECM constitute a ‘‘neurovascular unit” that is essential for the health and function 

of the CNS (del Zoppo, 2009). It has been shown that the over expression and activation of 

matrix metalloproteinases (MMPs) can injure the BBB, in part, by digesting the TJs and 

ECM of the BBB (Louboutin et al., 2010a,b).

In humans, there are 23 related, but distinct, MMPs including 17 soluble MMPs and 6 

membrane-type MMPs (MT1-MMP to MT6-MMP) (Klein and Bischoff, 2011; Nagase et 

al., 2006; Nagase and Woessner, 1999; Nelson and Bissell, 2006; Ra and Parks, 2007; Seiki, 

2003; Vincenti, 2001). All MMPs are initially synthesized as enzymatically inactive forms 

(proMMPs or zymogens), which are subsequently processed to generate the active forms 

(Klein and Bischoff, 2011; Nagase et al., 2006; Nagase and Woessner, 1999; Nelson and 

Bissell, 2006; Ra and Parks, 2007; Seiki, 2003; Vincenti, 2001). Collectively, these active 

MMPs are capable of degrading all types of ECM proteins that form the connective 

materials between cells and around tissues, thereby playing a key role in tissue remodeling 

and many other important processes. MMP proteolysis is tightly regulated at multiple levels 

including inhibition by endogenous tissue inhibitors of MMPs (TIMPs) (Cao et al., 1996; 

Gomez et al., 1997; Klein and Bischoff, 2011), activation of proMMPs (Galis and Khatri, 

2002; Ra and Parks, 2007), and induction of gene expression (Klein and Bischoff, 2011; 

Nagase and Woessner, 1999; Vincenti, 2001). Excessive expression and activation of MMPs 

have been linked to many diseases such as rheumatoid arthritis, cancer metastasis, and 

neurological disorders (Cheng et al., 2000; Klein and Bischoff, 2011; Kontogiorgis et al., 

2005; Lakhan et al., 2013; Mun-Bryce and Rosenberg, 1998; Rosenberg et al., 1998; Strazza 

et al., 2011). Growing evidence suggests that an imbalance between MMPs and TIMPs 

contributes to HAND by disrupting the BBB to allow the penetration of infected cells and 

neurotoxic substances (Lakhan et al., 2013; Louboutin et al., 2010a,b; Louboutin et al., 

2011; Louboutin and Strayer, 2012; Power et al., 1993a,b; Rosenberg et al., 1998; Spindler 

and Hsu, 2012; Strazza et al., 2011; Webster and Crowe, 2006) and degrading nerve tissue 

proteins to induce death of neurons (Webster and Crowe, 2006). In the present study, we 

examined protein levels and enzymatic activities of MMPs and TIMPs in both plasma and 

cerebrospinal fluid (CSF) samples from HIV-1 patients with or without HAND and HIV-1-

negative controls (HD). We also profiled inflammatory cytokines/chemokines and monocyte/

macrophage activation in these clinical samples. We found that imbalances between MMPs 

and TIMPs with distinct patterns occurred in both the blood and CNS in HIV-1 patients, 

especially those with neurocognitive disorders. The increased ratio of MMP-2/TIMP-2 in the 
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peripheral blood and de novo induction and activation of MMP-9 in the CSF were especially 

significant in HAND patients, suggesting that imbalances between MMPs and TIMPs may 

contribute to BBB disruption and dysfunction in HAND patients.

2. Materials and methods

2.1. Study subjects and ethics statement

Frozen plasma samples from 9 HIV-1 patients who had no neurocognitive disorders (NN) 

and 19 HAND patients were kindly provided by the National NeuroAIDS Tissue 

Consortium (NNTC, Rockville, MD) through four collection units including the Texas 

Repository for AIDS Research (Dr. Gelman BB.), Manhattan HIV Brain Bank at the Mount 

Sinai Medical Center (Dr. Morgello S.), UCLA National Neurological AIDS Bank (Drs. 

Lucey G., Im K., and Wei B.), and California NeuroAIDS Tissue Network (CNTN) at 

UCSD (Dr. Ellis RJ.). The NNTC, funded by NIMH and NINDS, has collected, banked, and 

distributed samples of central and peripheral nervous system tissues, cerebrospinal fluid 

(CSF), blood, and other organs from HIV-1-positive and -negative individuals to support 

researchers worldwide to study pathogenesis of NeuroAIDS disorders. All samples were 

banked by NNTC according to strictly established protocols to ensure uniformity across the 

four clinical sites. Upon study entry, participants underwent a comprehensive psychometric 

evaluation to determine past and current substance use disorders, psychiatric illness, and 

neuropsychological (NP) functioning, as previously described (Clifford and Ances, 2013). 

Neurological examinations were also performed along with immunological (CD4 T cell 

count) and virological (plasma and CSF HIV-1 viral load) testing (Morgello et al., 2001). 

The NNTC uses an in vivo neurocognitive clinical diagnosis that is based on subjects’ pre-

mortem neurological and/or NP evaluation or by post-mortem review of records (if the 

subject could not be examined). The definitions are as follows: 1) Neurocognitively Normal 

(NN): Subjects had no significant cognitive complaints, no evidence of impairment on NP 

testing, and/or no loss of functional capacity; 2) ANI: Subjects had no significant cognitive 

complaints, but NP testing revealed evidence of mild NP abnormalities that do not impair 

activities associated with daily living or manifest themselves with clinical symptoms; 3) 

MND: Subjects or others reported symptoms of cognitive decline, evidence of mild NP 

impairment, decline in functional capacity that does not reach severity required to diagnose. 

Subjects may or may not have had a diagnostic evaluation to rule out other causes of 

cognitive impairment; and 4) HAD: Subjects or others reported symptoms of cognitive 

decline, evidence of moderate or severe NP impairment on NP testing, decline in functional 

capacity that reaches the level of dementia. Subjects may or may not have had a diagnostic 

evaluation to rule out other causes of NP impairment. The demographics and clinical 

characteristics of these NN and HAND patients are summarized in Table 1 and Table S1. 

