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Abstract: Orthopedic implants first started out as an all-metal hip joint replacement. However,
poor design and machinability as well as unsatisfactory surface finish subjected the all-metal
joint replacement to being superseded by a polyethylene bearing. Continued improvement in
manufacturing techniques together with the reality that polyethylene wear debris can cause hazardous
reactions in the human body has brought about the revival of metal-on-metal (MOM) hip joints in
recent years. This has also led to a relatively new research area that links tribology and corrosion
together. This article aims at reviewing the commonly used tribochemical methods adopted in the
analysis of tribocorrosion and putting forward some of the models and environmental factors
affecting the tribocorrosive behavior of CoCrMo alloys, a widely-used class of biomaterial for
orthopedic implants.
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1. Introduction

The excellent mechanical performance and wear and corrosion resistances coupled with their
good biocompatibility have made Co-based alloys, such as CoCrMo alloys, a choice for artificial joints
over the last six decades [1–4]. Once implanted, CoCrMo alloys are subjected to continuing wear
and corrosion through body fluid in vivo, which results in the formation of tribological films, wear
debris, and metallic ions [5]. If left unaddressed, these wear and corrosion issues associated with the
articulating system would pose a serious threat to the long-term safe usage of the artificial joints.

The synergistic action of wear and corrosion resulting in the irreversible transformation of
materials in a corrosive environment or aqueous fluid is also known as tribocorrosion [2,6–8].
Understanding the fundamental phenomena of tribocorrosion in an articulating system is challenging.
Often, these systems are subject to operations under many demanding settings such as sliding,
slip, vibration, and weight bearing situations, which further complicate analysis [9]. Given the
growing importance of tribocorrosion in bio-related applications, this review aims at highlighting
some of the commonly used electrochemical techniques in evaluating the tribochemical behavior of
CoCrMo alloys, together with the critical conditions addressed so as to foster a model(s) explaining
the phenomena involving both wear and corrosion simultaneously. In addition, some insights on the
tribocorrosive behavior of CoCrMo alloys at nano-scale will also be addressed. With the growing
interest in the application of nanotechnology to engineering disciplines, such as nanorobotics for
diagnosis and targeted drug-delivery, nanoscale tribocorrosion is an extremely relevant discipline and
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the understanding of which could help pave a way for the realization of electromechanical nanobots
based on bacteria models [10,11].

2. CoCrMo Alloys and Their Manufacturing Processes

Co-based alloys have been widely used for artificial joints. The most commonly used Co-based
alloy in biomedical application is ASTM F75 [1,2,6]. StelliteTM is another name given to the family
of Co-based alloys, which is a trademark under Deloro Wear Solutions GmbH, and the comparative
series is StelliteTM 21. The elemental compositions of the commonly used Co-based alloys are listed in
Table 1. While the alloying contents are in general comparable in the three alloys, a high nickel (Ni)
content is seen in StelliteTM 21 [12], which is often added to further improve the corrosion resistance
(refer to Section 5.2) of the alloy but is classified as a human carcinogen [13].

Table 1. Chemical compositions (wt %) of StelliteTM 21 and Arcam EBM CoCrMo compared to the
chemical requirements of ASTM F75.

Element (wt %) Co Cr Mo Ni C Si

ASTM F75 Bal. 27–30 5–7 <0.50 <0.35 <1.0
StelliteTM 21 Bal. 25–29 5–6 1.75–3.75 0.20–0.30 1.0

Arcam EBM CoCrMo Bal. 28.5 6 0.25 0.22 0.7

Joint implants are often tailored and specific. Therefore, casting has traditionally been offered as
the most direct and practical method in producing most of the CoCrMo implants found in the market.
However, a coarse carbide structure is often produced resulting in high brittleness and low toughness
for the cast CoCrMo alloys [12]. On the contrary, forged CoCrMo alloys that are worked either in the
cold or hot environment are often finer and possess equiaxed microstructures, which has rendered
forging an effective technique in improving properties as compared to cast alloys [14,15]. Over the
last decade, advancement in technologies has allowed CoCrMo implants to be fabricated via additive
manufacturing (AM) methods with relative ease. Not only customizable and patient-specific implants
can be manufactured with ease, a fine and more dispersed carbide structure can also be achieved
through the AM process [16], thus in theory, giving it an improved tribochemical performance.

3. Experimental Aspects of Tribocorrosion Study

The study of tribocorrosion phenomena requires knowledge in the areas of both electrochemistry
and tribology. Often, the techniques employed in the study of these areas involve well-controlled
conditions, which may be difficult to achieve simultaneously in a tribocorrosion experimental set-up.
The following section examine some of the mechanical and electrochemical aspects of tribocorrosion
experiments with an insight into how the set-up can likewise be applied for nano-scale characterization.

3.1. Electrochemical Methods in Tribology

As described in the early pioneering works on tribocorrosion [17,18], tribochemical methods
are essentially tribological experiments performed in an anionic conductor under the influence of
controlled electrochemical conditions [2,6]. Since the first ASTM G119 Standard Guide for Determining
Synergism between Wear and Corrosion was published in 1995, most of the research has focused
mainly on identifying the fundamental tribocorrosion mechanisms. However, with the rising adoption
of AM technologies and the risks associated with metal-on-polymer (MOP) and ceramic-on-ceramic
(COC) bearings [19,20], there has appeared an increase in research focus on the study involving
the tribocorrosive behavior of biomedical alloys, particularly CoCrMo alloys. The commonly used
electrochemical methods employed for tribocorrosion testing are schematically illustrated in Figures 1
and 2 and discussed thereafter.
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Figure 1. (a) Schematic illustration of a typical ball-on-disc (rotating) tribocorrosion experimental set-
up that allows the measurement of corrosion potential (RE: standard silver/silver chloride or Ag/AgCl 
reference electrode); (b) Measurement of the corrosion potential of Ti6Al4V alloy rubbing against an 
alumina ball in a 0.9% NaCl solution (adapted from references [21,22], with permission from © 
Elsevier), where Ecorr = potential difference between working electrode (WE) and RE. 

