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SUMMARY

Biological and social systems consist of myriad interacting units. The interactions can be repre-
sented in the form of a graph or network. Measurements of these graphs can reveal the underlying
structure of these interactions, which provides insight into the systems that generated the graphs.
Moreover, in applications such as connectomics, social networks, and genomics, graph data are
accompanied by contextualizing measures on each node. We utilize these node covariates to help
uncover latent communities in a graph, using a modification of spectral clustering. Statistical
guarantees are provided under a joint mixture model that we call the node-contextualized sto-
chastic blockmodel, including a bound on the misclustering rate. The bound is used to derive
conditions for achieving perfect clustering. For most simulated cases, covariate-assisted spectral
clustering yields results superior both to regularized spectral clustering without node covariates
and to an adaptation of canonical correlation analysis. We apply our clustering method to large
brain graphs derived from diffusion MRI data, using the node locations or neurological region
membership as covariates. In both cases, covariate-assisted spectral clustering yields clusters that
are easier to interpret neurologically.

Some key words: Brain graph; Laplacian; Network; Node attribute; Stochastic blockmodel.

1. INTRODUCTION

Modern experimental techniques in areas such as genomics and brain imaging generate vast
amounts of structured data, which contain information about the relationships of genes or brain
regions. Studying these relationships is essential for solving challenging scientific problems, but
few computationally feasible statistical techniques incorporate both the structure and diversity
of these data.

©c 2017 Biometrika Trust
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A common approach to understanding the behaviour of a complex biological or social system
is to first discover blocks of highly interconnected units, also known as communities or clusters,
that serve or contribute to a common function. These might be genes that are involved in a
common pathway or areas in the brain with a common neurological function. Typically, we only
observe the pairwise relationships between the units, which can be represented by a graph or
network. Analysing networks has become an important part of the social and biological sciences.
Examples of such networks include gene regulatory networks, friendship networks, and brain
graphs. If we can discover the underlying block structure of such graphs, we can gain insight
from the common characteristics or functions of the units within a block.

Existing research has extensively studied the algorithmic and theoretical aspects of finding
node clusters within a graph, by Bayesian, maximum likelihood, and spectral approaches. Unlike
model-based methods, spectral clustering is a relaxation of a cost minimization problem and has
been shown to be effective in various settings (Ng et al., 2002; Von Luxburg, 2007). Modifications
of spectral clustering, such as regularized spectral clustering, are accurate even for sparse networks
(Chaudhuri et al., 2012; Amini et al., 2013; Qin & Rohe, 2013). On the other hand, certain
Bayesian methods offer additional flexibility in how nodes are assigned to blocks, allowing for
a single node to belong to multiple blocks or a mixture of blocks (Nowicki & Snijders, 2001;
Airoldi et al., 2008). Maximum likelihood approaches can enhance interpretability by embedding
nodes in a latent social space and providing methods for quantifying statistical uncertainty (Hoff
et al., 2002; Handcock et al., 2007; Amini et al., 2013). For large graphs, spectral clustering is
one of very few computationally feasible methods that has an algorithmic guarantee for finding
the globally optimal partition.

The structured data generated by modern technologies often contain additional measurements
that can be represented as graph node attributes or covariates. For example, these could be personal
profile information in a friendship network or the spatial location of a brain region in a brain
graph. There are two potential advantages of utilizing node covariates in graph clustering. First,
if the covariates and the graph have a common latent structure, then the node covariates provide
additional information to help estimate this structure. Even if the covariates and the graph do not
share exactly the same structure, some similarity is sufficient for the covariates to assist in the
discovery of the graph structure. Second, by using node covariates in the clustering procedure,
we enhance the relative homogeneity of covariates within a cluster and filter out partitions that
fail to align with the important covariates. This allows for easy contextualization of the clusters
in terms of the member nodes’ covariates, providing a natural way to interpret the clusters.

Methods that utilize both node covariates and the graph to cluster the nodes have previously
been introduced, but many of them rely on ad hoc or heuristic approaches and none provide
theoretical guarantees for statistical estimation. Most existing methods can be broadly classified
into Bayesian approaches, spectral techniques, and heuristic algorithms. Many Bayesian models
focus on categorical node covariates and are often computationally expensive (Chang & Blei,
2010; Balasubramanyan & Cohen, 2011).A recent Bayesian model proposed byYang et al. (2013)
can discover multi-block membership of nodes with binary node covariates. This method has
linear update time in the network size, but does not guarantee linear-time convergence. Heuristic
algorithms use various approaches, including embedding the network in a vector space, at which
point more traditional methods can be applied to the vector data (Gibert et al., 2012), or using
the covariates to augment the graph and applying other graph clustering methods that tune the
relative weights of node-to-node and node-to-covariate edges (Zhou et al., 2009). A commonly-
used spectral approach to incorporate node covariates directly alters the edge weights based on
the similarity of the corresponding nodes’ covariates, and uses traditional spectral clustering on
the weighted graph (Neville et al., 2003; Gunnemann et al., 2013).
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This work introduces a spectral approach that performs well for assortative graphs and another
that does not require this restriction. We give a standard definition of an assortative graph here
and later define it in the context of a stochastic blockmodel.

DEFINITION 1 (Assortative graph). A graph is assortative if nodes within the same cluster are
more likely to share an edge than nodes in two different clusters.

