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Abstract: The effect of cold rolling on the microstructure and mechanical properties of an Al- and
C-containing CoCrFeNiMn-type high-entropy alloy was reported. The alloy with a chemical
composition (at %) of (20–23) Co, Cr, Fe, and Ni; 8.82 Mn; 3.37 Al; and 0.69 C was produced
by self-propagating high-temperature synthesis with subsequent induction. In the initial as-cast
condition the alloy had an face centered cubic single-phase coarse-grained structure. Microstructure
evolution was mostly associated with either planar dislocation glide at relatively low deformation
during rolling (up to 20%) or deformation twinning and shear banding at higher strain. After 80%
reduction, a heavily deformed twinned/subgrained structure was observed. A comparison with
the equiatomic CoCrFeNiMn alloy revealed higher dislocation density at all stages of cold rolling
and later onset of deformation twinning that was attributed to a stacking fault energy increase in the
program alloy; this assumption was confirmed by calculations. In the initial as-cast condition the alloy
had low yield strength of 210 MPa with yet very high uniform elongation of 74%. After 80% rolling,
yield strength approached 1310 MPa while uniform elongation decreased to 1.3%. Substructure
strengthening was found to be dominated at low rolling reductions (<40%), while grain (twin)
boundary strengthening prevailed at higher strains.

Keywords: high-entropy alloys; microstructure evolution; twinning; mechanical properties;
strengthening mechanisms

1. Introduction

High-entropy alloys (HEAs) have recently emerged as new class of metallic materials
with properties attractive for various structural and functional applications [1–4]. In particular,
different HEAs demonstrate high strength and/or ductility at room and cryogenic temperatures,
high specific strength at elevated temperatures, excellent fracture and impact toughness,
wear resistance, etc. [5–18]. Producing HEAs with a balanced combination of properties needed
for practical applications still remains a significant challenge, however.

Alloys based on the transition elements are the most studied type of HEAs [1]. One of the typical
representatives of such HEAs is the equiatomic CoCrFeNiMn alloy [19–21]. This alloy has a single face
centered cubic (fcc) phase structure thermodynamically stable at temperatures ≥900 ◦C [22–24]. It has
very high ductility (70–80%) at both room and cryogenic temperatures, and record breaking fracture
toughness under cryogenic conditions [5,9]. The encouraging properties of the alloy at cryogenic
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temperature were mostly attributed to pronounced deformation nano-twinning promoting high strain
hardening capacity [5,9,25]. However, there are still different opinions on relative contributions of
dislocation slip and twinning during plastic deformation at room temperature [9,26–29].

Apparently, mechanical properties of the CoCrFeNiMn alloy can be improved either by
thermomechanical processing (resulting in a microstructure modification) or by alloying (changing
the chemical composition). Both options have been explored by researchers already. For instance,
it was found that cold rolling of the CoCrFeNiMn resulted in a considerable increase in strength with
a simultaneous decrease in ductility [27]; however, microstructure refinement due to recrystallization
can result in higher strength without a loss in ductility [9,30]. Doping with other elements (as well
as changes in the concentrations of the principal elements) can be used either to enhance solid
solution strengthening while maintaining a single phase solid solution structure and/or to cause the
formation of second phases and to increase the strength via precipitation strengthening [10,31–39].
Both substitutional (an effective example is Al [38]) and interstitial (like C [31]) solid solution
strengthening can be utilized.

However, modifications of the chemical composition of the fcc solid solution can also result in
changes of different strengthening mechanisms activity. For example, intensive deformation twinning
in the CoCrFeNiMn alloy was usually ascribed to a considerable decrease in the stacking fault energy
(SFE) values to 20–30 mJ·m−2 [40,41]; an increase in the SFE values due to alloying can result in
twinning suppression that inevitably would have a pronounced effect on the mechanical behavior of
the alloys. It has been established earlier that Al and C in austenitic (fcc) steels are among the elements
that strongly increase the SFE, thereby promoting dislocation slip and suppressing twinning [42–44].
However, there are contradicting reports on the effect of carbon doping on deformation mechanisms
operating in the Co-Cr-Fe-Ni-Mn system high entropy alloys [12,32,33,45]. The effect of Al is even much
less studied, however, deformation twinning was reported for the Al0.1CoCrFeNi alloy, nominally
containing ~2.4 at % of Al [46,47]. Therefore, additional studies on the effects of alloying on deformation
mechanisms of the CoCrFeNiMn-type alloys are required.