Peripheral blood from 9 HIV-1-negative (HD) individuals who were matched for the gender, 

age, and ethnicity of HAND patients was collected in BD vacutainer tubes (BD Biosciences, 

Franklin Lakes, NJ). Blood samples were separated into plasma and peripheral blood 

mononuclear cells (PBMCs) that were stored at −80°C until use.

Frozen CSF samples from 8 HIV-1 patients who were diagnosed with HAND were kindly 

provided by the California NeuroAIDS Tissue Network (CNTN) at UCSD (Dr. Ellis RJ.) 
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through the NNTC (Rockville, MD) (Table 2). Nine CSF samples from HD individuals who 

had CNS symptoms due to unidentified pathogens were obtained from the Lee Biosolutions 

(Maryland Heights, MO) or Indiana University Medical Center (Table 2).

Peripheral blood and CSF samples from HD individuals were obtained under an IRB 

protocol approved by the Indiana University School of Medicine Institutional Review Board. 

Written informed consent was obtained from each participant before specimen collection.

2.2. Cell lines and cell culture

Human glioblastoma cell line U87MG (kindly provided by Dr. Ivan M., IUSM, Indianapolis, 

IN) was cultured in high glucose Dulbecco’s modified eagle’s medium (H-DMEM, GE 

Healthcare Life Sciences, Logan, UT) supplemented with 10% fetal bovine serum (FBS) 

(Atlanta Biologicals, Flowery Branch, GA), 100 U/mL penicillin, and 100 U/mL 

streptomycin (GE Healthcare Life Sciences). Human capillary microvascular endothelial cell 

line hCMEC/D3 (Cellutions Biosystem, Burlington, Ontario, Canada) was cultured in 

EndoGRO-2MV Complete Culture Media (EMD Millipore, Billerica, MA) supplemented 

with human basic fibroblast growth factor (bFGF, Sigma-Aldrich, St. Louis, MO), 100 

U/mL penicillin, and 100 U/mL streptomycin according to the manufacturer’s protocol. 

U87MG and hCMEC/D3 cells were cultured at 37 °C in a 5% CO2 incubator, and the 

medium was changed every 2–3 days.

2.3. Gelatin zymography assay

Gelatinase activity of human plasma and CSF was determined by a sodium dodecyl sulfate-

polyacrylamide gel electrophoresis (SDS-PAGE) gelatin zymography assay as previously 

described (Toth et al., 2012). Briefly, plasma or CSF was mixed with sample buffer in the 

absence of any protein-reducing agents and loaded onto polyacrylamide gels containing 

0.1% (w/v) gelatin for electrophoresis (Novex 10% Zymogram Gelatin Protein Gels, 

Invitrogen, Carlsbad, CA). After electrophoresis, gels were washed in renaturing buffer, 

followed by washing in developing buffer, and subsequently incubated in developing buffer 

at 37 °C for 40 h. Thereafter, gels were stained with a Colloidal Blue Staining Kit 

(Invitrogen, Carlsbad, CA), and gelatinolytic activity was detected as clear bands on the blue 

background. The activity of MMPs was determined by densitometric scanning of the bands 

using an EC3 Imaging System (UVP, Upland, CA). Photographic densities were analyzed 

using NIH Image J software (National Institutes of Health, Bethesda, MD) to determine the 

enzymatic activity of MMP-2 (62–72 kDa) and MMP-9 (82–92 kDa).

2.4. Enzyme-linked immunosorbent assay (ELISA)

Total protein concentrations of MMP-2, MMP-9, TIMP-1, TIMP-2, soluble CD14 (sCD14), 

and soluble CD163 (sCD163) in plasma and CSF samples were determined using ELISAs. 

All the ELISA kits were purchased from R&D Systems (Minneapolis, MN). ELISA results 

were documented using a microplate reader system (Bio-Tek, Winooski, VT).

2.5. Multiplex immunoassays

CSF concentrations of 38 human cytokines/chemokines (sCD40L, EGF, Eotaxin, FGF-2, 

Flt-3 ligand, Fractalkine, G-CSF, GM-CSF, GRO, IFN-α2, IFN-γ, IL-1α, IL-1β, IL-1ra, 
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IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-12p40, IL-12p70, IL-13, IL-15, 

IL-17A, IP-10, MCP-1, MCP-3, MDC, MIP-1α, MIP-1β, TGF-α, TNFα, TNF-β, and 

VEGF) were simultaneously measured using a magnetic bead-based multiplex kit 

(HCYTMAG-60K-PX38, EMD Millipore, Billerica, MA) as per the manufacturer’s 

instruction. Samples were incubated with beads at 4 °C for 16 h with shaking at 500 rpm, 

and subsequently washed twice using a hand-held magnetic plate washer (eBioscience, San 

Diego, CA). The beads were incubated with the biotinylated detection antibody for 1 h at 

room temperature with shaking at 500 rpm, followed by incubation with streptavidin-PE for 

30 min at room temperature with shaking at 500 rpm. After washing twice, the beads were 

resuspended in shield buffer and read on a Luminex-100 system (EMD Millipore, Billerica, 

MA) with a setting of 40 beads per bead set and 150 s per well. The standards (3.2–10,000 

pg/mL) provided in the HCYTMAG-60 K-PX38 kit were run on each plate in duplicate, and 

used to calculate the concentrations of cytokines/chemokines using the Bio-Plex Manager 

Software (Bio-Rad, Hercules, CA).

2.6. In vitro BBB model for analysis of BBB permeability and cell transmigration

An in vitro BBB model consisting of hCMEC/D3 and U87MG cells in co-culture on 

opposite sides of a collagen-coated, 0.4 µm poresize tissue culture insert (for permeability 

assay) or 3.0 µm poresize tissue culture insert (for cell transmigration assay) (Corning, 

Tewksbury, MA) was established as previously described (Eugenin and Berman, 2003; 

Eugenin et al., 2011). Briefly, U87MG cells were seeded on the Poly-L-Lysine coated 

basolateral side of the transwell insert at a density of 2 × 104, and hCMVEC/D3 cells were 

seeded on the apical side of the insert (2 × 104/insert) with type I collagen coating. Co-

cultures were maintained for 48–72 h to enable contact between astrocyte endfeet with 

hCMVEC/D3 cells on the opposite side of the model as previously described (Eugenin et al., 

2011).