Assortative covariate-assisted spectral clustering adds the covariance matrix of the node covari-
ates to the regularized graph Laplacian, boosting the signal in the top eigenvectors of the sum,
which is then used for spectral clustering. This works well for assortative graphs, but performs
poorly otherwise. Covariate-assisted spectral clustering, which uses the square of the regularized
graph Laplacian, is presented as a more general method that performs well for assortative and
non-assortative graphs. A tuning parameter is employed by both methods to adjust the relative
weight of the covariates and the graph; in §2·3 we propose a way to choose this tuning param-
eter. Research on dynamic networks using latent space models has yielded an analogous form
for updating latent coordinates based on a distance matrix and the latent coordinates from the
previous time step (Sarkar & Moore, 2006). A similar framework can also be used to cluster
multiple graphs (Eynard et al., 2015).

Variants of our methods previously introduced were derived by first considering the problem
of minimizing the weighted sum of the k-means and graph cut objective functions and then
solving a spectral relaxation of the original problem. Wang et al. (2009) decided against using
an additive method similar to covariate-assisted spectral clustering because setting the method’s
tuning parameter is a nonconvex problem. They chose to investigate a method that uses the
product of the generalized inverse of the graph Laplacian and the covariate matrix instead. Shiga
et al. (2007) recognized the advantage of having a tuning parameter to balance the contribution
of the graph and the covariates, but did not use the stochastic blockmodel to study their method.
The full utility and flexibility of these types of approaches have not yet been presented, and
neither paper derives any statistical results about the methods’ performance. Furthermore, they
do not consider the performance of these methods on non-assortative graphs. In contrast, we
were initially motivated to develop covariate-assisted spectral clustering by its interpretation and
propensity for theoretical analysis.

Very few of the clustering methods that employ both node covariates and the graph offer any
theoretical results, and, to our knowledge, this paper gives the first statistical guarantee for these
types of approaches. We define the node-contextualized stochastic blockmodel, which combines
the stochastic blockmodel with a block mixture model for node covariates. Under this model, a
bound on the misclustering rate of covariate-assisted spectral clustering is established in § 3·2.
The behaviour of the bound is studied for a fixed and an increasing number of covariates as a
function of the number of nodes, and conditions for perfect clustering are derived. A general
lower bound is also derived, demonstrating the conditions under which an algorithm using both
the node covariates and the graph can give more accurate clusters than any algorithm using only
the node covariates or the graph.

For comparison, an alternative method based on an adaptation of classical canonical correlation
analysis is introduced (Hotelling, 1936), which uses the product of the regularized graph Laplacian
and the covariate matrix as the input to the spectral clustering algorithm. Simulations indicate that
canonical correlation performs worse than covariate-assisted spectral clustering under the node-
contextualized stochastic blockmodel with Bernoulli covariates. However, canonical correlation
analysis clustering is computationally faster than our clustering method and requires no tuning.
In contrast, covariate-assisted spectral clustering depends on a single tuning parameter, which
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interpolates between spectral clustering with only the graph and only the covariates. This param-
eter can be set without prior knowledge by using an objective function such as the within-cluster
sum of squares. Some results for determining what range of tuning parameter values should be
considered are provided in the description of the optimization procedure in §2·3. Alternatively,
the tuning parameter can be set using prior knowledge or to ensure that the clusters achieve some
desired quality, such as spatial cohesion. As an illustrative example, in §5 we study diffusion
magnetic resonance imaging-derived brain graphs using two different sets of node covariates.
The first analysis uses spatial location. This produces clusters that are more spatially coherent
than those obtained using regularized spectral clustering alone, making them easier to interpret.
The second analysis uses neurological region membership, which yields partitions that closely
align with neurological regions, while allowing for patient-wise variability based on brain graph
connectivity.

2. METHODOLOGY

2·1. Notation

Let G(E, V ) be a graph, where V is the set of vertices or nodes and E is the set of edges, which
represent relationships between the nodes. Let N be the number of nodes. Index the nodes in V by
{1, . . . , N }; then E contains a pair (i, j) if there is an edge between nodes i and j. A graph’s edge
set can be represented as the adjacency matrix A ∈ {0, 1}N×N , where Aij = Aji = 1 if (i, j) ∈ E
and Aij = Aji = 0 otherwise. We restrict ourselves to studying undirected and unweighted graphs,
although with small modifications most of our results also apply to directed and weighted graphs.

Define the regularized graph Laplacian as

Lτ = D−1/2
τ AD−1/2

τ ,

where Dτ = D+τ I and D is a diagonal matrix with Dii = ∑N
j=1 Aij. The regularization parameter

τ is treated as a constant, and is included to improve spectral clustering performance on sparse
graphs (Chaudhuri et al., 2012). Throughout, we shall set τ = N−1 ∑N

i=1 Dii, i.e., the average
node degree (Qin & Rohe, 2013).

For the graph G(E, V ), let each node in the set V have an associated bounded covariate vector
Xi ∈ [−J , J ]R, and let X ∈ [−J , J ]N×R be the covariate matrix where each row corresponds
to a node covariate vector. Let ‖ · ‖ denote the spectral norm and ‖ · ‖F the Frobenius norm.
Let I (·) denote the indicator function. For sequences {aN } and {bN }, aN = �(bN ) if and only if
bN = O(aN ) and aN = O(bN ).