To explore operating deformation mechanisms, microstructure evolution during rolling and tensile
properties of the CoCrFeNiMn-type HEA, containing ~3.4 at % of Al and ~0.7 at % of C was studied
in detail. The following main aims were pursued: (i) to establish active deformation mechanisms at
different stages of plastic deformation; and (ii) to estimate, quantitatively, the contributions of different
strengthening mechanisms during cold working. Only a limited number of thorough investigations of
this kind on HEAs have been made so far [27,34,48–50].

2. Results

2.1. Microstructure of the Al-, C-Containing CoCrFeNiMn-Type Alloy in the as-Cast Condition

Figure 1 illustrates the microstructure of the Al-, C-containing CoCrFeNiMn-type alloy in the
initial as-cast condition. Both the X-ray diffraction (XRD) pattern (Figure 1a) and electron backscattered
diffraction (EBSD) inverse pole figure (IPF) map (Figure 1b) demonstrated the presence of a single
phase with the fcc lattice. According to the XRD results, the fcc lattice parameter a was 3.588 nm.
In addition, both the XRD and EBSD data revealed strong crystallographic texture, typical for the
cast materials. The alloy had a coarse structure with a grain size of 250–400 µm. Grains of irregular
shape were often surrounded by curved boundaries. Additional investigations by scanning electron
microscopy (SEM) and transmission electron microscopy (TEM) (not shown) have also not revealed
the presence of any second phases. The chemical composition of the grains determined by SEM-based
energy-dispersive X-ray spectroscopy (EDX) strictly corresponded to the composition of the alloy
(Table 1).
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Figure 1. Structure of the Al-, C-containing CoCrFeNiMn-type alloy in the as-cast condition:  
(a) XRD pattern; and (b) EBSD IPF map. 

Table 1. Chemical composition of the Al-, C-containing CoCrFeNiMn-type alloy. 

Concentration Al C Co Cr Fe Ni Mn 
at % 3.37 0.69 22.35 19.67 22.85 22.44 8.62 

wt. % 1.65 0.15 23.92 18.57 23.17 23.92 8.64 

2.2. Microstructure Evolution of the Al-, C-Containing CoCrFeNiMn-Type Alloy during Cold Rolling 

EBSD IPF maps (Figure 2) shows microstructure evolution of the Al-, C-containing 
CoCrFeNiMn-type alloy during cold rolling. Noticeable changes in the microstructure were observed 
only for ε = 20% (Figure 2a). After 20% thickness reduction the development of a banded substructure 
inside initial grains was observed (Figure 2a). With an increase in rolling strain, the initial grains 
elongated towards the rolling direction (Figure 2b). The grains were subdivided by deformation 
bands (dark areas in Figure 2b). The development of deformation twinning in some grains was also 
observed (higher magnification insert in Figure 2b). At yet higher rolling reduction (60%) more 
extensive development of twinning was found (Figure 2c). However, even after rolling to the highest 
strain of 80% some areas with only dislocation substructure were observed (Figure 2d). Twin boundaries 
and deformation bands aligned along the rolling direction with an increase in rolling reduction. 
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Figure 1. Structure of the Al-, C-containing CoCrFeNiMn-type alloy in the as-cast condition:
(a) XRD pattern; and (b) EBSD IPF map.

Table 1. Chemical composition of the Al-, C-containing CoCrFeNiMn-type alloy.