 
Figure 2. (a) A schematic illustration of a typical ball-on-disc (rotating) tribocorrosion experimental 
set-up that allows for potentiodynamic and potentiostatic measurements; (b) a typical Randles circuit 
used to represent experimental data through electrochemical impedance (EIS) measurement for a 
tribocorrosion test. 

3.1.1. Open Circuit Potential (OCP) Measurement 

Open circuit potential (OCP) method as schematically shown in Figure 1a is implemented by 
recording the spontaneous potential difference between the material tested (working electrode, WE) 
and a reference electrode (RE) immersed in a solution (electrolyte) [21,22]. As illustrated in Figure 1b 
the corrosion potential shifts to lower values upon the onset of impression and this difference is 
characterized as the ’cathodic shift’. The measurement of the corrosion potential (Ecorr) during wear, 
mirrors the galvanic coupling between the two surface states of the material involved, namely the 
exposed metal (oxide removed area) and the passive metal (oxide protected area) [23]. A lower Ecorr 
value below the passivation potential typically directly relates to the situation where the material 
experiences active dissolution. For a relatively simple, yet easy-to-obtain measurement, the results 
from OCP measurement offer an insight into the surface state of the material under wear [23,24]. On 
the contrary, this method provides only limited information in instances where the study of the 
surface kinetic reaction is involved. 

3.1.2. Potentiodynamic Polarization Measurement 

Potentiodynamic polarization measurement is essential in defining the active/passive behavior 
of the materials at varying potentials [21]. The addition of a counter electrode (inert) is required, 

Figure 1. (a) Schematic illustration of a typical ball-on-disc (rotating) tribocorrosion experimental
set-up that allows the measurement of corrosion potential (RE: standard silver/silver chloride or
Ag/AgCl reference electrode); (b) Measurement of the corrosion potential of Ti6Al4V alloy rubbing
against an alumina ball in a 0.9% NaCl solution (adapted from references [21,22], with permission
from © Elsevier), where Ecorr = potential difference between working electrode (WE) and RE.
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Figure 2. (a) A schematic illustration of a typical ball-on-disc (rotating) tribocorrosion experimental
set-up that allows for potentiodynamic and potentiostatic measurements; (b) a typical Randles circuit
used to represent experimental data through electrochemical impedance (EIS) measurement for a
tribocorrosion test.

3.1.1. Open Circuit Potential (OCP) Measurement

Open circuit potential (OCP) method as schematically shown in Figure 1a is implemented by
recording the spontaneous potential difference between the material tested (working electrode, WE)
and a reference electrode (RE) immersed in a solution (electrolyte) [21,22]. As illustrated in Figure 1b
the corrosion potential shifts to lower values upon the onset of impression and this difference is
characterized as the ’cathodic shift’. The measurement of the corrosion potential (Ecorr) during wear,
mirrors the galvanic coupling between the two surface states of the material involved, namely the
exposed metal (oxide removed area) and the passive metal (oxide protected area) [23]. A lower Ecorr

value below the passivation potential typically directly relates to the situation where the material
experiences active dissolution. For a relatively simple, yet easy-to-obtain measurement, the results
from OCP measurement offer an insight into the surface state of the material under wear [23,24].
On the contrary, this method provides only limited information in instances where the study of the
surface kinetic reaction is involved.
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3.1.2. Potentiodynamic Polarization Measurement

Potentiodynamic polarization measurement is essential in defining the active/passive behavior of
the materials at varying potentials [21]. The addition of a counter electrode (inert) is required, which is
depicted schematically in Figure 2a. Habitually, the measurement is employed to derive the anodic
or cathodic current flowing through the working electrode (sample) measured against a reference
electrode. Additionally, the effect of friction is also taken into consideration throughout the entire
process, which allows observation of its effect on the different electrochemical reactions that occur at
different potentials [23].

3.1.3. Potentiostatic Measurement

In this type of measurement, the same physical configuration as in the case of a potentiodynamic
test shown in Figure 2a, the current is measured instantaneously at a fixed potential (instead of a
varying potential as in the case of the potentiodynamic test) as a function of time for the evolution of
the electrochemical kinetics during wear. Essentially, the current measured, Imeasured, as described in
Equation (1) is the summation of both Ianodic and Icathodic currents measured across the worn area of the
wear track and the surface of the sample not subjected to wear, respectively [21].

Imeasured = Ianodic + Icathodic (1)

One vital point to note is that during wear, current mainly flows through the worn unpassivated
area of the wear track as compared to the overall area of the sample immersed in the solution [24].
Hence, the corresponding current densities (normalized by area) can be several orders of magnitude
higher than those measured under a static condition, which further suggests the intensification of
metal dissolution.