2·2. Spectral clustering for a graph with node covariates

The spectral clustering algorithm has been employed to cluster graph nodes using various
functions of the adjacency matrix. For instance, applying the algorithm to Lτ corresponds to
regularized spectral clustering, where the value of the regularization parameter is set prior to
running the algorithm. All of the methods we consider will employ this algorithm, but will use a
different input matrix such as Lτ , L̃ or LCCA as defined later.

Algorithm 1. Spectral clustering.
Given input matrix W and number of clusters K :

Step 1. Find eigenvectors U1, . . . , UK ∈ R
N corresponding to the K largest eigenvalues of W .

Step 2. Use the eigenvectors as columns to form the matrix U = (U1, . . . , UK ) ∈ R
N×K .
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Step 3. Form the matrix U ∗ by normalizing each of U ’s rows to have unit length.

Step 4. Run k-means clustering with K clusters, treating each row of U ∗ as a point in R
K .

Step 5. If the ith row of U ∗ falls in the kth cluster, assign node i to cluster k .

Step 4 of the spectral clustering algorithm uses k-means clustering, which is sensitive to
initialization. In order to reduce this sensitivity, we use multiple random initializations. To take
advantage of available graph and node covariate data in graph clustering, it is necessary to employ
methods that incorporate both of these data types. As discussed in § 1, spectral clustering has
many advantages over other graph clustering methods. Hence, we propose three approaches that
use the spectral clustering framework and utilize both the graph structure and the node covariates.

Assortative covariate-assisted spectral clustering uses the leading eigenvectors of

L̄(α) = Lτ + αXX T,

where α ∈ [0, ∞) is a tuning parameter. When using {0, 1}-Bernoulli covariates, the covariate
term can be interpreted as adding to each element (i, j) a value proportional to the number of
covariates equal to 1 for both i and j. In practice, the covariate matrix X should be parameterized
as in linear regression; specifically, categorical covariates should be re-expressed with dummy
variables. For continuous covariates, it can be beneficial to centre and scale the columns of X
before performing the analysis. The scaling helps satisfy condition (i) in Lemma 1, which ensures
that the top K eigenvectors of L̄(α) contain block information.As demonstrated in the simulations
in § 4, this method is robust and has good performance for assortative graphs, but does not perform
well for non-assortative graphs.

Covariate-assisted spectral clustering uses the leading eigenvectors of

L̃(α) = Lτ Lτ + αXX T.

This approach performs well for non-assortative graphs and nearly as well as our assortative
clustering method for assortative graphs. When there is little chance of confusion, L̃ will be used
for notational convenience.

To run covariate-assisted spectral clustering on the large graphs, such as the brain graphs in § 5,
the top K eigenvectors of L̃ are computed using the implicitly restarted Lanczos bidiagonalization
algorithm (Baglama & Reichel, 2006). At each iteration, the algorithm only needs to compute the
product L̃v, where v is an arbitrary vector. For computational efficiency, the product is calculated
as Lτ (Lτ v) + αX (X Tv). This takes advantage of the sparsity of Lτ and the low-rank structure of
XX T. Ignoring log terms and any special structure in X , it takes O{(|E| + NR)K} operations to
compute the required top K eigenvectors of L̃, where R is the number of columns in X . The graph
clusters are obtained by iteratively employing the spectral clustering algorithm on L̃(α) while
varying the tuning parameter α until an optimal value is obtained. The details of this procedure
are described in the next section.

As an alternative, we propose a modification of classical canonical correlation analysis
(Hotelling, 1936) whose similarity matrix is the product of the regularized graph Laplacian
and the covariate matrix,

LCCA = Lτ X .

The spectral clustering algorithm is employed on LCCA to obtain node clusters when the number
of covariates, R, is greater than or equal to the number of clusters, K . This approach inherently
provides a dimensionality reduction in the common case where the number of covariates is much
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less than the number of nodes. If R � N−1 ∑
i Dii, then spectral clustering with LCCA has a

faster running time than covariate-assisted spectral clustering.

2·3. Setting the tuning parameter

In order to perform spectral clustering with L̃(α), it is necessary to determine a specific value
for the tuning parameter, α. The tuning procedure presented here presumes that both the graph
and the covariates contain some block information, as demonstrated by the simulations in § 4. In
practice, an initial test can be used to determine if the graph and the covariates contain common
block information, and such a test will be presented in future work. The tuning parameter should
be chosen to achieve a balance between Lτ and X such that the information in both is captured in
the leading eigenspace of L̃. For large values of α, the leading eigenspace of L̃ is approximately the
leading eigenspace of XX T. For small values of α, the leading eigenspace of L̃ is approximately
the leading eigenspace of Lτ . A good initial choice of α is the value which makes the leading
eigenvalues of Lτ Lτ and αXX T equal, namely α0 = λ1(Lτ Lτ )/λ1(XX T).

There is a finite range of α for which the leading eigenspace of L̃(α) is not a continuous function
of α; outside this range, the leading eigenspace is always continuous in α. In simulations, the
clustering results are exceedingly stable in the continuous range of α. Hence, only the values of
α inside a finite interval need to be considered. This section gives an interval α ∈ [αmin, αmax]
that is computed with only the eigenvalues of Lτ Lτ and XX T. Within this interval, α is chosen
to minimize an objective function. Empirical results demonstrating these properties are given in
the Supplementary Material.