Concentration Al C Co Cr Fe Ni Mn

at % 3.37 0.69 22.35 19.67 22.85 22.44 8.62
wt. % 1.65 0.15 23.92 18.57 23.17 23.92 8.64

2.2. Microstructure Evolution of the Al-, C-Containing CoCrFeNiMn-Type Alloy during Cold Rolling

EBSD IPF maps (Figure 2) shows microstructure evolution of the Al-, C-containing
CoCrFeNiMn-type alloy during cold rolling. Noticeable changes in the microstructure were observed
only for ε = 20% (Figure 2a). After 20% thickness reduction the development of a banded substructure
inside initial grains was observed (Figure 2a). With an increase in rolling strain, the initial grains
elongated towards the rolling direction (Figure 2b). The grains were subdivided by deformation bands
(dark areas in Figure 2b). The development of deformation twinning in some grains was also observed
(higher magnification insert in Figure 2b). At yet higher rolling reduction (60%) more extensive
development of twinning was found (Figure 2c). However, even after rolling to the highest strain of
80% some areas with only dislocation substructure were observed (Figure 2d). Twin boundaries and
deformation bands aligned along the rolling direction with an increase in rolling reduction.
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Figure 2. EBSD IPF maps of the Al-, C-containing CoCrFeNiMn-type alloy after cold rolling with 
different thickness reduction: (a) 20%; (b) 40%; (c) 60%; and (d) 80%. Rolling direction is aligned with 
the horizontal axis. 

TEM investigations revealed additional insights into the evolution of the microstructure of the 
Al-, C-containing CoCrFeNiMn-type alloy (Figure 3). Pronounced dislocation activity was observed 
at the initial stages of deformation (Figure 3a). Dislocation slip was planar (Figure 3b); intersection of 
slip bands was found at higher strains (Figure 3c). Some individual, relatively thick twins started to 
appear at the same time (Figure 3d). High dislocation density inside twins should be noted. At 40% 
of thickness reduction intensive twinning was observed (Figure 3e). Deformation twins belonged to 
the (111) <112> family (twin/matrix misorientation of 60° around <111>) (insert on Figure 3e).  
The fraction of deformation twins obviously increased with further strain (Figure 3f). However, some 
areas comprised of only dislocation pile-ups and subboundaries were also observed. The formation 
of shear bands occurred concurrently (highlighted with the arrows in Figure 3f). As the result after 
80% rolling inhomogeneous microstructure composed of twinned and subgrained areas was formed 
(Figure 3g). 
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Figure 2. EBSD IPF maps of the Al-, C-containing CoCrFeNiMn-type alloy after cold rolling with
different thickness reduction: (a) 20%; (b) 40%; (c) 60%; and (d) 80%. Rolling direction is aligned with
the horizontal axis.

TEM investigations revealed additional insights into the evolution of the microstructure of the
Al-, C-containing CoCrFeNiMn-type alloy (Figure 3). Pronounced dislocation activity was observed
at the initial stages of deformation (Figure 3a). Dislocation slip was planar (Figure 3b); intersection
of slip bands was found at higher strains (Figure 3c). Some individual, relatively thick twins started
to appear at the same time (Figure 3d). High dislocation density inside twins should be noted.
At 40% of thickness reduction intensive twinning was observed (Figure 3e). Deformation twins
belonged to the (111) <112> family (twin/matrix misorientation of 60◦ around <111>) (insert on
Figure 3e). The fraction of deformation twins obviously increased with further strain (Figure 3f).
However, some areas comprised of only dislocation pile-ups and subboundaries were also observed.
The formation of shear bands occurred concurrently (highlighted with the arrows in Figure 3f). As the
result after 80% rolling inhomogeneous microstructure composed of twinned and subgrained areas
was formed (Figure 3g).
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Figure 3. TEM bright-field images of the microstructure of the Al-, C-containing CoCrFeNiMn-type 
alloy after rolling with different thickness reduction: (a) 5%; (b) 10%; (c,d) 20%; (e) 40%; (f) 60%; and 
(g) 80%. Rolling direction (RD) is identified with the arrow in Figure 3a. 