The method presented is in fact a powerful and valuable technique. The excess current (Imax,
maximum current measured during tribocorrosion, Io, current measured at static condition) can be
derived and used to compute the material loss due to corrosion and further provide an avenue
for the evaluation of the tribocorrosion model, which is explained in a later section. In addition,
various researchers [25–27] have developed a model for the repassivation kinetics of the Cr film due
to tribocorrosion. Originally proposed by Goldberg et al. [25] and further refined by Sun et al. [28],
the exponential decay function can be described as such:

I(t) = Io + C1 exp
[
−(t − to)

τ1

]
+ C2 exp

[
−(t − to)

τ2

]
(2)

where, I(t) is the current level at time t, C1 and C2 are the experimental current constants and τ1 and τ2

are the time constants used to govern the repassivation time.
While τ1 (proposed by Goldberg et al. [25]) may be sufficient to describe the repassivation kinetics,

the introduction of τ2 (by Sun et al. [28]) was experimentally proven to be more precise as more
holistic scenarios (extensively deformed scar area and difficulty of oxygen passivation) were taken
into consideration [25,28].

3.1.4. Electrochemical Impedance Measurement (EIS)

A relatively less sought after method in tribocorrosion due to the complexity involved in the
heterogeneous state of the material surface, EIS is slowly gaining popularity as it not only enables an
in-depth study on the role of intermediate species absorbed on the material surface but also on the
properties of the passive film formed. The possibility also extends to the quantification of corroded
products and even enables one to simulate an appropriate corrosion condition based on the actual
operation requirements by imposing a suitable potential. The concept of EIS involves measuring the
current signal of the cell/sample (working electrode) by imposing a small AC potential excitation
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signal through it. Consequently, the impedance of the target system (Z) at time t can be derived as the
proportion of imposed electrical potential (E) over the response signal (I) as [29]:

Z =
E
I
=

Eo sin(ωt)
Io sin(ωt + ϕ)

= Zo
sin(ωt)

sin(ωt + ϕ)
(3)

where Eo and Io are the amplitude of the original AC potential and the response signal, respectively,
ω is the radial frequency, ϕ is the phase shift of the response in a linear system, and Zo is the resulting
magnitude of the impedance due to Eo and Io. By and large, the impedance signifies a system ability to
resist corrosion and a higher Zo value represents a higher ability to resist corrosion.

Impedance measurements can be performed before, during and after a sliding wear test to assess
the effect of wear on the material surface. A modification of the setup is not required and follows that
of Figure 2a. The results are often presented in the form of Nyquist diagrams and interpreted by means
of an equivalent circuit [30]. A schematic diagram on a typical equivalent circuit used in tribocorrosion
studies is depicted in Figure 2b, where Cd represents the charge build-up across the surface (oxide
layer or coating), Rc is the resistance due to the material surface layer, and Rs is the resistance of the
solution [24,30], when the frequency tends to zero.

The concept can be further elaborated with the aid of an EIS study done by Igual-Muñoz [31] on
high carbon CoCrMo alloy in two different simulated body fluids, namely NaCl and bovine serum.
Carefully selected electrical potentials from the potentiodynamic curves need to be in precedence to
the EIS test as shown in Figure 3a. These different electrochemical conditions allow for the detailed
characterization of metal/electrolyte interface of the CoCrMo alloy, which aids in identifying critical
scenarios where metal dissolution is severe. From Table 2, no obvious differences were noticed in the
removed wear volume in CoCrMo alloy sliding in both NaCl and bovine serum at applied potentials
of 0.05 VAg/AgCl and 0.5 VAg/AgCl, where generation of passive layer was preferred. However, with
the provision of Nyquist diagrams and the corresponding impedance representations as depicted in
Figure 3b,c, it could be deduced that dissolution of metal (Uchemical, refer to Section 4.2) was more severe
in NaCl than in bovine serum and that this effect was further enhanced at higher passive potential.
The higher passive dissolution resistance of CoCrMo alloy in bovine serum is mainly attributed to the
release of Co2+ ions that result in the enhanced binding of proteins during wear and thus the charge
transfer at the metal/solution interface was subsequently contained [31,32].
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Figure 3. (a) Potentiodynamic curves obtained for HC CoCrMo alloy in NaCl and bovine serum [31];
(b,c) Nyquist diagrams showing the impedance characteristics in NaCl and bovine solution at
(b) 0.05 VAg/AgCl and (c) 0.5 VAg/AgCl (adapted from reference [31], with permission from © Elsevier).

On the other hand, it was also observed that the contribution of mechanical damage (Umechanical)
decreases slightly at higher passive applied potential in both solutions. This phenomenon was
attributed to the formation of thicker passive films where thicker oxide debris particles are more likely
to be produced and spalled off during the rubbing process. Consequently, the larger particles have a
greater tendency to agglomerate faster compared to the smaller ones, thus forming a tribo-film that
protects the underlying surface.
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Table 2. Average wear volumes obtained for HC CoCrMo alloy in NaCl and bovine serum at 0.05 and
0.5 VAg/AgCl (×10−3 mm3) (data extracted from [31]).

Solution Applied Potential (VAg/AgCl) Uchemical (mm3) Umechanical (mm3) Utotal (mm3)

NaCl
0.05

8.9 11.1 20.0

Bovine serum 7.5 20.9 28.4

NaCl
0.5

17.2 10.0 27.2

Bovine serum 7.9 20.1 28.0

3.1.5. Cathodic Protection or Impressed Current Method

The cathodic protection/impressed current method offers an excellent solution to corrosion
control by making the concerned material cathodic instead of anodic in an electrochemical cell [21,33].
The most practical method widely used in industry is to connect the metal to be protected to a
more easily corroded metal. Consequently, the concept was extended to tribocorrosion in which
Yan et al. [34] used this technique to isolate pure mechanical wear due to biological fluid lubrication
and corrosion-related wear arising from the biological fluid. The process involves polarizing the
material to make it electro-negative such that the dissolution of the metal ions (immune to corrosion)
is not possible. Smooth grooves are predominantly observed under cathodic protection with scanning
electron microscopy (SEM), in contrast to the commonly observed pitting and adhesive effect of
tribocorrosion [31,35]. The Pourbaix diagram is often utilized in understanding and predicting the
material tendency to corrode [36].