Let λi(M ) be the ith eigenvalue of matrix M . To find the initial range [αmin, αmax], define a
static vector v ∈ R

N as a vector that satisfies conditions (1) and (2) below. For ε � 0,

vTLτ Lτ v � λK (Lτ Lτ ), vTXX Tv � ε, (1)

vTXX Tv � λK (XX T), vTLτ Lτ v � ε. (2)

The eigenspaces of XX T and Lτ Lτ have little overlap along a static vector, v; perhaps there is
a cluster in the graph that does not appear in the covariates, or vice versa. These static vectors
produce discontinuities in the leading eigenspace of L̃(α).

For example, if v∗ is an eigenvector of Lτ Lτ and a static vector of type (1), then as α changes,
it will remain a slightly perturbed eigenvector of L̃(α). When vT∗L̃(α∗)v∗ is close to λK {L̃(α∗)},
then, in some neighbourhood of α∗, the slightly perturbed version of v∗ will transition into the
leading eigenspace of L̃. This transition corresponds to a discontinuity in the leading eigenspace.

As shown in the Supplementary Material, the concept of static vectors with ε = 0 can be
used to find a limited range of α for possible discontinuities. The range of α values for which
discontinuities can occur is [αmin, αmax], where

αmin = λK (Lτ Lτ ) − λK+1(Lτ Lτ )

λ1(XX T)
,

αmax = λ1(Lτ Lτ )

λR(XX T)I (R � K) + {λK (XX T) − λK+1(XX T)}I (R > K)
.

The tuning parameter α ∈ [αmin, αmax] is chosen to be the value which minimizes the k-means
objective function, the within-cluster sum of squares,

�(α) =
K∑

i=1

∑
uj∈Fi

‖uj(α) − Ci(α)‖2,
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where uj is the jth row of U , Ci is the centroid of the ith cluster from k-means clustering, and Fi is
the set of points in the ith cluster. Hence, the tuning parameter is α = arg minα∈[αmin,αmax]�(α).

3. THEORY

3·1. Node-contextualized stochastic blockmodel

To illustrate what covariate-assisted spectral clustering estimates, this section proposes a sta-
tistical model for a network with node covariates and shows that covariate-assisted spectral
clustering is a weakly consistent estimator of certain parameters in the proposed model. To
derive statistical guarantees for covariate-assisted spectral clustering, we assume a joint mixture
model for the graph and the covariates. Under this model, each node belongs to one of K blocks
and each edge in the graph corresponds to an independent Bernoulli random variable. The prob-
ability of an edge between any two nodes depends only on the block membership of those nodes
(Holland et al., 1983). In addition, each node is associated with R independent covariates with
bounded support, where expectation depends only on the block membership and R can grow with
the number of nodes.

DEFINITION 2 (Node-contextualized stochastic blockmodel). Consider a set of nodes
{1, . . . , N }. Let Z ∈ {0, 1}N×K assign each of the N nodes to one of the K blocks, where Zij = 1
if node i belongs to block j. Let B ∈ [0, 1]K×K be of full rank and symmetric, where Bij is the
probability of an edge between nodes in blocks i and j. Conditional on Z, the elements of the
adjacency matrix are independent Bernoulli random variables. The population adjacency matrix
A = E(A | Z) fully identifies the distribution of A and A = ZBZT.

Let X ∈ [−J , J ]N×R be the covariate matrix and M ∈ [−J , J ]K×R the covariate expectation
matrix, where Mi,j is the expectation of the jth covariate of a node in the ith block. Conditional
on Z, the elements of X are independent and the population covariate matrix is

X = E(X | Z) = ZM. (3)

Under the node-contextualized stochastic blockmodel, covariate-assisted spectral clustering
seeks to estimate the block membership matrix Z . In the next section, we show that this estimate is
consistent. If B is assumed to be positive definite, the same results hold for assortative covariate-
assisted spectral clustering up to a constant factor. These results motivate the definition of an
assortative graph in the context of the node-contextualized stochastic blockmodel.

DEFINITION 3 (Assortative graph). A graph generated under the node-contextualized stochastic
blockmodel is said to be assortative if the block probability matrix B corresponding to the graph
is positive definite. Otherwise, it is said to be non-assortative.

Many common networks are assortative, such as friendship networks or brain graphs. Dating
networks are one example of a non-assortative network. Most relationships in a dating network
are heterosexual, comprised of one male and one female. In a stochastic blockmodel, where the
blocks are constructed by gender, B will have small diagonal elements and large off-diagonal
elements, producing more relationships between genders than within genders. Such a matrix is
not positive definite. More generally, non-assortative stochastic blockmodels will tend to generate
more edges between blocks and fewer edges within blocks. These non-assortative blocks appear
in the spectrum of Lτ as large negative eigenvalues. By squaring the matrix Lτ , the eigenvalues
become large and positive, matching the positive eigenvalues in XX T.
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3·2. Statistical consistency under the node-contextualized stochastic blockmodel

The proof of consistency for covariate-assisted spectral clustering under the node-
contextualized stochastic blockmodel requires three results. Lemma 1 expresses the eigende-
composition of the population version of the covariate-assisted Laplacian,

L̃(α) = (D + τ I )−1/2A(D + τ I )−1A(D + τ I )−1/2 + αE(XX T),

in terms of Z . Theorem 1 bounds the spectral norm of the difference between L̃ and L̃. Then,
the Davis–Kahan theorem (Davis & Kahan, 1970) bounds the difference between the sample
and population eigenvectors in Frobenius norm. Finally, Theorem 3 combines these results to
establish a bound on the misclustering rate of covariate-assisted spectral clustering. The argument
largely follows Qin & Rohe (2013). The results provided here do not include the effects of Step
3 in Algorithm 1. The proofs are in the Supplementary Material.