Quantitative analysis (Figure 4) of microstructure evolution of the Al-, C-containing 
CoCrFeNiMn-type alloy generally confirmed the results obtained by EBSD and TEM. Dislocation 
density increased relatively quickly at the initial stages of strain; from ~1 × 1011 m−2 in the initial 
condition to ~2 × 1015 m−2 after 40% strain (Figure 4a). At further rolling the increase in the dislocation 
density become much slower. Note that in the reference CoCrFeNiMn the overall dependence of 
dislocation density on rolling strain was similar, however, the “saturation” stage was reached already 
after 25% reduction, and dislocation densities at the same or comparable rolling strains were ca. two 
times lower than those in the present alloy. On the other hand, twinning obviously occurred much 
earlier in the reference CoCrFeNiMn alloy in comparison with the Al-, C-containing CoCrFeNiMn-
type alloy: The first twins were detected only after 20% rolling reduction (Figure 4b, see also Figure 3d). 
However, twinning was developed extremely fast and already after 40% strain almost all grains were 
twinned (see also Figure 2b). Note that the development of twinning resulted in a sharp decrease in 
spacing between boundaries in the Al-, C-containing CoCrFeNiMn-type alloy at strains ≥ 40%  
(Figure 4c). The inter-twin distances attained values of about 0.06 μm at ε = 80%. In the reference 
CoCrFeNiMn alloy the spacing between boundaries decreased much faster due to earlier onset  
of twinning. 

Figure 3. TEM bright-field images of the microstructure of the Al-, C-containing CoCrFeNiMn-type
alloy after rolling with different thickness reduction: (a) 5%; (b) 10%; (c,d) 20%; (e) 40%; (f) 60%;
and (g) 80%. Rolling direction (RD) is identified with the arrow in Figure 3a.

Quantitative analysis (Figure 4) of microstructure evolution of the Al-, C-containing
CoCrFeNiMn-type alloy generally confirmed the results obtained by EBSD and TEM. Dislocation
density increased relatively quickly at the initial stages of strain; from ~1 × 1011 m−2 in the initial
condition to ~2× 1015 m−2 after 40% strain (Figure 4a). At further rolling the increase in the dislocation
density become much slower. Note that in the reference CoCrFeNiMn the overall dependence
of dislocation density on rolling strain was similar, however, the “saturation” stage was reached
already after 25% reduction, and dislocation densities at the same or comparable rolling strains
were ca. two times lower than those in the present alloy. On the other hand, twinning obviously
occurred much earlier in the reference CoCrFeNiMn alloy in comparison with the Al-, C-containing
CoCrFeNiMn-type alloy: The first twins were detected only after 20% rolling reduction (Figure 4b,
see also Figure 3d). However, twinning was developed extremely fast and already after 40% strain
almost all grains were twinned (see also Figure 2b). Note that the development of twinning resulted in
a sharp decrease in spacing between boundaries in the Al-, C-containing CoCrFeNiMn-type alloy at
strains ≥ 40% (Figure 4c). The inter-twin distances attained values of about 0.06 µm at ε = 80%. In the
reference CoCrFeNiMn alloy the spacing between boundaries decreased much faster due to earlier
onset of twinning.
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Figure 4. Dependence of (a) dislocation density; (b) fraction of twinned grains; and (c) distance 
between boundaries of the Al-, C-containing CoCrFeNiMn-type alloy on rolling strain. Data for the 
equiatomic CoCrFeNiMn alloy [27] is shown for comparison. 
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during rolling. In the initial as-cast condition the hardness of the Al-, C-containing alloy was 173 HV0.3. 
During cold rolling the hardness of the alloy increased rapidly to 280 HV0.3 after ε = 20% and then,  
a bit slower, to 384 HV0.3 after ε = 60%. A further increase in strain to 80% did not result in noticeable 
changes in microhadness. The microhardness evolution of the Al, C-containing CoCrFeNiMn-type 
alloy is similar to that of the Al-, C-free CoCrFeNiMn alloy, yet the microhadness values of the present 
alloy were ≈20–40 HV0.3 higher than that of the reference alloy. 
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boundaries of the Al-, C-containing CoCrFeNiMn-type alloy on rolling strain. Data for the equiatomic
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2.3. Mechanical Properties of the Al-, C-Containing CoCrFeNiMn-Type Alloy