To analyze the effects of plasma from HIV-1 patients on BBB permeability, 25% (v/v) 

plasma (in EGM-2MV medium) from healthy donors or HIV-1 patients was added to 

hCMEC/D3 cells in the transwell inserts and incubated for 24 h at 37 °C in a 5% CO2 

incubator. After washing twice with 1x HBSS to remove the medium, FITC-dextran in 1x 

HBSS at 1 mg/mL was added to the inserts, while 1x HBSS was added to the lower 

chamber. The HBSS from the basolateral lower chamber was sampled after treatment for 1 h 

to assess the degree of FITC-dextran flux across the BBB. Fluorescence intensity of FITC-

dextran was measured at excitation wavelength 488 nm and at emission wavelength 525 nm 

using a Synergy 4 microplate reader (Biotek, VT). The degree of diffused FITC-dextran was 

expressed as fold changes in fluorescence intensity relative to media from vehicle controls 

(Alabanza and Bynoe, 2012).

To analyze the effects of plasma from HIV-1 patients on cell transmigration across the BBB 

model, 25% (v/v) plasma (in EGM-2MV medium) from healthy donors or HIV-1 patients 

was added to hCMEC/D3 cells in the transwell inserts and incubated for 24 h at 37 °C in a 

5% CO2 incubator. After washing away the plasma, fresh PBMCs (1 × 106) from healthy 

donors were gently added to the top chambers of hCMEC/D3 layers growing on the insert 

filters. Cells were incubated at 37 °C for 4 h to allow cell transmigration to the bottom 
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chambers. The entire population of transmigrated cells present in each bottom chamber was 

collected by centrifugation at 300g for 10 min. The bottom sides of the insert filters were 

also rinsed with 2% FBS/2 mM EDTA to detach any adherent cells as previously described 

(Bahbouhi et al., 2009). MCP-1 (R&D Systems, Minneapolis, MN) at 100 ng/mL was used 

in every cell transmigration experiment as a positive control, as MCP-1 has been widely 

used for analyzing cell transmigration across the BBB (Eugenin et al., 2006).

2.7. Flow cytometric analysis

PBMCs and transmigrated cells were subjected to cell surface staining with fluorochrome-

conjugated antibodies against CD45 (a marker of human hematopoietic cells or leukocytes) 

and CD14 (a marker of human monocytes/macrophages) and flow cytometric analysis to 

determine cell numbers and types. Isotype-matched control antibodies were used as negative 

controls in each staining. All specific and control antibodies were purchased from BD 

Biosciences (Franklin Lakes, NJ). Cells were subjected to surface staining with antibodies in 

the dark at 4 °C for 30 min. After washing 3 times with 2% FBS/PBS, cells were fixed with 

2% paraformaldehyde (PFA) and subjected to flow cytometric analysis using a BD Accuri 

C6 flow cytometer to determine cell numbers and types. Flow cytometric analysis data were 

analyzed using FlowJo software (Tree Star, San Carlos, CA).

2.8. Proteomic analysis of CSF samples

Proteomic analysis of CSF samples was conducted in the Purdue Proteomics Facility, 

Purdue University (West Lafayette, IN). Briefly, each sample was denatured by cold acetone, 

reduced, alkylated, and followed by digestion with a Lys-C/trypsin mixture. Samples were 

cleaned using a silica-based C18 MacroSpin Column (Supelco, Bellefonte, PA). The final 

peptide concentration was determined using a BCA assay (Pierce, Rockford, IL). The 

samples were run on a nanoEksigent 425 HPLC system coupled to the Triple TOF 5600 plus 

(Sciex, Framingham, MA), and analyzed for 120 min at 300 nL/min over the cHiPLC 

nanoflex system. The trap column was a Nano cHiPLC 200 µm × 0.5 mm ChromXP C18-

CL 3 µm 120 Å followed by the analytical column, the Nano cHiPLC 75 µm × 15 cm 

ChromXP C18-CL 5 µm 120 Å. Each sample was injected into the Triple TOF 5600 plus 

through the Nanospray III source equipped with emission tip from New Objective. Peptides 

from the digestion were eluted from the columns using a mobile phase A of purified H2O/

0.1% formic acid (FA) and a mobile phase B of ACN/0.1% FA. With a flow rate of 0.3 µL/

min, the method started at 95% A for 1 min followed by a gradient of 5% B to 35% B in 90 

min and from 35% B to 80% B in 2 min. 80% B was held for 5 min before being brought to 

5% B and held for 20 min. The data acquisition was performed to monitor 50 precursor ions 

at 250 ms/scan. Mascot Daemon v.2.4.0 (Matrix Science, Boston, MA) was used for 

database searches against the UniProt_human database.

2.9. Statistical analysis

Statistical analysis was performed using SPSS software 24.0 and GraphPad Prism 6.0 (La 

Jolla, CA). Data were expressed as mean ± standard error of the mean (SEM) or mean ± 

standard deviation (SD) unless otherwise indicated. All data were tested for suitability for 

parametric or non-parametric analysis in SPSS. For comparing the biological factors 

assessed in this study between the two groups of HD and HAND CSF samples, independent 
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t-test or Mann-Whitney U test was used, as appropriate. For comparison of more than two 

groups, one-way ANOVA analysis or Kruskal-Wallis test was performed, as appropriate. 

Dichotomous variables such as gender and ethnicity were compared using Chi-squared test. 

Correlations were calculated using Spearman’s correlation coefficient analysis. Logistic 

regression analysis or multiple linear regression analysis was performed for taking into 

account the effect of covariates of age, sex and race. The p values shown in each figure are 

adjusted p values. A p value of <0.05 was considered statistically significant. Each in vitro 
experiment was performed at least 3 times with cells prepared from independent cell 

cultures.