3.2. Equipment to Study Tribocorrosion

Generally, study of tribocorrosion under sliding condition typically uses a cylindrical pin ball or a
truncated cone rubbing against a flat plate in an electrolytic solution in a circular or linear reciprocating
motion. The set-up is often used in conjunction with the electrochemical method proposed earlier.
More recently, Sun et al. [37], extended the study of tribocorrosion to a wet-cell nano-scratching set up
where nano-scale tribocorrosion can be performed, as shown in Figure 4a. The corresponding current
profiles in Figure 4b, undoubtedly present a trend consistent to the ones due to micro-scratching.
An increase in current upon the onset of the scratch (corresponding to the rupture of oxide film) and a
current recovery region to the original level at the end of the test are observed. In addition, the scratch
current variation was mainly attributed to the effect of the surface morphology such as grain boundaries
and carbide distribution [37]. Consequently, a tribologist could extend the concept of nano-scratching
and observed in-situ current variation when the scratch passes through a carbide/matrix boundary
or even observe the corresponding current characteristics during microstructural change such as
strain-induced martensitic ε transformation (SIMT).
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It is clear that much of the focus has been on micro-scale tribocorrosion of bulk CoCrMo alloys
over the last decade due to the practicability aspect relating to the clinical performance of the alloys.
Limited studies involving nano-scale tribocorrosion of CoCrMo alloys have been carried out with
emphasis mainly on fundamental aspects of repassivation kinetics and deformation mechanisms.
More recently, Martinez-Nogues et al. [38] attempted to carry out some nanoscale characterization
on CoCrMo alloy using nanoindentation and reciprocation nano-wear testing under dry conditions.
Subsequently, it was shown that under nano-scale wear, a higher load resulted in a lower coefficient
of friction (COF), which was contrary to conventional micro-scale wear and was attributed to the
reduction in the number of contacting asperities. Consequently, the observation may be of interest
when extended to tribocorrosion, especially with the mounting attention being received in the area
of nanorobotics.

Nevertheless, it is important to consider two points when dealing with the nano-scale
characterization of CoCrMo alloys. One is the typical size of carbide for the selection of indenter
size and the other is the dispersion of carbide relative to the selected area for test. An appropriate
indenter size will help differentiate the nano-hardness contribution of the metal matrix from that
of carbides, thus reducing the possibility of over estimating or under-estimating the nano-hardness
value [39]. On the other hand, a complete homogenous dispersion of carbide within the metal matrix
in CoCrMo alloy is practically impossible. Hence, it is essential to select an area that best represents
the material condition.

4. Tribocorrosion Modelling

From the standpoint of applications, it is vital to distinguish the contribution of wear, corrosion,
and the synergetic contribution of both components for effective material degradation control. Hence,
this section of the review summarizes the three common quantitative approaches in describing the
wear-corrosion relationship.

4.1. Synergistic Approach

This is by far the simplest and the first approach in quantifying the wear-corrosion interaction.
The total material loss due to tribocorrosion, T, is given in Equation (4) [8].

T = W + C + S (4)

where, W is the material loss due to wear without corrosion, C is the material loss due to corrosion
only (static conditions), and S is the material degradation effect due to the combination of wear
and corrosion.

Despite the simplicity of the equation, the approach suffers some limitations such as the inability
to interpret the tribocorrosion phenomena directly and that the current experimental methods do not
allow for the quantification of individual contributions listed in the expression.

4.2. Mechanistic Approach

First proposed by Uhlig et al. [40], this approach simplified the total wear volume loss, Utotal into
two main terms as shown in Equation (5):

Utotal = Umechanical + Uchemcial (5)

where, the term Umechanical represents the total volume loss due to pure mechanical wear while Uchemcical
is associated with the volume loss due to wear-accelerated corrosion.
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It can be assumed that the corrosion through the passivated area of the material is negligible and
hence, only the wear-accelerated corrosion occurring through the worn area is considered. Practically,
this approach is much simpler to quantify experimentally, where Uchemical can be obtained through the
incorporation of excess current derived from the potentiostatic test using Faraday’s law as listed in
Equation (6):

Uchemical =
q × M
n × F

(6)

where, q is the charge moving across the material under sliding wear (C), M is the atomic weight of the
element from the material that is dissolved (g/mol), n is the corresponding dissolution valence and F
is Faraday’s constant (96,490 C/mol). Consequently, Umechanical can be attained from the total volume
loss measured.

Recently, Cao et al. [9] further defined the model with the incorporation of the conventional
Archard law [41] and an effective load assumption in a mixed lubrication regime. The proposed
equation in its simplest form is presented as such:

Vtotal = km

(
koFn/h1.49

min
H

)
+ kc

Qp Mvs

(
ko Fn/h1.49

min
H

)0.5

nFρ
(7)

where, Vtotal is the normalized total volume loss per unit time (mm3/s), Fn is the normal force (N), hmin
is the minimum film thickness (nm), H is the micro surface hardness in HV, Qp is the passivation charge
density (mC/cm2), Vs is the sliding velocity (mm/s), ρ is the density of the material (g/cm3), and km,
kc, and ko are the proportional factors defined as such kmech = kmko/(2.81.49) and kchem = kmko

0.5/(2.80.745)
of which kmech and kchem are the proportional mechanical and chemical wear factors, respectively.
kmech and kchem are system specific and need to be derived specially from experiments.