Figure 5 shows microhardness evolution of the Al-, C-containing CoCrFeNiMn-type alloy during
rolling. In the initial as-cast condition the hardness of the Al-, C-containing alloy was 173 HV0.3.
During cold rolling the hardness of the alloy increased rapidly to 280 HV0.3 after ε = 20% and then,
a bit slower, to 384 HV0.3 after ε = 60%. A further increase in strain to 80% did not result in noticeable
changes in microhadness. The microhardness evolution of the Al, C-containing CoCrFeNiMn-type
alloy is similar to that of the Al-, C-free CoCrFeNiMn alloy, yet the microhadness values of the present
alloy were ≈20–40 HV0.3 higher than that of the reference alloy.
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More detailed understanding of the effect of cold rolling on mechanical properties of the Al-,
C-containing CoCrFeNiMn-type alloy can be obtained via tensile tests. The representative stress-strain
curves are shown in Figure 6, and the mechanical properties, namely yield strength (σ0.2), ultimate
tensile strength (σUTS), uniform elongation (εu), and elongation to fracture (εf), are summarized in
Table 2. The as-cast alloy demonstrated low yield strength of 210 MPa with a pronounced hardening
stage resulting in very high uniform elongation of 74%. The ultimate tensile strength and elongation
to fracture of the cast alloy were 455 MPa and 80%, respectively. Rolling to relatively small thickness
reduction (ε = 20%) resulted in pronounced hardening; the yield strength and ultimate tensile strength
increased to 545 MPa and 650 MPa, respectively. However, the work hardening capacity of the alloy
became lower with strain. Thus, the uniform elongation and elongation to fracture decreased to
18% and 25%, respectively. A further increase in rolling reduction to 40% increased strength and
pronouncedly decreased ductility. The ultimate tensile strength of the alloy cold rolled to ε = 40%
was found to be 980 MPa, while the uniform and total elongations were 3.7% and 7%, respectively.
Rolling to higher strains resulted in even more pronounced hardening. For example, the ultimate
tensile strength of the alloy was 1140 MPa and 1500 MPa after rolling to 60% and 80% reduction,
respectively. However, the strengthening was associated with a significant decrease in ductility.
The uniform elongation of the Al, C-containing CoCrFeNiMn-type alloy after rolling to 60% and 80%
strain was 2.3% and 1.3%, respectively.

Strain hardening of the alloy in the initial as-cast condition (Figure 6b) was characterized by
a reduction in hardening at the initial stage of deformation (to the true strain of 0.05) further increasing
to the true strain of ~0.55, and then dropping to zero. The alloy after 20% rolling does not show any
increase in the dσ/dε values during deformation, however, a lower rate of strain hardening decreasing
can be seen in the interval of strains 0.05–0.2. All specimens of the alloy rolled to 40–80% (only one of
them is shown in Figure 6b) demonstrate a sharp drop in strain hardening almost immediately after
the beginning of deformation.

Table 2. Tensile properties of the Al-, C-containing CoCrFeNiMn-type alloy in different conditions.

Condition σ0.2, MPa σUTS, MPa εu, % εf, %

As-cast 210 455 74.0 80.0
20% rolling 545 650 18.0 25.0
40% rolling 945 980 3.7 7.0
60% rolling 1110 1140 2.3 5.4
80% rolling 1310 1500 1.3 6.5
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3. Discussion

The main features of the microstructure evolution of the Al-, C-containing CoCrFeNiMn-type
high-entropy alloy during cold rolling comprised planar dislocation slip followed by intensive twinning
and pronounced formation of shear bands (Figures 2–4). The same mechanisms were found to
operate in the reference equiatomic CoCrFeNiMn alloy [27], however, relative contributions of these
mechanisms at different stages were pronouncedly different (Figure 4). Changes of deformation
mechanisms in the fcc metals can be associated with the value of the stacking fault energy. However the
exact calculation of the SFE value (which is a complex function of chemical composition of the alloy) is
a very intricate problem. This value cannot be evaluate on the basis of already known data (for example
the SFE for the equiatomic CoCrFeNiMn is known to be 20–30 mJ·m−2) since the composition of the
program alloy differs from the classic equiatomic Cantor’s alloy both by the presence of Al and C and
by concentrations of principal elements (Table 1).