3. Results

3.1. An imbalance between MMPs and TIMPs was revealed in the peripheral blood of HAND 
patients

Excessive expression and activation of MMPs are associated with BBB breakdown in many 

human diseases including HIV-1 infection (Baker et al., 2002; Rosenberg et al., 1998; 

Louboutin et al., 2010a,b; Louboutin et al., 2011; Louboutin and Strayer, 2012; Power et al., 

1993a,b; Spindler and Hsu, 2012; Strazza et al., 2011; Webster and Crowe, 2006). To 

confirm the increased expression of MMPs in HIV-1 patients and explore whether these 

MMP alterations were more dramatic in HIV-1 patients with HAND, we determined the 

protein levels of MMP-2 and MMP-9, two of the most important members of the MMP 

family, in plasma samples from 9 HD, 9 NN, and 19 HAND individuals. The demographics 

and clinical characteristics of these study subjects are summarized in Table 1 and Table S1. 

As shown in Fig. 1A, MMP-2 and MMP-9 were present in all plasma samples analyzed. 

Compared to HD, both NN and HAND had significantly higher protein levels of MMP-2 (p 
< 0.01 and p < 0.001) and MMP-9 (p < 0.01) (Fig. 1A). However, there were no significant 

differences between NN and HAND in their plasma levels of either MMP-2 or MMP-9 (Fig. 

1A).

We also quantified the protein levels of TIMP-1 and TIMP-2 in the plasma samples of HD, 

NN, and HAND individuals, as these two tissue inhibitors of MMPs are mainly involved in 

the regulation of MMP-9 and MMP-2 activities, respectively (Gomez et al., 1997; Klein and 

Bischoff, 2011). We found that both TIMP-1 and TIMP-2 were detectable in plasma samples 

from all subjects studied (Fig. 1B), indicating that they are constitutively present in the 

peripheral blood. Compared to HD, both NN and HAND had significantly higher protein 

levels of TIMP-1 (p < 0.001) and TIMP-2 (p < 0.01 and p < 0.001) (Fig. 1B). There were no 

significant differences between NN and HAND in their plasma levels of either TIMP-1 or 

TIMP-2 (Fig. 1B). Interestingly, when we further analyzed the ratio of MMP-2/TIMP-2 or 

MMP-9/TIMP-1, we found that HAND had a significantly higher ratio of MMP-2/TIMP-2 

when compared with HD (p < 0.05), whereas NN had a similar ratio of MMP-2/TIMP-2 

with that in HD (Fig. 1C). There were no differences in the MMP-9/TIMP-1 ratio among 

HD, NN, and HAND (Fig. 1C).
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3.2. Enzymatic activity of MMP-2 and MMP-9 was increased in the peripheral blood of 
HAND patients

All MMPs are initially synthesized as enzymatically inactive forms (proMMPs or 

zymogens), which are subsequently processed to generate the active forms (Klein and 

Bischoff, 2011; Nagase et al., 2006; Nagase and Woessner, 1999; Nelson and Bissell, 2006; 

Ra and Parks, 2007; Seiki, 2003; Vincenti, 2001). Since we found that the plasma levels of 

MMP-2, MMP-9, TIMP-1, and TIMP-2 were dysregulated in HIV-1 patients, we next used 

the gelatin zymography assay to analyze the enzymatic activity of plasma MMP-2 and 

MMP-9. The enzymatic activities of both MMP-2 and MMP-9 in NN and HAND samples 

were significantly higher than those in HD samples (Fig. 2A, B). Notably, MMP-2 activity 

was even higher in HAND patients when compared with NN individuals (p < 0.05), while 

MMP-9 activity in NN and HAND samples was not different (Fig. 2B).

3.3. Elevated plasma levels of MMP-2 and TIMP-2 positively correlated with markers of viral 
pathogenesis

To determine whether the elevated plasma levels of MMPs and TIMPs were associated with 

markers of viral pathogenesis, we analyzed the correlations among HIV-1 viral load, CD4 T 

cell count, and plasma levels of MMPs and TIMPs. We found that the plasma level of 

MMP-2 positively correlated with viral load (Fig. 3A, r = 0.66, p = 0.0001) and negatively 

correlated with CD4 T cell count (Fig. 3B, r = −0.40, p = 0.03). Plasma levels of TIMP-2 

positively correlated with viral load (Fig. 3C, r = 0.52, p = 0.005), and negatively correlated 

with CD4 count (Fig. 3D, r = −0.46, p = 0.01). No correlations were found between plasma 

level of MMP-9 and either viral load or CD4 T cell count (data not shown).

3.4. Plasma from HIV-1 patients disrupted the BBB integrity and increased monocyte 
transmigration across an in vitro BBB model

Since we demonstrated that MMP-2 and MMP-9 levels and proteolytic activities were 

elevated in plasma samples from HIV-1 patients, we tested whether plasma from HIV-1 

patients was able to directly affect BBB integrity. As shown in Fig. 4A, plasma from HIV-1 

patients increased the BBB model permeability by 2-fold when compared with plasma from 

HD individuals (p = 0.05). The increased BBB permeability was partially mediated by 

excessive expression and activation of MMPs in the plasma, as pretreatment of the BBB 

with GM6001, a pan-MMP inhibitor, ameliorated the impairment of the BBB permeability 

(data not shown). To examine whether the impaired BBB integrity induced by plasma from 

HIV-1 patients could further lead to an increased penetration of leukocytes (CD45+ cells), 

especially monocytes/macrophages, we carried out a cell transmigration assay by adding 

PBMCs from HD individuals into upper chambers of the in vitro BBB model treated with 

plasma from HD or HIV-1 subjects. Compared to HD plasma treatment, treatment with 

plasma from HIV-1 patients significantly increased the numbers of transmigrated leukocytes 

in the lower chambers (Fig. 4B, C). Flow cytometric analysis revealed that the majority of 

transmigrated leukocytes were CD45+CD14+ monocytes/macrophages (Fig. 4B, C). As 

MCP-1 is a potent monocyte/macrophage attractant and plays a critical role in promoting 

migration of monocytes/macrophages across the BBB of HIV-1 patients, we also tested 

whether addition of MCP-1 in lower chambers increased transmigration of monocytes/
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macrophages. We found that MCP-1 significantly increased transmigration of monocytes/

macrophages (Fig. 4C). Our findings indicate that plasma from HIV-1 patients directly 

impairs the BBB integrity and function, leading to an enhanced transmigration of 

monocytes/macrophages into the CNS.