Further refinement and calibration can be found elsewhere [42]. Quantitatively, in the current
research done by Guadalupe et al. [43], the model has also been able to satisfactorily describe
the tribocorrosion behavior for high and low carbon CoCrMo alloys (0.02–0.25 wt % C and
0.01 wt % C, respectively).

4.3. Third-Body Approach

The last approach aims at addressing the shortfall of the two earlier proposed models. It is
presumed by many researchers that different wear mechanisms occur under different wear conditions
and these differences are likely to modify the surface chemistry of the materials [23,44]. Accordingly,
it would have an effect on the wear-accelerated corrosion and/or corrosion-accelerated wear behavior
of the material. Figure 5 shows a schematic illustrating different wear particles and ions that can be
ejected from the material surface and their influences on the different wear morphology, Umechanical,
and even Uchemical values of the material [45]. In a study done by Barril et al. [46], it was observed that
the trapped particles from the Ti6Al4V alloy loaded against an alumina ball entrapped wear particles
that wedged onto the space between the ball and the sample. This in turn affects surface passivation
and thus, a higher Uchemical value was observed.

Exploring the third-body approach constituted a hopeful way of explaining the effects of chemical,
mechanical, electrochemical, and even the synergistic effects of wear-corrosion phenomena factors on
tribocorrosion. Although an explanation is welcome, the complexity in quantitatively interpreting or
even predicting the phenomena at the present moment is still theoretically impossible.
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Figure 5. Schematic illustration of material flows and reactions occurring in a tribocorrosion system,
with the first body: a passive metal; second body: an inert counter-body and third body: generated
from the resulting process. In a tribocorssoion process, the wearing process causes the detachment
of the wear particles from the metal (1), which would either be ejected (2) or transferred to a third
body (3); Subsequently, the third body can adhere to the counter body (4); or fragment into smaller
particles (5); or the metal (6); Upon reaching a critical size, the third body can be ejected from the
contact (7); In addition, wear accelerated corrosion can be observed in two locations: third body (8) and
exposed metal (9) (occurring immediately after the wear particle detaches) (adapted from reference [21],
with permission from © Elsevier).

5. Tribocorrosive Behavior of CoCrMo Alloys

The long-term performance of a CoCrMo alloy depends greatly on the overall tribocorrosion
behavior of the material and not just on the individual contribution from wear or corrosion [47]. Hence,
it is also important to consider the effects of tribocorrosion on CoCrMo alloys when conditions are
varied. In the following sub-sections, we discuss the various parameters related to CoCrMo alloys that
supposedly, amongst others, are known to play an influential role in the tribocorrosive behavior of
the alloys.

5.1. Metal Carbides

The role of carbides in CoCrMo alloys has been the focus of study in many tribochemical research
works. In the specifications of ASTM F75, the standard requires a carbon content of below 0.35 wt %,
and there are however, variations in which the alloy can be tailored to suit different needs but still
conform to the governing standard. Consequently, CoCrMo alloys can have a high carbon (HC)
content (0.05–0.35 wt %) or low carbon (LC) content (<0.05 wt %). It is well known that carbides such
as M23C6 (M = Co., Cr or Mo) and M6C are formed during eutectic solidification or precipitation.
The transformation of M23C6 to M6C takes place if the CoCrMo alloys are annealed at 1230 ◦C and
above and a complete dissolution of the carbides occurs between 1250 ◦C and 1270 ◦C [48]. A low
carbon content depresses the solutionizing temperature where a single phase at lower temperatures
helps alleviate the problem of incipient melting. It is to be noted that besides the conventional carbides,
other phases have also been reported to form in as-cast CoCrMo alloys with varying C content
(0.12–0.35 wt %) such as σ phase (Co. (Cr, Mo)) and mixed carbide/nitride phase, π, etc. [49]. However,
the exact roles of these phases on tribocorrosion behavior of the alloys are yet to be clearly identified.

In general, the presence of fine carbides helps strengthen the alloys and a better wear resistance
is naturally expected [50]. Though not fully understood, it was also experimentally verified by
Yan et al. [32] that the presence of carbon increases the surface energy of high carbon CoCrMo alloys
compared to low carbon CoCrMo alloys. Consequently, it promotes protein absorption on the alloy
surfaces and a decrease in frictional losses. However, various researchers have different opinions on
the positive effect of carbides on the wear resistance of CoCrMo alloys. Chiba et al. [51] detailed that
LC-forged CoCrMo alloys showed a better wear resistance than the HC-cast CoCrMo alloys mainly
due to the fact that the presence of carbides that increase the stacking fault energy thereby preventing
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SIMT, results in a lower surface fatigue resistance. A similar outcome was also demonstrated by
Chen et al. in a recent study between LC- and HC-forged CoCrMo alloys [52].