A relatively simple approach to estimate the SFE of Fe-Mn steels was proposed in [51,52].
According to this approach, the SFE values can be calculated in accordance to the following formula:

γSFE = 2ρ∆Ghcp−fcc + 2σ (1)

where γSFE is the SFE value, ∆Ghcp−fcc is the difference in Gibbs free energy between the hexagonal
close packed (hcp) and fcc phases, ρ is the number of atoms per m2 in one atomic layer, and σ is
the interphase energy between the fcc and hcp phases. Given the already-reported similarity in
composition, structure, and mechanical behavior of the Co-Cr-Fe-Ni-Mn high-entropy alloys and
high-Mn twinning-induced plasticity (TWIP) steels [27,53,54], Equation (1) was adapted in the present
work to evaluate the difference in the SFEs between the reference Cantor’s CoCrFeNiMn alloy and
the program Al-C-containing alloy. For this purpose, the ∆Ghcp−fcc values were calculated in both
alloys using CALPHAD approach and commercial Thermo-Calc software (v. 2017a, Thermo-Calc
Software, Stockholm, Sweden) and TCHEA2 database. Actual (Table 1) chemical composition of the
Al-, C-containing alloy and nominal values (i.e., 20 at % of each element) of the CoCrFeNiMn alloys
were used. The calculations were performed for room temperature (20 ◦C). The obtained results were
values of ∆Ghcp−fcc = 0.72 kJ/mol for the reference CoCrFeNiMn alloy and 0.98 kJ/mol for the studied
Al-, C-containing alloy. Although further exact calculations of the SFE were complicated due to the
absence of other input values for Equation (1), the comparison of the calculated ∆Ghcp−fcc values clearly
suggests that SFE of the Al-, C-containing alloy is higher than its CoCrFeNiMn equiatomic counterpart.

The increase in the SFE energy can perfectly explain the retardation of twinning in the Al-,
C-containing CoCrFeNiMn-type alloy (Figure 4a). Greater SFE resulted in higher stresses required
for twinning initiation; thus, the onset of deformation in the program alloy was generally associated
with slip promoting a more intensive increase in dislocation density. The activation of twinning occurs
when the flow stress of the material increases due to strain hardening. Since the strain hardening
behavior of both alloys (Figure 5) is more or less similar, the required stress level reached at later
stages of deformation in the Al, C-containing alloy in comparison with the equiatomic counterpart.
Due to mainly planar slip (Figure 2b,d), recovery is limited and therefore dislocation density in the Al,
C-containing alloy remains to be very high. Note that strongly planar slip was also found in high-Mn
steels with higher SFE than the TWIP steels (the-called low-density steels) [55,56].

Microstructure evolution during rolling obviously impacts the mechanical properties (Figures 5
and 6, Table 2). Both an increase in dislocation density and decrease in boundary spacing, mostly due
to mechanical twinning (Figure 4a,c, respectively) can contribute to the strengthening of the alloy
during deformation. The overall strength of the alloy can be expressed as:

σ = σ0 + σρ + σH−P (2)

where σ0 denotes the friction stress, σρ is the substructure strengthening, expressed as:
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σρ = MαGb
√
ρ (3)

and σH−P is the Hall-Petch strengthening:

σH−P = Kyd− 1/2 (4)

In these equations M is the Taylor factor, α is a constant, G is the shear modulus, b is the
Burgers vector, and ρ is the dislocation density; Ky is the Hall-Petch coefficient and d is the grain size
(boundary spacing).