LEMMA 1. Under the node-contextualized stochastic blockmodel, let DB = diag(BZT1n + τ),
P̃ = ZTZ, and B̃ = D−1/2

B BZT(D + τ I )−1ZBD−1/2
B + αMM T. Let κ = maxl |cl − c̄|, where

cl = ∑
i var(Xil|Zi = l) and c̄ = ∑

l cl/K. Define U ∈ R
N×K with columns containing the

top K eigenvectors of L̃. Assume (i) λK (B̃P̃) > 2ακ; then there exists an orthogonal matrix
V ∈ R

K×K such that U = Z(ZZT)−1/2V . Furthermore, Zi(ZZT)−1/2V = Zj(ZZT)−1/2V if and
only if Zi = Zj, where Zi is the ith row of the block membership matrix.

Under assumption (i) the rows of the population eigenvectors are equal if and only if the
corresponding nodes belong to the same block. This assumption requires the population eigengap
to be greater than the maximum of the absolute difference between the sum of covariate variances
within a block and the mean of the sums across all blocks. If all the covariates have equal variance
in all blocks, the assumption is trivially true. Since XX T is effectively being used as a measure
of similarity between nodes, if the covariate variances across blocks are unequal, the difference
in scale makes the blocks more difficult to distinguish. This is evidenced by a reduction in the
eigengap proportional to this difference. In practice, this condition is not restrictive since X can
be centred and normalized. To derive a bound on the misclustering rate, we will need a bound
on the difference between the population eigenvectors and the sample eigenvectors. In order to
establish this bound, the following theorem bounds the spectral norm of the difference between
L̃ and L̃.

THEOREM 1. Let d = min Dii, X (p)

ik = E(X p
ik), � = 8α2 ∑

k

{∑
i X (2)

ik

∑
l(X (2)

lk −X 2
lk)+X (4)

ik

}
,

δ = 12(d + τ)−1/2 + � 1/2, and S = 3αNJ 2. For any ε > 0, if (ii) d + τ > 3 log(8N/ε) and
(iii) �/S2 > 3 log(8N/ε), then with probability at least 1 − ε,

‖L̃ − L̃‖ � δ{3 log(8N/ε)}1/2.

Consider a node-contextualized stochastic blockmodel with two blocks, within-block proba-
bilities p, and between-block probabilities q. Condition (ii) holds when p + q > �{log(N )/N }
and condition (iii) holds when R � �(log N ). Hence, condition (ii) restricts the sparsity of
the graph, while condition (iii) requires that the number of covariates grow with the number of
nodes. Now we use Theorem 1 and the Davis–Kahan theorem to bound the difference between
the sample and population eigenvectors.

THEOREM 2. Let λK be the Kth largest eigenvalue of L̃ and let O be a rotation matrix. Let the
columns of U and U contain the top K eigenvectors of L̃ and L̃, respectively. Under assumptions
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(i) in Lemma 1, (ii) and (iii) in Theorem 1, and (iv) δ{3 log(8N/ε)}1/2 � λK/2, with probability
at least 1 − ε,

‖ U − UO ‖F�8δ{3K log(8N/ε)}1/2

λK
.

The next theorem bounds the proportion of misclustered nodes. In order to define misclustering,
recall that the spectral clustering algorithm uses k-means clustering to cluster the rows of U . Let
Ci and Ci be the cluster centroids of the ith node generated using k-means clustering on U and U ,
respectively. A node i is correctly clustered if Ci is closer to Ci than Cj for all j such that Zj |= Zi.
In order to avoid identifiablity problems and since clustering only requires the estimation of the
correct subspace, the formal definition is augmented with a rotation matrix O. The following
definition formalizes this intuition.

DEFINITION 4. Let O be a rotation matrix that minimizes ‖UOT − U‖F. Define the set of
misclustered nodes as

M = {i : there exists j |= i such that ‖CiOT − Ci‖2 > ‖CiOT − Cj‖2}.
Using the definition of misclustering and the result from Theorem 2, the next theorem bounds

the misclustering rate, |M|/N .

THEOREM 3. Let P = maxi(ZTZ)ii denote the size of the largest block. Under assumptions (i)
in Lemma 1, (ii) and (iii) in Theorem 1, and (iv) in Theorem 2, with probability at least 1 − ε, the
misclustering rate satisfies

|M|
N

� c0KPδ2 log(8N/ε)

Nλ2
K

.

