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SUMMARY

Bayesian sparse factor models have proven useful for characterizing dependence in multivariate
data, but scaling computation to large numbers of samples and dimensions is problematic. We
propose expandable factor analysis for scalable inference in factor models when the number of
factors is unknown. The method relies on a continuous shrinkage prior for efficient maximum
a posteriori estimation of a low-rank and sparse loadings matrix. The structure of the prior
leads to an estimation algorithm that accommodates uncertainty in the number of factors. We
propose an information criterion to select the hyperparameters of the prior. Expandable factor
analysis has better false discovery rates and true positive rates than its competitors across diverse
simulation settings. We apply the proposed approach to a gene expression study of ageing in
mice, demonstrating superior results relative to four competing methods.

Some key words: Expectation-maximization algorithm; Factor analysis; Shrinkage prior; Sparsity; Variable selection.

1. INTRODUCTION

Factor analysis is a popular approach to modelling covariance matrices. Letting k∗, p and �
denote the true number of factors, number of dimensions and p × p covariance matrix, respec-
tively, factor models set � = ��T + �, where � ∈ R

p×k∗ is the loadings matrix and � is a
diagonal matrix of positive residual variances. To allow computation to scale to large p, � is
commonly assumed to be of low rank and sparse. These assumptions imply that k∗ � p and the
number of nonzero loadings is small. A practical problem is that k∗ and the locations of zeros
in � are unknown. A number of Bayesian approaches exist to model this uncertainty in k∗ and
sparsity (Carvalho et al., 2008; Knowles & Ghahramani, 2011), but conventional approaches that
rely on posterior sampling are intractable for large sample sizes n and dimensions p. Continuous
shrinkage priors have been proposed that lead to computationally efficient sampling algorithms
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(Bhattacharya & Dunson, 2011), but the focus is on estimating �, with � treated as a non-
identifiable nuisance parameter. Our goal is to develop a computationally tractable approach for
inference on � that models the uncertainty in k∗ and the locations of zeros in �. To do this, we
propose a novel shrinkage prior and a corresponding class of efficient inference algorithms for
factor analysis.

Penalized likelihood methods provide computationally efficient approaches for point estima-
tion of� and�. If k∗ is known, then many such methods exist (Kneip & Sarda, 2011; Bai & Li,
2012). Sparse principal components analysis estimates a sparse� assuming� = σ 2Ip, where Ip
is the p× p identity matrix (Jolliffe et al., 2003; Zou et al., 2006; Shen & Huang, 2008; Witten
et al., 2009). The assumptions of spherical residual covariance and known k∗ are restrictive in
practice. There are several approaches to estimating k∗. In econometrics, it is popular to rely on
test statistics based on the eigenvalues of the empirical covariance matrix (Onatski, 2009; Ahn
& Horenstein, 2013). It is also common to fit the model for different choices of k∗, and choose
the best value based on an information criterion (Bai & Ng, 2002). Recent approaches instead
use the trace norm or the sum of column norms of � as a penalty in the objective function to
estimate k∗ (Caner & Han, 2014). Alternatively, Ročková & George (2016) use a spike-and-
slab prior to induce sparsity in � with an Indian buffet process allowing uncertainty in k∗; a
parameter-expanded expectation-maximization algorithm is then used for estimation.

We propose a Bayesian approach for estimation of a low-rank and sparse�, allowing k∗ to be
unknown. Our approach relies on a novel multi-scale generalized double Pareto prior, inspired
by the generalized double Pareto prior for variable selection (Armagan et al., 2013) and by the
multiplicative gamma process prior for loadings matrices (Bhattacharya & Dunson, 2011). The
latter approach focuses on estimation of�, but does not explicitly estimate� or k∗. The proposed
prior leads to an efficient and scalable computational algorithm for obtaining a sparse estimate
of � with appealing practical and theoretical properties. We refer to our method as expandable
factor analysis because it allows the number of factors to increase as more dimensions are added
and as p increases.

Expandable factor analysis combines the representational strengths of Bayesian approaches
with the computational benefits of penalized likelihood methods. The multi-scale generalized
double Pareto prior is concentrated near low-rank matrices; in particular, a high probability is
placed around matrices with rank O(log p). Local linear approximation of the penalty imposed by
the prior equals a sum of weighted �1 penalties on the elements of �. This facilitates maximum
a posteriori estimation of a sparse � using an extension of the coordinate descent algorithm
for weighted �1-regularized regression (Zou & Li, 2008). The hyperparameters of our prior
are selected using a version of the Bayesian information criterion for factor analysis. Under the
theoretical set-up for high-dimensional factor analysis in Kneip & Sarda (2011), we show that the
estimates of loadings are consistent and that the estimates of nonzero loadings are asymptotically
normal.