3.5. MMPs and TIMPs were dysregulated in the CSF of HAND patients

The increased protein levels and enzymatic activity of MMPs in the peripheral blood of 

HIV-1 patients are likely involved in over-degradation of ECM components of the BBB, 

thereby disrupting BBB permeability and function. Damaged BBB allows influx of normally 

excluded molecules and inflammatory cells into the brain. Consequently, MMPs may be also 

increased and activated in the CNS of HIV-1 patients, leading to over-degradation of the 

ECM proteins that are important to cell structure and survival in the CNS (Cinque et al., 

1998; Moore et al., 2011). To this end, we obtained 17 CSF samples including those from 8 

HAND patients and 9 HD individuals (Table 2) and examined the protein levels and 

enzymatic activity of MMPs and TIMPs in these CSF samples. As shown in Fig. 5A, 

MMP-2, TIMP-1, and TIMP-2 were detected in all 17 CSF samples, albeit at various 

concentrations. Compared to HD, HAND patients had a significantly higher CSF level of 

TIMP-1 (Fig. 5A). There was a trend that CSF MMP-2 and TIMP-2 levels were also 

elevated in HAND than in HD, but not significant (Fig. 5A). Strikingly, MMP-9 was 

detected by ELISA in all 8 HAND CSF samples, but was detected at a very low level in only 

1 of the 9 CSF HD samples (Fig. 5A).

The gelatin zymography assay revealed an MMP-2 band in every CSF sample (Fig. 5B). The 

MMP-2 bands were much stronger in HAND patients than in HD individuals (Fig. 5B). 

Pooled data showed that the proteolytic activity of MMP-2 was significantly increased in the 

HAND CSF than that of HD CSF. The active form of MMP-9 was detected in all 8 HAND 

CSF samples, while none of the HD CSF samples had the active MMP-9 enzyme bands 

(Fig. 5B).

3.6. Imbalances between MMPs and TIMPs were linked to monocyte/macrophage activation 
in the peripheral blood, but not CSF, of HAND patients

Over-activation of monocytes/macrophages profoundly contributes to systemic inflammation 

and BBB damage in HIV-1 patients, leading to HIV-1-associated neuropathogenesis 

(Anzinger et al., 2014; Gras and Kaul, 2010; Kim et al., 2005). The levels of sCD14 and 

sCD163 have been used as reliable markers of monocytes/macrophage activation and 

systemic inflammation in HIV-1 patients (Brenchley et al., 2006; Burdo et al., 2011a,b). We 

quantified plasma and CSF levels of sCD14 and sCD163 in HD, HAND, and/or NN groups. 

In agreement with previous reports (Burdo et al., 2011b; Lawn et al., 2000; Sandler et al., 

2011), plasma levels of sCD14 and sCD163 were elevated in both NN and HAND patients 

when compared with HD individuals (Fig. 6A). There was no significant difference between 

NN and HAND in their plasma levels of sCD14 and sCD163 (Fig. 6A). Since sCD14 and 

sCD163 are likely shed by MMP proteolytic cleavage at the surface of monocytes/

macrophages, we analyzed the correlations of increased plasma levels of sCD14 and 

sCD163 with plasma levels of MMPs and TIMPs. Spearman correlation analysis 

demonstrated that plasma levels of MMP-2 and TIMP-2 strongly correlated with the 
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increased plasma levels of both sCD14 (r = 0.46, p = 0.01 and r = 0.55, p = 0.002, Fig. 6B) 

and sCD163 (r = 0.58, p = 0.001 and r = 0.68, p < 0.0001, Fig. 6C). There were no 

significant correlations between either sCD14 or sCD163 and plasma concentrations of 

MMP-9 (data not shown). Both sCD14 and sCD16 were detected in all CSF samples from 

HD and HAND individuals. However, neither sCD14 nor sCD163 was increased in the CSF 

of HAND patients when compared with HD individuals (Fig. S1).

3.7. Inflammatory cytokines/chemokines affected the production and activation of MMPs in 
the CNS

To clarify whether inflammatory factors are involved in regulation of production and 

activation of MMPs in the CNS, we simultaneously quantified CSF levels of 38 cytokines/

chemokines. As shown in Table 3, HAND patients had significantly higher CSF levels of 6 

cytokines/chemokines including IFN-α2, TNF-α, Fractalkine, IL-1α, TGF-α, and MCP-1 

when compared with HD individuals. Interestingly, the upregulated level of CSF MCP-1 was 

strongly correlated with the CSF level of MMP-2 in HAND patients (Fig. S2), suggesting 

that there is a complex interplay among the three types of factors (inflammatory cells, 

cytokines/chemokines, and MMPs) in the CNS of HIV-1 patients. It is important to note that 

these HIV-1-negative donors had varied CNS symptoms, thereby their CSF samples are not 

representative of healthy individuals.

To further explore the mechanisms underlying the induction and activation of MMPs in the 

CNS of HAND patients, we conducted proteomic analysis on the CSF samples. The Venn 

diagram in Fig. S3A illustrates the overview of the CSF proteome. Among these proteins, 

57, 153, and 243 proteins were identified in the CSF of HD only, both HD and HAND, and 

HAND only, respectively. The 57 unique proteins found in the HD group were mainly 

defense/immunity proteins, enzyme modulators, extracellular matrix proteins, receptors, and 

signaling molecules (Fig. S3B). Defense/immunity proteins and signaling molecules that 

maintain brain homeostasis were the most abundant proteins (23.5%) (Fig. S3B). There were 

243 proteins found only in the HAND CSF samples, and these proteins were mainly 

involved in calcium binding, cell adhesion, membrane traffic, nucleic acid binding and redox 

process (Fig. S3C). Furthermore, the most abundant proteins were hydrolases (19%) and 

oxidoreductases (14.3%), indicating that enzymatic proteins and oxidative reactions were 

upregulated in HAND patients. Both HD and HAND samples had 153 proteins in common 

and divided into 12 groups based on their functional annotation (Fig. S3D). Among these 

shared proteins, 24 proteins were statistically different in their levels between HD and 