The asymptotics of the misclustering rate depend on the number of covariates and the sparsity
of the graph. This is demonstrated by Corollary 1, which provides insight into how the number
of covariates and graph sparsity affect the misclustering rate and the choice of tuning parameter.

COROLLARY 1. Assume Bi,i = p and Bi,j = q for all i |= j; in addition, let Mi,i = m1,
Mi,j = m2 for all i |= j, and R > 1. For computational convenience, assume that each block has
the same number of nodes N/K and R is a multiple of K, where K is fixed. Let R = �{(log N )a+1},
d+τ = �{(log N )b+1}, and α = �{N−1(log N )−1−c}, where a, b, c � 0.Then, the misclustering
bound from Theorem 3 becomes

|M|
N

� c2
(log N )a−2c + (log N )(a−b)/2−c + (log N )−b

(log N )2(a−c) + (log N )a−c + �(1)
.

If a � b, then the minimum misclustering rate is O{(log N )−b} when c = (a + b)/2. If a > b,
then the minimum misclustering rate is O{(log N )−a} when c = 0.

These results demonstrate that the tuning parameter α is determined by the balance between
the number of covariates and the sparsity of the graph. A nonzero optimal α value signifies
that including covariates improves the misclustering bound, although it might not improve the
asymptotics of the bound. Furthermore, the asymptotic misclustering rate is determined by the
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asymptotic behaviour of the number of covariates or the mean number of edges, whichever is
greater as determined by a and b, respectively. For example, if we allow the number of covariates
to grow with the number of nodes such that a = 0 or R = �(log N ) and let the mean number of
edges increase such that b = 0 or d +τ = �(log N ), then the covariates and the graph contribute
equally to the asymptotic misclustering rate.

Remark 1. It is instructive to compare the value of α suggested by the results in Corollary 1
with the possible values of α based on the optimization procedure in § 2·3. Computing αmin and
αmax with L̃ instead of L̃, for convenience, gives αmin = �{(NR)−1} and αmax = �{(NR)−1}.
Therefore, the optimization procedure will yield α = �{(NR)−1} = �{(N )−1(log N )−a−1}. This
agrees with the results of Corollary 1 when the mean node degree and the number of covariates
grow at the same rate with respect to the number of nodes or a = b.

COROLLARY 2. Based on Theorem 3, perfect clustering requires δ{c0KP log(8N/ε)}1/2 < λK .
Under the simplifying assumptions given in Corollary 1, perfect clustering is achieved when the
number of covariates is R � �(N log N ).

3·3. General lower bound

The next theorem gives a lower bound for clustering a graph with node covariates. This bound
uses Fano’s inequality and is similar to that shown in Chaudhuri et al. (2012) for a graph without
node attributes. We restrict ourselves to a node-contextualized stochastic blockmodel with K = 2
blocks, but allow an arbitrary number of covariates R.

THEOREM 4. Consider the node-contextualized stochastic blockmodel with K = 2 blocks
and B such that B1,1 � B2,2 � B1,2. Let the Kullback–Leibler divergence of the covariates be

 = ∑R

i=1 KL(γi, γ ′
i ), where γi and γ ′

i are the distributions of the ith covariate under opposite
block assignments, and � = B1,1 −B1,2. For a fixed B1,1 and N � 8, in order to correctly recover
the block assignments with probability at least 1 − ε, � must satisfy

� � B1,1(1 − B1,1)[
2
N

{
log 2

2 (1 − ε) − 
 − log 2
N

}]−1/2 + (1 − B1,1)

.

Remark 2. If

B1,1 − B1,2 <
B1,1(1 − B1,1)N−1/2

{(
1 − ε − 2

N

)
log 2

}−1/2 + (1 − B1,1)
, (4)


 <

(
1

2
− ε

2
− 1

N

)
log 2, (5)

then only an algorithm that uses both the graph and node covariates can yield correct blocks
with high probability. Condition (4) specifies when the graph is insufficient and condition (5)
specifies when the covariates are insufficient to individually recover the block membership with
high probability.

Remark 3. The upper bound for covariate-assisted spectral clustering in Theorem 3 can be
compared with the general lower bound. Simplifying the general lower bound gives the condition
� � �(N−1/2) for perfect clustering with probability 1 − ε. This is the same condition as for
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regularized spectral clustering. According to Theorem 3, for this method to achieve perfect clus-
tering with probability 1 − ε requires δ{c0KP log(8N/ε)}1/2 < λK . As highlighted in Corollary
2, this condition cannot be satisfied for a fixed R, so it cannot be shown that covariate-assisted
spectral clustering achieves perfect clustering for a fixed number of covariates. This is consistent
with similar results for regularized spectral clustering.

4. SIMULATIONS

4·1. Varying graph or covariate signal

In these simulations, consider a node-contextualized stochastic blockmodel with K = 3 blocks
and R = 3 node Bernoulli covariates. Define the block probabilities for the assortative graph, the
non-assortative graph, and the covariates as

B =
⎛
⎝p q q

q p q
q q p

⎞
⎠ , B′ =

⎛
⎝q p p

p q p
p p q

⎞
⎠ , M =

⎛
⎝m1 m2 m2

m2 m1 m2
m2 m2 m1

⎞
⎠ , (6)

where p > q and m1 > m2. This implies that for the assortative graph the probability of an edge
within a block is p, which is greater than q, the probability of an edge between two blocks. The
opposite is true for the non-assortative graph. In the kth block, the probability of the kth covariate
being 1 is m1 and the probability of the other covariates being 1 is m2.