In the present work the following parameters were used: M = 2, α = 0.2, G = 80 GPa [57],
b = 2.58 × 10−10 m [27]. The value of σ0 = 210 MPa was used in accordance with the experimental
yield strength of the alloy in the initial coarse-grained condition (Table 2). The value of the Hall-Petch
coefficient was experimentally determined as Ky = 0.4 MPa·m−1/2 for arbitrary grain boundaries.
Twice lower Ky of 0.2 MPa·m−1/2 was used for twin boundaries (rolling reduction≥40%) in accordance
with the results of [58]. The values calculated using the Equations (2)–(4) are shown in Figure 7.
The ρ and d values for the calculations were taken from Figure 4a,c, respectively.
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The comparison between the experimental and the calculated (Equation (2)) values demonstrates
a very good fit, especially for strains ε ≤ 40% (Figure 7). More detailed analysis shows that at ε = 20%
reduction, the strength increases mostly due to substructure hardening while Hall-Petch strengthening
is negligible. However, a further increase in strain does not result in a pronounced increase in
substructure strengthening due to the saturation of dislocation density at strains ε ≥ 40% (Figure 4a).
At the same time, grain boundary (Hall-Petch) strengthening grows continuously at ε ≥ 20% as
a result of intensive twinning (Figure 4b). In general, the relative efficiency of the strengthening
mechanisms operating in the Al-, C-containing CoCrFeNiMn-type alloy is in good agreement with
microstructural observations (Figures 2–4). The main deformation mode at the first stage of rolling was
dislocation slip. The contributions of substructure and grain boundary strengthening became nearly
equal at rolling reduction of 40%. During further deformation twinning makes the main contribution
to deformation and Hall-Petch strengthening dominates due to the presence a large number of twin
boundaries. Late development of deformation twinning resulted in rather specific shape of the strain
hardening curve with increasing till the very end of deformation (Figure 6b). This result is quite
similar to those obtained earlier for some TWIP steels [59] in which twinning proceeded during the
greatest part of deformation. However, in such twinning alloys as commercially-pure titanium or brass,
the stage of twinning-induced strain hardening growth is quite short and observed in the beginning of
deformation [60]. Even small prestraining (in our case 20% rolling, Figure 6a, see also [59]) suppresses
the effect of twinning on strain hardening, thereby considerably decreasing the ductility of the alloy.
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It should be noted that in the equiatomic CoCrFeNiMn alloy dominant role of grain boundary
strengthening within the whole (5–80%) strain range was established [27]. This is most possibly
associated with the already-discussed larger propensity of the equiatomic alloy to twinning.

4. Materials and Methods

The initial Al-, C-containing CoCrFeNiMn-type alloy was produced by self-propagating
high-temperature synthesis (SHS). Mixture of powders (oxides of the target elements (NiO, Cr2O3,
Co3O4, Fe2O3, MnO2), pure carbon (C), and Al as the metal reducer) was used as a starting material.
The weight of the initial mixture for combustion was 1200 g. Combustion was carried out in graphite
molds 80 mm in diameter. Previous studies have demonstrated that the SHS process carried out under
high-gravity conditions allows the best separation of the target product (ingot) from the slag (Al2O3)
and convective mixing of all alloy components, which becomes especially important with an increased
number of components and their concentration of components in the alloy. Therefore, the synthesis of
the alloy was carried out in a centrifugal SHS setup. The SHS-produced HEA was 600 ± 10 g in weight
and looked like a cast product. However, it contained numerous pores. Thus, the SHS-produced alloy
was remelted using an induction furnace in vacuum and cast into an ingot measuring ~40 mm in
diameter and ~80 mm in length. This was used as the starting condition. The chemical composition
(metallic elements were determined by scanning electron microscope (SEM)-based energy-dispersive
X-ray spectroscopy (EDX) scan using an FEI Nova NanoSEM 450 (ThermoFisher Scientific, Hillsboro,
OR, USA) over the large area (~1 × 1 mm), carbon was measured by a Leco analyzer) is shown
in Table 1.

Slabs with a thickness of 5 mm were cut from the ingot of the alloy by an electric discharge
machine for further rolling. The slabs were rolled unidirectionally in a few passes at room temperature
to a final thickness strain of 80%. Samples with intermediate thickness strains of 5%, 10%, 20%, 40%,
and 60% were also produced. The reductions per pass were 5–10%. The rolling strain was calculated
from the thickness of produced specimens.

The structure of the alloy was studied using X-ray diffraction (XRD) analysis, transmission electron
microscopy (TEM), and electron backscattered diffraction (EBSD) analysis. The XRD analysis was
performed using a RIGAKU diffractometer (Rigaku Corporation, Tokyo, Japan) and Cu Ka radiation.