HAND samples (Fig. 7). Six and 18 proteins of these 24 proteins were downregulated and 

up-regulated, respectively, in the CSF of HAND patients when compared with HD 

individuals. The down-regulated proteins included apolipoprotein A-II, calsyntenin-1, 

vitamin D-binding protein, complement factor B, C-type lectin domain family 3, and 

hemopexin, which are mainly associated with the calcium homeostasis and 

neuroimmunological function in the brain. The up-regulated proteins included 5 epididymis 

secretory proteins that can be activated by IL-1β or TGF-β, indicating that inflammation 

occurs in the CNS of HAND patients.
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4. Discussion

The principal finding of the present work is that imbalances between MMPs and TIMPs with 

distinct patterns occurred in both the peripheral blood and CNS of HIV-1 patients, especially 

those with HAND. In the peripheral blood, the protein levels of MMP-2, MMP-9, TIMP-1, 

TIMP-2, and the enzymatic activity of MMP-2 and MMP-9 were increased in HIV-1 

patients with or without HAND when compared with HD individuals (Figs. 1, 2). The 

enzymatic activity of MMP-2, but not MMP-9, was further increased in HAND than in NN 

(Fig. 2). Importantly, the ratio of MMP-2/TIMP-2 was significantly increased in HAND 

patients, not in NN patients (Fig. 1C), which may represent a key risk indicator for HAND. 

In the CSF, induction and activation of MMP-9 in HAND patients became particularly 

prominent as MMP-9 expression and enzymatic activity was detected in all 8 CSF samples 

from HAND patients, but only 1 of 9 CSF samples at a low level from HD individuals (Fig. 

5). These results indicate that MMP-9 is not constitutively expressed in the CNS, but is 

likely induced de novo and activated in the CNS of HAND patients. In addition to MMP-9, 

MMP-2 enzymatic activity and TIMP-1 expression, but neither expression of MMP-2 and 

TIMP-2 nor the ratio of MMP-2/TIMP-2, were increased in the CSF samples from HAND 

patients when compared with HD individuals (Fig. 5). Taken together, the increased ratio of 

MMP-2/TIMP-2 in the peripheral blood may play a key role in HIV-1-associated 

neuropathogenesis by disrupting the BBB to increase the penetration of infected cells and 

neurotoxic substances from the blood into the CNS (Lakhan et al., 2013; Louboutin et al., 

2010a,b, 2011; Louboutin and Strayer, 2012; Power et al., 1993a,b; Rosenberg et al., 1998; 

Singh, 2014; Spindler and Hsu, 2012; Strazza et al., 2011; Webster and Crowe, 2006). 

Additionally, the robust induction of MMP-9 and activation of MMP-2 and MMP-9 in the 

CNS of HIV-1 patients may not only damage the BBB, but also degrade nerve tissue 

proteins to induce death of neurons (Webster and Crowe, 2006). Thus, the imbalances of 

MMPs and TIMPs occurring in the peripheral blood and CNS of HIV-1 patients likely play a 

crucial role in the HIV-1-associated neuropathogenesis by disrupting the BBB, increasing 

influx of inflammatory cells, and degrading neuronal survival molecules.

MMPs and TIMPs are expressed by various cell types, and their gene expressions are 

regulated by a variety of extracellular factors including cytokines, growth factors, and cell-

cell interactions (Lambert et al., 2004; Westermarck and Kahari, 1999). Studies have 

demonstrated that activated monocytes/macrophages orchestrate these events and play a 

central role in BBB injury in HIV-1 patients (Anzinger et al., 2014; Gras and Kaul, 2010; 

Kim et al., 2005). Activated monocytes/macrophages increase the production of MMPs and 

inflammatory cytokines, enhance infiltration of inflammatory cells and HIV-1-infected cells 

into the CNS, and accelerate the influx of neurotoxic substances into the brain, thereby 

promoting HIV-1-associated neuropathogenesis (Anzinger et al., 2014; Gras and Kaul, 2010; 

Kim et al., 2005). Along these lines, we measured circulating levels of sCD14 and sCD163, 

two markers of monocyte/macrophage activation and inflammation (Brenchley et al., 2006; 

Burdo et al., 2011a,b), in the plasma from HIV-1 patients and HD individuals. In agreement 

with previous reports (Burdo et al., 2011b; Lawn et al., 2000; Sandler et al., 2011), sCD14 

and sCD163 were elevated in the plasma of HAND and NN patients when compared with 

HD individuals (Fig. 6). Interestingly, upregulation of plasma MMP-2 in HIV-1 patients 
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strongly correlated with the increased levels of both sCD14 and sCD163 (Fig. 6), suggesting 

that sCD14 and sCD163 are likely shed via proteolytic cleavage by MMPs, especially 

MMP-2, at the surface of monocytes/macrophages. This result provides insight into the 

molecular mechanisms underlying the increased production of sCD14 and sCD163 in the 

peripheral blood of HIV-1 patients. In addition, upregulation of plasma MMP-2 positively 

correlated with viral loads and negatively correlated with CD4 counts in the HIV-1 patients 

included in this study (Fig. 3). We acknowledge that these results are primarily derived from 

patients not receiving virologically suppressive cART, and thus these data may not apply to 

HAND patients who have undetectable plasma viral loads.

To clarify whether the imbalances between MMPs and TIMPs found in both the peripheral 

blood and CNS of HIV-1 patients, especially those with neurocognitive disorders, were 

driven by inflammatory factors, we examined the profiles of 38 cytokines/chemokines in the 

plasma and CSF samples from HAND patients and HD individuals. HAND patients had 

significantly higher levels of MCP-1 and TNF-α in both the peripheral blood (data not 

shown) and CSF (Table 3, Fig. S2A). MCP-1 is one of the key chemokines that regulate 

migration and infiltration of monocytes/macrophages (Deshmane et al., 2009). We found 

that the upregulated CSF levels of MCP-1 and MMP-2 strongly correlated in HAND patients 

(Fig. S2B), suggesting that MMPs and MCP-1 may be two key players in the pathogenesis 

of HAND. It likely occurs that MMPs damage the BBB, allowing increased penetration of 

activated/infected monocytes/macrophages into the CNS. These migrated monocytes/

macrophages directly or indirectly produce MCP-1 and other cytokines/chemokines to 

attract more activated cells into the CNS, leading to accelerated production of MMPs. Thus, 

MMPs and MCP-1 generate a positive feedback loop to enhance their neuropathic effects in 

HIV-1 patients. It is important to note that the CSF samples were obtained from HD 

individuals who had varied CNS symptoms, thereby not representing that from truly healthy 

individuals.