These simulations compare five methods. The first three are canonical correlation analy-
sis clustering, covariate-assisted spectral clustering, and assortative covariate-assisted spectral
clustering, which utilize node edges and node covariates to cluster the graph. The other two
methods utilize either the node edges or the node covariates. For the node edges, regularized
spectral clustering is used; for the node covariates, spectral clustering on the covariate matrix is
used.

The first set of simulations investigates the effect of varying the block signal in the graph
on the misclustering rate. This is done by varying the difference in the within- and between-
block probabilities, p − q. The simulations are conducted for the assortative and non-assortative
graphs, using B and B′ in (6), shown in Fig. 1(a) and (b), respectively. In the assortative case, our
assortative clustering method performs better than any of the other methods. Covariate-assisted
spectral clustering performs slightly worse than the assortative variant, but still outperforms
the other methods. In the non-assortative case, our clustering method has the best perfor-
mance, while the assortative version always does worse than using only the covariates or the
graph.

The second set of simulations investigates the effect of varying the block signal of the covari-
ates on the misclustering rate by changing the difference between the block-specific covariate
probabilities, m1 − m2. As shown in Fig. 1(c), assortative covariate-assisted spectral clustering
tends to have a better misclustering rate than the other methods. Only when the difference in the
covariate block probabilities is very small and X effectively becomes a noise term does regu-
larized spectral clustering outperform our assortative clustering method. For the non-assortative
case shown in Fig. 1(d), assortative covariate-assisted spectral clustering performs poorly, while
covariate-assisted spectral clustering is able to outperform all other methods for a sufficiently
large difference in the covariate block probabilities. This is expected since the covariates in the
assortative variant effectively increase the edge weights within a block, which will smooth out
the block structure specified by B′.
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Fig. 1. Average misclustering rate of five clustering methods: covariate-assisted spectral clustering (solid), assortative
covariate-assisted spectral clustering (dash), canonical correlation analysis clustering (dot), regularized spectral clus-
tering (dot-dash), and spectral clustering on the covariate matrix (long dash). The fixed parameters are N = 1500,

p = 0·03, q = 0·015, m1 = 0·8, and m2 = 0·2.

4·2. Model misspecification

The final simulation considers the case where the block membership in the covariates is not
necessarily the same as the block membership in the graph. The node Bernoulli covariates no
longer satisfy (3) in Definition 2, but X = YM , where Y ∈ {0, 1}N×K is a block membership
matrix that differs from Z . As such, the underlying clusters in the graph do not align with
the clusters in the covariates. This simulation varies the proportion of block assignments in
Y which agree with the block assignments in Z to investigate the robustness of the methods
with respect to this form of model misspecification. The results in Fig. 1(e) show that assortative
covariate-assisted spectral clustering is robust with respect to covariate block membership model
misspecification for the assortative graph. The misclustering rate shown is computed relative to
the block membership of the graph. For this case, our assortative clustering method is able to
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achieve a lower misclustering rate than regularized spectral clustering when the proportion of
agreement between the block membership of the graph and the covariates is greater than 0·7.
Since a three-block model is used, the lowest proportion of agreement possible is one third due
to identifiability. For the non-assortative graph, Fig. 1(f), covariate-assisted spectral clustering
requires a higher level of agreement at 0·8.

5. CLUSTERING DIFFUSION MRI CONNECTOME GRAPHS

Assortative covariate-assisted spectral clustering was applied to brain graphs recovered from
diffusion magnetic resonance imaging (Craddock et al., 2013). Each node in a brain graph corre-
sponds to a voxel in the brain. The edges between nodes are weighted by the number of estimated
fibres that pass through both voxels. The centre of a voxel is treated as the spatial location of the
corresponding node. These spatial locations were centred and used as the first set of covariates in
the analysis. The dataset used in this analysis contains 42 brain graphs obtained from 21 different
individuals. Only the largest connected components of the brain graphs were used, ranging in
size from 707 000 to 935 000 nodes, with a mean density of 744 edges per node. In addition, the
brain graphs contain brain atlas labels corresponding to 70 different neurological brain regions,
which were treated as a second set of covariates.

Whereas the simulations attempted to demonstrate the effectiveness of our clustering method
in utilizing node covariates to help discover the underlying block structure of the graph, this
analysis focuses on the ability of our clustering method to discover highly connected clusters
with relatively homogeneous covariates. The node covariates contextualize the brain clusters and
improve their interpretability. Like other clustering methods, covariate-assisted spectral clustering
is mainly an exploratory tool which may or may not provide answers directly but can often
provide insight into relationships within the data. In this example, it is used to examine the
relationships between brain graph connectivity, spatial location, and brain atlas labels. The utility
of covariate-assisted spectral clustering was explored by partitioning the brain graphs into 100
clusters. The brain graphs in this dataset are assortative, so our assortative clustering method was
used in this analysis. Since the brain graphs have heterogeneous node degrees, the rows of the
eigenvector matrix were normalized when applying the spectral clustering algorithm to improve
the clustering results (Qin & Rohe, 2013). Figure 2 shows a section of a sample brain graph
with nodes plotted at their corresponding spatial locations and coloured by cluster membership.
For reference, the neurological brain atlas clusters with 70 different regions and an additional
category for unlabelled nodes are also plotted. The brain graphs were clustered using three
different approaches: regularized spectral clustering, and assortative covariate-assisted spectral
clustering with spatial location and with brain atlas membership. The tuning parameter α was
set using the procedure in § 2·3, and the values were α = 0·0004 with spatial location covariates
and α = 0·0708 with brain atlas membership covariates.