Nevertheless, carbides, no matter how hard they are, would be torn off in the wear process and
this may lead to third-body wear. Hence, it is vital to understand how the synergistic effect between
wear and corrosion affects the dislodging of carbides from the matrix and inhibits the performance
of the CoCrMo alloys. In a recent study by Wang et al. [53], a mechanism was proposed which
is schematically shown in Figure 6. It was reported that, under the presence of a biological fluid,
a galvanic couple was formed between the carbide and the surrounding matrix, which resulted in
a decrease in the Volta potential of the latter. Consequently, the corrosion rate in the region was
accelerated with tribocorrosion products that tended to dislodge the carbide particles from the matrix.
Additionally, stacking faults were found to accumulate in the phase boundary between the carbide
and the matrix, which led to a stress concentration that evolved into surface fatigue in the material
in the form of microcracks thereby contributing to the separation of the carbide particles from the
matrix. All in all, the dislodged carbide particles could subsequently lead to abrasive wear and low
wear resistance. This hypothesis has been accepted in many studies where surface scratches and
grooves were observed parallel to the sliding directions [51,54]. Additionally, topological profiling
has revealed the carbides to be largely higher than the matrix (~8–9 nm), and these carbide asperities
coupled with their higher hardness underwrite the undulations in the friction coefficient curve during
sliding, resulting in an overall higher friction coefficient.Materials 2017, 10, x FOR PEER REVIEW  10 of 21 
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Nanoparticles generated from tribocorrosion processes have been linked to adverse tissue
response inside the human body [55,56]. Such nanoparticles can initiate from either the nanocrystalline
surface layer of a CoCrMo alloy in contact with the load or from the agglomerated mixed hard carbide
phases (M23C6 and M6C) on the surface that act as obstacles to the path of the abrasive tips [50]. Figure 7
illustrates that carbide/carbide contact under tremendous local stress results in carbide fracture and
spalling out from the surface of the alloy [54]. Consequently, this leads to the detachment of the
nanograins from the protruded mixed hard phases, thus producing loose bioreactive nanoparticles.Materials 2017, 10, x FOR PEER REVIEW  11 of 21 
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5.2. Effects of Alloying Elements

Various alloying elements in elementary CoCr alloys are known to influence the tribocorrosive
behavior of the alloys; each alloying element, in general, causes either an alteration of the chemical
composition of the parent alloy or results in the formation/inhabitation of phases. The mechanical
properties of CoCr alloys have been found to be further enhanced by the additions of tungsten (W)
and molybdenum (Mo) [57]. However, the increase in W content tends to promote the formation of
intermetallic σ phase and the combination of complex hard phases such as Co3Mo/W3C, which are
detrimental to the fatigue properties of the material in service [50]. Subsequently, the addition of Mo is
preferred as it helps improve the ductility of the alloys and promotes the formation of eutectic carbides
instead of the complex ones discussed earlier. In an earlier study reported by Shin et al. [58], it was also
found that the addition of Mo helped suppress the formation of M7C3, which is of a coarser nature,
resulting in more weight loss during wear testing. In addition, M7C3 has a trigonal crystal structure
that is of higher hardness compared to M23C6, a face-centered cubic (FCC) structure. Once these hard
M7C3 carbides spall off from the matrix during wear, they would result in more severe abrasive wear
and higher material removal rate [59]. Essentially, a higher Mo content caters for more Cr to remain
in the solid-solution matrix rather than forming Cr-rich carbides thus promoting the formation of a
dense Cr-oxide film that renders an excellent corrosion resistance to the alloy [60].

It was reported that under as-cast condition, Ni and N free CoCrMo alloys exhibit a low ductility
due to the formation of σ phase within the interdendritic region, which results in brittle fracture [61].
Hence, it is vital to suppress the formation of σ phase and, at the same time, stabilize the γ phase
through the addition of the fourth element. However, it is also worth noting that although Ni has
the same effect as N, it is often undesirable in consideration of the issue of biocompatibility as Ni is
a metal sensitizer [62]. Interestingly, in a research done by Lee et al. [63] as summarized in Figure 8,
it was revealed that the addition of N to 0.61 wt %, Cr content can be increased to a peak value of
34 wt % (ASTM F75: Cr ≤ 30 wt %), resulting in a significant improvement in mechanical properties
compared to the N-free CoCrMo alloys under as-cast condition. The enrichment of Cr content in
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the alloys is deemed favorable as it enables the formation of Cr-rich oxide film that is essential in
biomedical applications.Materials 2017, 10, x FOR PEER REVIEW  12 of 21 
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5.3. Effects of Tribocorrosion Conditions

In-vitro and retrieval studies [35] of CoCrMo implants have often revealed tribocorrosion reactions
involving the interactions between biological, chemical and mechanical wear [64–67]. In a biological
environment, it is generally accepted that the dominant underlying mechanism for material mass
loss is probably due to abrasion. This has been confirmed on the basis of wear scar analysis showing
a parallel and uniformly grooved pattern on the wear surface. However, as mentioned previously,
the total mass loss is not simply the summation of corrosion wear and mechanical wear losses [68].
There is the so-called ‘synergistic component’ as demonstrated by Mathew et al. [69] in a study
investigating the effects of protein on CoCrMo alloys. Their study using bovine serum quantified
the individual mass loss contributions and showed that around one-third of the mass loss was due
to this synergistic effect. Hence, it is of no surprise that any change in the environment chemistry
would affect the tribocorrosive behavior of alloys [70–72]. The most commonly investigated solutions
include sodium chloride solution (NaCl 0.36%), phosphate buffered solution (PBS), Hank’s solution,
and Ringer solution.

For the purpose of simulating the presence of amino acids in the biological environment,
Yan et al. [34] reported an experiment using Dulbecco’s Modified Eagle’s Medium (DMEM) as
the lubricating medium in tribocorrosion analysis of a CoCrMo alloy. Remarkably, the results
demonstrated reduced coefficient of friction and lower wear rate compared to similar CoCrMo alloys
reported elsewhere [32]. Through the findings, the authors drew the conclusion that a reaction existed
between the amino acid and the bulk metal and the metal ions resulted in the formation of a thin
tribo-film (~2–3 nm), thereby reducing friction and wear. It is also worth noting that in electrochemical
tribo-testing, CoCrMo alloys can be further made active by applying an external potential thus affecting
the rate of reaction and the formation of tribo-film [73]. A more recent study by Igual-Muñoz et al. [72]
revealed a similar finding through experiment using NaCl + albumin. Conversely, the albumin acted
as a binder by promoting the agglomeration of suspended hard particles and thus reducing the
effect of abrasive wear. Notwithstanding that, the presence of protein may also present unfavorable
consequences. In another study done by Yan et al. [56], it was observed that the presence of protein
could undeniably accelerate the formation of ions, such implants when used in vivo would have
cytotoxic effects on the neighboring cells [74,75].