Since TNF-α was increased in both the peripheral blood (data not shown) and CSF (Table 3) 

in HIV-1 patients, we tested whether TNF-α affected production and activation of MMPs by 

brain cells including astrocytes and brain capillary microvascular endothelial cells. We found 

that a human astrocyte cell line (U87MG), but not the human brain capillary microvascular 

endothelial cell line (hCMEC/D3), produced both the latent and active forms of MMP-2 in 

response to TNF-α stimulation in a time-dependent manner (Fig. S4). However, neither 

U87MG nor hCMEC/D3 cells produced any forms of MMP-9 (Fig. S4). Therefore, there are 

still questions remaining about the induction and activation of MMP-9 in the CNS of HIV-1 

patients: (1) which types of neural cells can be induced to produce MMP-9, (2) what factors 

trigger the production and activation of MMP-9, and (3) the molecular mechanisms 

underlying the robust induction and activation of MMP-9 found in the CNS of HAND 

patients.

Overwhelming evidence has demonstrated that HIV-1 invades the CNS in part by breaking 

down the BBB, which represents a key step in HIV-1-associated neuropathy. However, there 

is no evidence thus far showing that plasma from HIV-1 patients can directly impair the 

BBB integrity and function. Utilizing the human astrocyte cell line U87MG and brain 

capillary microvascular endothelial cell line hCMEC/D3 to establish an in vitro BBB model 
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as previously described (Eugenin and Berman, 2003; Eugenin et al., 2011), we demonstrated 

that plasma from HIV-1 patients was able to directly impair the permeability of the BBB 

model as FITC-dextran diffusion and transmigration of monocytes/-macrophages across the 

BBB were significant (Fig. 4). Importantly, pre-treatment of the BBB with GM6001, a pan-

MMP inhibitor (Afonso et al., 2013), ameliorated the impairment of the BBB permeability 

(data not shown), indicating that MMPs in the plasma from HIV-1 patients mediated the 

impairment of the BBB permeability. To our knowledge, this is the first evidence of plasma 

from HIV-1 patients directly impairing the BBB permeability and function, and the 

impairment is at least partially mediated by MMP/TIMP imbalances in the plasma.

In summary, imbalances between MMPs and TIMPs with distinct patterns occur in both the 

blood and CNS of HIV-1 patients, especially those with neurocognitive disorders. Robust 

expression and activation of MMPs not only damage the BBB and CNS tissues, but also 

contribute to inflammation of the CNS, thereby playing a key role in the pathogenesis of 

HAND. Inhibition of MMP activity may represent a therapeutic strategy to mitigate MMP-

related damage during HIV-1 infection. However, it should be noted that the sample size of 

the individual groups was too small to allow a detailed analysis of each subtype of HAND. 

Additionally, the CSF samples were obtained from HD individuals who had varied CNS 

symptoms and thereby may not represent those from healthy individuals. Therefore, the 

simian immunodeficiency virus (SIV)/macaque animal model of HIV-1 infection may be 

used to address these issues and to further study the role of dysregulated MMPs and TIMPs 

in the pathogenesis of neuroAIDS.
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BMECs brain microvascular endothelial cells

cART combined antiretroviral therapy

CNS central nervous system

CSF cerebrospinal fluid

ECM extracellular matrix

HAD HIV-1-associated dementia

HAND HIV-1-associated neurocognitive disorders

HIV-1 human immunodeficiency virus type 1

MCP-1 monocyte chemotactic protein 1

MMPs matrix metalloproteinases

MND mild neurocognitive disorder

MT-MMPs membrane-type MMPs

NN neurocognitively normal

ROS reactive oxygen species

sCD14 soluble CD14

sCD163 soluble CD163

TIMPs tissue inhibitors of MMPs

TJ tight junction

TNF-α tumor necrosis factor alpha

TGF-β transforming growth factor beta
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Fig. 1. 
Imbalances between MMPs and TIMPs occurred in the peripheral blood of HAND patients. 

Plasma samples from 9 HD, 9 NN, and 19 HAND individuals were subjected to ELISAs to 

determine the levels of MMP-2, MMP-9, TIMP-1, and TIMP-2. A) and B) The scatter plots 

show the distribution of plasma levels (ng/mL) of MMP-2, MMP-9, TIMP-1, and TIMP-2. 

C) The ratio of MMP-2/TIMP-2 and MMP-9/TIMP-1 in the plasma samples. Each dot in the 

plots represents data from a single individual. Lines represent mean ± SEM. HD, HIV-1-

negative individuals; NN, HIV-1 patients who had no neurocognitive disorders; HAND, 

HIV-1-associated neurocognitive disorders; ns, not significant; *p < 0.05; **p < 0.01; ***p < 

0.001.
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Fig. 2. 
Enzymatic activity of MMP-2 and MMP-9 was increased in the peripheral blood of HIV-1 

patients. Enzymatic activity of MMP-2 and MMP-9 in the plasma samples from HD, NN, 

and HAND individuals was evaluated using the gelatin zymography assay. A) 

Representative zymography results of the plasma samples from 3 HD, 2 NN, and 4 HAND 

individuals. B) Enzymatic activity of MMP-2 and MMP-9 in the plasma samples from HD, 

NN, and HAND individuals was quantified using Image J software. Each dot in the plots 

represents data from a single individual. Lines represent mean ± SEM. A.U., arbitrary unit; 

HD, HIV-1-negative individuals; NN, HIV-1 patients who had no neurocognitive disorders; 

HAND, HIV-1-associated neurocognitive disorders; ns, not significant; *p < 0.05; **p < 

0.01; ***p < 0.001.

Xing et al. Page 20

Brain Behav Immun. Author manuscript; available in PMC 2018 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
Correlations between plasma MMPs or TIMPs levels and markers of viral pathogenesis in 

HIV-1 patients. Correlation between plasma level of MMP-2 or TIMP-2 and viral load (A 

and C) or CD4 count (B and D) in HAND patients. Each dot in the plots represents data 

from a single individual. Significance was determined using the Spearman correlation test. 