Microstructural investigations were carried out in the plane perpendicular to the transversal
direction. EBSD was conducted in an FEI Nova NanoSEM 450 field-emission-gun scanning electron
microscope (FEG-SEM) (ThermoFisher Scientific, Hillsboro, OR, USA) equipped with a Hikari EBSD
detector (EDAX Inc., Mahwah, NJ, USA) and TSL OIM™ system version 6.0 (EDAX Inc., Mahwah,
NJ, USA). The samples for EBSD analysis were prepared by careful mechanical polishing. The border
between low-angle boundaries (LABs, shown with white lines on presented inverse pole figure
(IPF) maps) and high-angle boundaries (HABs, shown with black lines) was assumed to be 15◦.
Misorientations below 2◦ were not taken into consideration. The points with the confidence index (CI)
below 0.1 were excluded from the analysis and were depicted as black dots on the presented IPF maps.

TEM investigations were performed using a JEOL JEM-2100 microscope (JEOL Ltd., Tokyo,
Japan) with an accelerating voltage of 200 kV. The samples for the TEM analysis were prepared by
conventional twin-jet electro-polishing of foils mechanically pre-thinned to 100 µm, in a mixture of
90% CH3COOH and 10% HClO4 at 30 V potential at room temperature. The dislocation density was
estimated by counting the individual dislocations in the grains/subgrains interiors per unit area using
TEM images.

To determine the post-rolling mechanical properties, tension tests were conducted at room
temperature. For this purpose, dog-bone-shaped flat specimens with gauge dimensions of 5 mm
length × 3 mm width × 1 mm thickness were machined and pulled to fracture at an initial strain rate
of 10−3 s−1 using an Instron 5882 test machine (Instron, Norwood, MA, USA). At least two specimens
were tested for each condition. Elongation to fracture was determined by measurements of spacing
between marks designating the gauge length before and after the test. The microhardness of the rolled
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specimens was examined using Vickers microhardness (Instron, Norwood, MA, USA) testing with
a load of 0.3 kg. At least 20 individual measurements per condition were made and the mean values
are presented.

5. Conclusions

In the present work, the microstructure and mechanical properties evolution of the Al-,
C-containing CoCrFeNiMn-type high-entropy alloy during cold rolling was studied. The following
conclusions were drawn:

(1) The alloy produced by self-propagating high-temperature synthesis and further induction
remelting was composed of ≈20–23 at % of Co, Cr, Fe, and Ni, 8.82 at % of Mn, 3.37 at %
of Al, and 0.69 at % of C. The as-cast alloy had a coarse-grained single fcc phase structure with
a grain size of 250–400 µm. The alloy had low yield strength of 210 MPa, but demonstrated a high
uniform elongation of 74%.

(2) At the initial stages of rolling (thickness reduction <40%) mostly planar dislocation glide took
place. First deformation twins appeared at a rolling reduction of 20%, and at 40% the strain of
almost each grain contained at least one deformation twin. Formation of deformation twins
resulted in a strong reduction of boundary spacing.

(3) A comparison with the equiatomic CoCrFeNiMn alloy demonstrated that dislocation density
was ~2 times higher in the investigated Al-, C-containing alloy while twinning has initiated
at later stages of deformation (20% reduction vs. 5% in the equiatomic alloy). The changes in
deformation mechanisms were attributed to an increase in the stacking fault energy, which was
confirmed by the Thermo-Calc estimation of the ∆Ghcp−fcc values for the alloys.

(4) Rolling resulted in an increase in strength and a decrease in ductility of the alloy. For instance,
the yield strength of the alloy increased from 545 MPa to 1310 MPa when the rolling reduction
changed from 20% to 80%, while the corresponding uniform elongation values were 18.0% and
1.3%, respectively.

(5) Analysis of the strengthening mechanisms has revealed that at rolling reductions <40%
substructure strengthening prevailed, while at strains >40% grain (twin) boundary strengthening
made the main contribution. At 40% reduction, both factors contributed equally.
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