In a separate study done by Sun et al. [76] representing an infected joint condition, it was found
that an acidic environment (pH 4.0) accelerated the release of metal ions and, when coupled with
the presence of third-body particles, aggravated material removal, which would impose a health
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hazard when implanted. On the whole, a general conclusion from the previous studies suggests
the pivotal roles of chemical reactions that occur at the metal/electrolyte interfaces. Consequently,
it is vital that researchers consider the appropriate surface chemical phenomena in the evaluation of
biomedical alloys.

5.4. Influence of Wear Debris

Metal-on-metal (MOM) implants are intended to offer improved durability, releasing a lower
volume of wear debris than traditional polymer or ceramic-on-metal (POM/COM) implant designs.
However, the implants are known to release particles and soluble wear debris upon mutual contact,
which are consumed in the bloodstream. This in turn leads to a permanently increased content of
metal ions in the hip synovial fluid and in the peripheral blood stream, which can have severe side
effects on the patients subjected to long-term implant usage [77–81]. To further complicate matters,
these metal particles may also spread through lymphatic circulation and continue to release ions even
after removal of the source of wear [82]. Current evidence indicates that the sizes of wear particles
generated by CoCrMo MOM articulations are generally in a nanometer range [83]. A large surface
area enhances the release of metal ions, predominantly Co. and Cr ions, into the circulation [84].
However, the preferential release of the metal ions is still largely dependent on the experimental or
operational environment.

Some studies reported that in vitro or in vivo wear particles are mainly chromium (Cr) oxide.
In bovine calf serum medium, Catelas et al. [85] reported Cr-oxide to be the majority phase in both
HC and LC CoCrMo alloys. Although it was observed that some of the wear debris had a CoCrMo
composition with traces of carbides, the predominant wear-inducing particles are still the oxide
particles without Co. The shapes of the particles as depicted in Figure 9, range from needle-like to
spherical morphology with a size range of 25–50 nm. Contradictorily, Yan et al. [86] tested nanosized
wear debris of CoCrMo alloy in a protein containing bovine serum albumin (BSA) medium. It was
observed in this study that the crystalline wear debris was comprised of two constituents instead of
one, that is Cr oxide and the other being crystalline Co with a close-packed hexagonal (hcp) structure
due to the transformation of fcc-Co to hcp-Co under significant plastic deformation during wear [87].
Nevertheless, it is still unclear, which alterations a wear particle goes through between its generation
and its detachment in the joint environment. It may be possible that the particles undergo significant
transformation and changes in chemical composition within the tribological interface leading to the
disruption of the organic protective film and subsequent particle oxidation or perhaps just the spalling
off of insoluble Cr-oxide particles due to the passivized film.
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5.5. Influences of Manufacturing Methods

Very often, different manufacturing process routes have been explored to tailor the CoCrMo
alloys’ microstructure and their entailing tribological properties based on practical feasibility. The first
generation of CoCrMo implants was produced based on casting [88], which possessed discontinuous,
discrete interdendritic, and blocky carbides of mainly M23C6 within the Co-matrix as depicted in
Figure 10a [35,50,51,89]. Owing to the casting process, carbide inhomogeneities related to size and
dispersion rendered low ductilities and fatigue strengths [90], which in turn hindered their long-term
performance when implanted. Nonetheless, heat treatment can be applied to dissolve the large
carbides into the intergranular region and improve the performance of the alloys [91]. On the aspect of
tribocorrosion, blocky carbides are deemed unfavorable due to a severe spalling effect that results in
more mechanical wear loss of the alloys [92]. On the contrary, as reported by Sun et al. [28], bigger
abrasive sizes may instead appear more favorable as smaller-sized abrasive particles could undermine
the repassivation effect of the CoCrMo alloys due to shorter recovery time. Consequently, the exposed
CoCrMo alloys are subjected to adverse effects arising from wear-induced corrosion.
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The forged CoCrMo alloys represented an improvement over the cast alloys and have been
extensively employed for use as articulating surfaces of implants [93,94]. This technique utilizes the
combined effects of plastic deformation with subsequent recrystallization heat treatment to achieve
fine grain sizes that strengthen the alloys and further enhance their wear resistance at the expense
of ductility [95]. An optical image on the microstructure of a typical forged CoCrMo alloy is shown
in Figure 10b [51]. However, it is suggested in the study reported by Buscher et al. [96,97] that the
forging process results in anisotropic property of CoCrMo alloys due to the formation of εmartensite
and stacking faults. Subsequently, a nanocrystalline layer is generated just below the surface during
wear, which supports the hypothesis that the generation of globular and needle-like particles is due to
the torn-off nanocrystals and fractured εmartensite, respectively. In contrast, surface fatigue within
the nanocrystalline layer is proposed to be the acting wear mechanism in MOM articulation instead
of the proposed abrasive or oxidative wear (tribochemical reaction). Recently, considerable attention
has been given to ultrafine-grained (UFG) materials due to their superior strengths that co-exist with
good fracture toughness and excellent plasticity [98]. Subsequently, Kenta et al. [15] developed a
new strategy to produce high strength CoCrMo alloys with sufficient ductility through dynamic
recrystallization (DRX) via hot forging. Through the addition of optimized N content, Kenta and
co-workers successfully stabilized the γ phase (fcc-Co.) and prevented both athermal εmartensite and
SIMT during deformation. This produced an ultrafine microstructure with grain sizes typically smaller
than 1 µm, which caused an enhanced work hardening in the alloys.