As shown in Fig. 2, regularized spectral clustering yielded spatially diffuse clusters of densely
connected nodes. By adding spatial location using covariate-assisted spectral clustering, we
obtained densely connected and spatially coherent clusters. Regularized spectral clustering had
two clusters of about 80 000 nodes and four clusters with fewer than 1000 nodes, while the largest
cluster from our clustering method had fewer than 50 000 nodes and no clusters had fewer than
1000 nodes. Both greater spatial coherence and increased uniformity in cluster size demonstrated
by covariate-assisted spectral clustering are important qualities for interpreting the partition. In
addition, the clusters have a greater similarity with the brain atlas labels, though this similarity
is still not very substantial. This suggests that brain graph connectivity is governed by more than
just the neurological regions in the brain atlas.
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Fig. 2. Brain graph cross-sections with nodes plotted spatially and coloured by cluster membership
for three different clustering methods and a brain atlas.

The relation between the brain atlas and the brain graph was studied further by treating brain
atlas membership as the node covariates. This allowed the discovery of highly connected regions
with relatively homogeneous graph atlas labels. As shown in Fig. 2, relative to the brain atlas,
some of the clusters are broken up, a few are joined together, and others overlap with multiple
brain atlas regions, but the high similarity is clearly visible. Importantly, this approach gives us
clusters that are highly aligned with known neurological regions while allowing for individual
variability of the partitions based on brain graph connectivity. The adjusted Rand index was used
to quantify the similarity of the partitions of a brain graph specified by the different clustering
methods and the brain atlas in Table 1. The alignment with the partitions based only on spatial
location and either covariate-assisted spectral clustering with spatial location or the brain atlas is
greater than between the two methods. This indicates that both the clusters from our method and
the brain atlas are spatially coherent yet not highly overlapping.

Brain graph connectivity appears to be giving the clusters that use spatial location a dif-
ferent configuration from the brain atlas, as seen in Fig. 2. As expected, covariate-assisted
spectral clustering with brain atlas membership has the highest adjusted Rand index partition
similarity with the brain atlas but low similarity with the regularized spectral clustering parti-
tions. If a more balanced partition alignment is desired, the tuning parameter can be adjusted
accordingly.

The relationship between all 42 brain graphs was analysed by using the adjusted Rand index
to compare partitions between them, as shown in Fig. 3. To conduct the comparison, the nodes
of each brain graph were matched by spatial location, and any nonmatching nodes were ignored.
Both regularized spectral clustering and covariate-assisted spectral clustering with spatial location
distinguish clearly between individuals based on their brain graph partitions, but the latter gave
partitions which are more homogeneous both within and between individuals. This increased
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Table 1. The adjusted Rand index between different
partitions

ACASC-X Brain atlas ACASC-BA SC-X

RSC 0·095 0·082 0·085 0·092
ACASC-X − 0·169 0·189 0·278
Brain atlas − − 0·838 0·226
ACASC-BA − − − 0·227

RSC, regularized spectral clustering; ACASC-X, assortative
covariate-assisted spectral clustering with spatial location;
ACASC-BA, assortative covariate-assisted spectral clustering
with brain atlas membership; SC-X, spectral clustering using

spatial location.

Regularized spectral clustering
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Fig. 3. Heat maps of the adjusted Rand index comparing the partitions of 42 brain graphs. The
separate heat maps are based on partitions generated with different methods. Each row and
column corresponds to a brain scan and adjacent rows or columns correspond to two scans of

the same individual.

partition consistency is favourable since a high degree of variation in the clusters between
individuals would make them more difficult to interpret.

6. DISCUSSION

Although the node-contextualized stochastic blockmodel is useful for studying graph cluster-
ing methods, data can deviate from the model’s assumptions. More generally, covariate-assisted
spectral clustering can be used to find highly connected communities with relatively homoge-
neous covariates, where the balance between these two objectives is controlled by the tuning
parameter and can be set empirically or decided by the analyst. Relatively homogeneous covari-
ates contextualize the clusters, making them easier to interpret and allowing the analyst to focus
on partitions that align with important covariates. Beyond its scientific interest, the brain graph
analysis demonstrates the computational efficiency of our clustering method, since the analysis
could not have been feasibly conducted with existing methods. Nevertheless, determining an opti-
mal tuning parameter still presents a computational burden. Using a low-rank update algorithm
for eigenvector decomposition can further reduce this cost.

This work is meant as a step towards statistical understanding of graphs with node covariates.
Further work is needed to better understand the use of covariate-assisted spectral clustering for
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network contextualization. Methods for determining the relative contribution of the graph and
the covariates to a graph partition and tests to signify which covariates are informative would be
useful. Ultimately, a thorough examination of the relationship between graph structure and node
covariates is essential for a deep understanding of the underlying system.
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