Spearman correlation coefficient and p value (r and p) are indicated.
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Fig. 4. 
Effects of plasma from HIV-1 patients on BBB permeability and PBMC transmigration. 

Fresh PBMCs from healthy donors were added into inserts of in vitro BBB model that were 

untreated or treated with plasma from HD, HIV-1 patients, or MCP-1. A) The permeability 

of the BBB model was analyzed after treatment with plasma from HD or HIV-1 patients for 

24 h by quantifying the passage of FITC-conjugated Dextran through co-cultures. B) and C) 

Transmigrated cells in the lower chamber were collected and stained for flow cytometric 

analysis to quantify the number of monocytes/macrophages (CD45+CD14+) in the 

transmigrated population of cells. Forward and side scatter were used to determine 

transmigrated cell gating. Data from at least 3 donors were expressed as mean ± SEM. *p < 

0.05; ***p < 0.001.
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Fig. 5. 
Expression and activation of MMPs and TIMPs in the CSF from HIV-1-negative individuals 

and HAND patients. CSF samples collected from 9 HD and 8 HAND patients were studied. 

A) The scatter plots showed CSF levels of MMP-2, MMP-9, TIMP-1, and TIMP-2 (ng/mL). 

B) Enzymatic activity of MMP-2 and MMP-9 from 4 HD and 4 HAND, and quantification 

data of MMP-2 and MMP-9 in all CSF samples tested. A.U., arbitrary unit; HD, HIV-1-

negative individuals; HAND, HIV-1-associated neurocognitive disorders; ns, not significant; 
**p < 0.05; ***p < 0.001.
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Fig. 6. 
Correlations between MMPs and monocyte/macrophage activation markers in the peripheral 

blood of HIV-1 patients. A) Plasma samples from 9 HD, 9 NN, and 19 HAND individuals 

were subjected to ELISAs to determine the levels of sCD14 and sCD163 (ng/mL). Each dot 

in the plots represents data from a single individual. Lines represent mean ± SEM. B) and C) 

Correlation between plasma sCD14 or sCD163 and MMP-2 or TIMP-2. Significance was 

determined using the Spearman correlation test. Spearman correlation coefficient and p 
value (r and p) are indicated.
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Fig. 7. 
Proteomics analysis of CSF samples from HIV-1-negative donors and HAND patients. 

Protein profile analysis, as shown in the heat map, reveals the proteins differentially 

expressed between HIV-1-negative and HAND CSF samples.
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Table 1

Demographics and clinical characteristics of study subjects.

Characteristics HAND
(n = 19)

NN
(n = 9)

p
value

HD
(n = 9)

Age (years) 45 ± 2 48 ± 2 0.4 47 ± 5

Gender (% Male) 78 90 0.4 67

Race (% White) 67 63 0.9 56

CD4 count (cells/µL) 150 ± 34 301 ± 91 0.1 ND

Plasma HIV RNA (log10/mL) 4.0 ± 0.3 3.4 ± 0.5 0.3 ND

Note: HAND, HIV-1-associated neurocognitive disorders; NN, HIV-1 patients who had no neurocognitive disorders; HD, HIV-1-negative donors; 
ND, not determined.
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Table 3

Comparison of CSF levels of 38 cytokines/chemokines between HD and HAND patients.

Cytokine/chemokine Groups (Mean ± SEM) (pg/mL) p value

HD (n = 9) HAND (n = 8)

IFN-α2 16.7 ± 4.2 38.9 ± 3.6 0.0045

TNF-α 1.1 ± 0.2 3.0 ± 0.6 0.0050

MCP-1 1994.0 ± 184.3 3577.0 ± 571.6 0.0207

IL-1α 33.8 ± 12.6 164.1 ± 69.6 0.0267

Fractalkine 69.6 ± 11.6 103.6 ± 14.4 0.0383

TGF-α 2.4 ± 0.3 13.7 ± 7.0 0.0484

CCL5 43.2 ± 0.4 59.6 ± 13.0 0.0660

IP-10 950.2 ± 247.7 3627.0 ± 1581.0 0.0712

Flt-3L 42.2 ± 13.3 208.0 ± 113.5 0.1206

GM-CSF 8.8 ± 1.4 12.8 ± 2.2 0.1857

IL-17α 1.5 ± 0.6 0.4 ± 0.2 0.3448

IL-8 42.7 ± 8.8 72.9 ± 22.7 0.3704

IL-3 8.6 ± 1.6 7.0 ± 0.9 0.4234

IL-6 75.1 ± 60.0 15.0 ± 7.7 0.5946

G-CSF 151.6 ± 83.1 64.9 ± 23.3 0.6371

IL-15 4.4 ± 1.0 4.4 ± 1.1 0.6372

IL-9 3.2 ± 0.7 4.1 ± 1.0 0.6646

TNF-β 0/9 1/8

VEGF 0/9 5/8

IL-12p70 0/9 1/8

IFN-γ 6/9 4/8

GRO 2/9 5/8

IL-10 0/9 2/8

MCP-3 2/9 1/8

IL-12p40 1/9 1/8

MDC 2/9 5/8

IL-13 1/9 1/8

EGF 0/9 3/8

FGF-2 0/9 4/8

Eotaxin 1/9 5/8

sCD40L 5/9 4/8

MIP-1α 1/9 1/8

MIP-1β 6/9 2/8

IL-7 1/9 4/8

IL-4 0/9 1/8

IL-5 0/9 2/8

IL-RA 5/9 5/8

IL-1β 0/9 1/8
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Cytokine/chemokine Groups (Mean ± SEM) (pg/mL) p value

HD (n = 9) HAND (n = 8)

IL-2 6/9 2/8

Note: HD, HIV-1-negative donors; HAND, HIV-1-associated neurocognitive disorders; x/9 or x/8, number of CSF samples had detectable levels of 
cytokines/ chemokines as indicated out of the total of 9 or 8 CSF samples.

The bold section shows all the data that has difference statistically.
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