The capability of AM technologies has improved tremendously over the last decade.
With optimized process parameters, near-fully dense CoCrMo parts can be relatively easily fabricated
via various AM techniques such as selective electron beam melting (SEBM), selective laser melting
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(SLM), laser engineered net shaping (LENS), etc. [99–102]. The former two techniques being the most
popular, are essentially powder bed fusion AM methods that utilizes a heat source (laser/electron beam)
to selectively melt and fuse multiple layers of powder together to form the desired object [103,104].
Consequently, SBEM is also a technique that is fast gaining popularity due to its excellent building and
energy efficiency [105–108]. A near vacuum fabrication environment makes it an added advantage
especially in the area of bio-related applications. The high thermal gradients coupled with rapid
solidification offer a uniquely columnar microstructure along the build direction, with carbide
precipitates that appear continuously at the grain boundaries and dispersed as clusters in the
interdendritic regions [16,109,110]. An SEM micrograph showing a typical SEBM-built CoCrMo
part is depicted in Figure 10c. Interestingly, in a recent study by Tan et al. [111], through extensive
characterization, it was suggested that a weak incoherent interface between the grain boundary
carbide and one side of the γ-Co. grains is the source of anisotropy in the SEBM-built CoCrMo alloy.
Consequently, it is more likely that these nano-scale carbides could be dislodged from the matrix,
which would then have a significant effect on the tribocorrosion behavior of the alloy. Hence, it was
further suggested that the carbon content in the CoCrMo powders can be made lower to facilitate
the production of discrete nano-scale carbides, which would strengthen the materials rather than
contribute to third-body abrasives.

6. Summary

This article reviews the various methods used in electrochemistry, which have been subsequently
employed for use in the evaluation of the tribocorrosive behavior of CoCrMo alloys. In light of
this, the commonly used approaches and latest proposed models to describe the tribocorrosive
behavior of CoCrMo alloys were reviewed. In addition, an insight on the several factors that affect the
tribocorrosion behavior of CoCrMo alloys was also discussed and is portrayed in Figure 11, where the
green arrows signify the interactions of the various parameters.Materials 2017, 10, x FOR PEER REVIEW  16 of 21 
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Despite the diverse experimental conditions and procedures reported in recent literature,
the following remarks have been drawn:

• Various tribochemical methods are, in general employed to effectively characterize the
tribocorrosive behavior of CoCrMo alloys. Although the OCP method can reveal the necessary
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potential of an alloy before, during, and after wear test, it is unable to provide the state in which
the alloy exists. An alloy after wear can indeed recover and then exhibits the same corrosion
potential as before wear but an EIS measurement can successfully identify a change in electrical
impedance of the alloy that designates an easier route for a subsequent current to flow and a
reduced corrosion resistance. In practice, OCP and EIS both render convenient and well-accepted
methods to quantitatively evaluate the tribocorrosive properties of the concerned alloy. However,
methods such as potentiostatic and cathodic protection should not be ignored as they provide
important means of evaluating the tribocorrosion process kinetics occurring between the alloy
and the environment during wear.

• A simplistic tribocorrosion model can be further improved into more precise models governing
the tribocorrosion process of CoCrMo alloys with the aid of tribochemical approaches. In addition,
these tribochemical approaches when coupled with an analytical technique such as inductive
coupled plasma mass spectroscopy (ICP-MS), which is often used to detect metal ions and their
concentrations, could be utilized to explain some of the phenomena that cannot be fully described
by the present models.

• Long-term performance of CoCrMo alloys largely depends on the applied environmental
conditions. Carbides play a pivotal role in the strengthening of CoCrMo alloys but also introduce
unfavorable tribocorrosion conditions that are detrimental to the materials when dislodged from
the matrices. In general, LC-CoCrMo alloys show a better wear resistance than HC-CoCrMo
alloys. Alloying elements, such as N, can be added to strengthen the alloys through the formation
of nanograins and the use of carbon as a strengthener in CoCrMo alloys is perhaps restricted.
Consequently, more Cr ions can be made free to form protective Cr-oxide thereby increasing
the tribocorrosive resistance of the alloys. Inevitably, the manufacturing process route of a
CoCrMo alloy also plays an important role through variations of microstructure and resulting
wear characteristics. Very often, the rule of thumb is to lower the volumetric wear rate. However,
it does not always equate to a lower number of emitted nanoparticles. Hence, it is also of equal
importance to quantify and characterize the release of these nanoparticles because this will lead
to more pronounced release of metal ions due to a surface area effect. Though ion release may
constitute negative effects on the surrounding tissues, it must be acknowledged that these ions
sometimes can also react with the proteins present in the environment to form a tribofilm that
tends to protect the surface from further wear.

Independently, tribo-mechanisms already exhibit high complexities and non-linear behaviors
but the introduction of corrosion further complicates the issue. In fact, most of the metal loss occurs
due to the synergistic effect of the different mechanisms. Therefore, the understanding of chemical,
mechanical, and biological phenomena involved in the tribocorrosion process helps distinguish the
different pathways of the degradation process. Ultimately, this knowledge will help mitigate material
loss and improve the tribological performance of future CoCrMo alloys, which will have a direct
impact on patients’ lives. On the subsequent research outlook, it may also be of interest to further
explore and understand the role of single abrasive particles on the nanoscale tribocorrosion of CoCrMo
alloys should it be effectively reduced to a nanosized bacteria robot, where targeted drug delivery for
cancer or other forms of nanoscale surgery could be realized.
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