2. EXPANDABLE FACTOR ANALYSIS

2·1. Factor analysis model

Consider the usual factor model. Let Y ∈ R
n×p, Z ∈ R

n×k∗ and E ∈ R
n×p be the mean-

centred data matrix, latent factor matrix and residual error matrix, respectively, where Z and
E are unknown. We use index i for samples, index d for dimensions, and index j for fac-
tors. If � = diag(σ 2

1 , . . . , σ 2
p ) is the residual error variance matrix, then the factor model

for yid is
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yid =
k∗∑

j=1

zijλdj + eid , zij ∼ N (0, 1), eid | σ 2
d ∼ N (0, σ 2

d ), (1)

where zij and eid are independent (i = 1, . . . , n; j = 1, . . . , k∗; d = 1, . . . , p). Equivalently,

yi = �zi + ei, yi = (yi1, . . . , yip)
T, zi = (zi1, . . . , zik∗)

T, ei = (ei1, . . . , eip)
T (2)

for sample i and cov(yi) = ��T +� (i = 1, . . . , n). Similarly, model (1) reduces to regression
in the space of latent factors

yd = Zλd + ed , yd = (y1d , . . . , ynd)
T, λd = (λd1, . . . , λdk∗)

T, ed = (e1d , . . . , end)
T (3)

for dimension d (d = 1, . . . , p). Unlike usual regression, the design matrix Z in (3) is unknown.
Penalized estimation of� is typically based on (2) or (3).The loss is estimated as the regression-

type squared error after imputing Z using the eigendecomposition of the empirical covariance
matrix Y TY /n or an expectation-maximization algorithm. The choice of penalty on� presents a
variety of options. If the goal is to select factors that affect any of the p variables, then the sum
of column norms of � can be used as a penalty; a recent example is the group bridge penalty,∑k

j=1(
∑p

d=1 λ
2
dj/p)

α , where 0 < α < 1/2 and k is an upper bound on k∗. The selected factors
correspond to the nonzero columns of the estimated � (Caner & Han, 2014). To further obtain
elementwise sparsity, a nonconcave variable selection penalty can be applied to the elements
in �. The estimate of � depends on the choice of criterion for selecting the tuning parameters
(Hirose & Yamamoto, 2015).

Our expandable factor analysis differs from this typical approach in several important ways.
We start from a Bayesian perspective, and place a prior on� that is structured to allow uncertainty
in k∗ while shrinking towards loadings matrices with many zeros and k∗ � p. If k is an upper
bound on k∗, then the prior is designed to automatically allow a slow rate of growth in k as the
number of dimensions p increases by concentrating in neighbourhoods of matrices with rank
bounded above by k = O(log p). To our knowledge, this is a unique feature of our approach,
justifying its name. Expandability is an appealing characteristic, as more factors should be needed
to accurately model the dependence structure as the dimension of the data increases.

2·2. Multi-scale generalized double Pareto prior

We would like to design a prior on� such that maximum a posteriori estimates of� have the
following four characteristics:

(a) the estimate of a loading with large magnitude should be nearly unbiased;
(b) a thresholding rule, such as soft-thresholding, is used to estimate the loadings so that

loadings estimates with small magnitudes are automatically set to zero;
(c) the estimator of any loading is continuous in the data to limit instability; and
(d) the �2-norm of the ith column of the estimated � does not increase as i increases.

The first three properties are related to nonconcave variable selection (Fan & Li, 2001). Properties
(b) and (d) together ensure existence of a column index after which all estimated loadings are
identically zero. Automatic relevance determination and multiplicative gamma process priors
satisfy (d) but fail to satisfy (b). No existing prior for loadings matrices satisfies properties (a)–(d)
simultaneously (Carvalho et al., 2008; Bhattacharya & Dunson, 2011; Knowles & Ghahramani,
2011).
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In order to satisfy these four properties and obtain a computationally efficient inference proce-
dure, it is convenient to start with a prior for a loadings matrix� ∈ R

p×∞ having infinitely many
columns; in practice, all of the elements will be estimated to be zero after a finite column index
that corresponds to the estimated number of factors. Bhattacharya & Dunson (2011) showed that
the set of loadings matrices � ∈ R

p×∞ that leads to well-defined covariance matrices is

C =
{
� : max

1�d�p

∞∑
j=1

λ2
dj <∞

}
.

We propose a multi-scale generalized double Pareto prior for � having support on C. This prior
is constructed to concentrate near low-rank matrices, placing high probability around matrices
with rank at most k = O(log p).

The multi-scale generalized double Pareto prior on� specifies independent generalized double
Pareto priors on λdj (d = 1, . . . , p; j = 1, . . . ,∞) so that the density of � is

pmgdP(�) =
p∏

d=1

∞∏
j=1

pgdP(λdj | αj, ηj), pgdP(λdj | αj, ηj) = αj

2ηj

(
1+ |λdj|

ηj

)−(αj+1)

, (4)

where pgdP(· | αj, ηj) is the generalized double Pareto density with parametersαj and ηj (Armagan
et al., 2013). This prior on λdj ensures that properties (a)–(c) are satisfied. Property (d) is satisfied
by choosing parameter sequences αj and ηj (j = 1, . . . ,∞) such that two conditions hold: the
prior measure Pl on C has density pmgdP in (4), and Pl has C as its support. These conditions hold
for the form of αj and ηj ( j = 1, . . . ,∞) specified by the following lemma.

LEMMA 1. If αj > 2, ηj/αj = O(j−m) (j = 1, . . . ,∞) and m > 1/2, then Pl(C) = 1.

The proof is given in the Supplementary Material, along with the other proofs.
As in Bhattacharya & Dunson (2011), we truncate to a finite number of columns for tractable

computation. This truncation is accomplished by mapping � ∈ C to �k ∈ C, with �k retaining
the first k columns of �. The choice of k is such that �k = �k�k T + � is arbitrarily close
to � = ��T + �, where distance between �k and � is measured using the �∞-norm of
their elementwise difference. In addition, for computational convenience, we assume that the
hyperparameters αj and ηj (j = 1, . . . ,∞) are analytic functions of the parameters δ and ρ,
respectively, with these functions satisfying the conditions of Lemma 1.

The following lemma defines the forms of αj and ηj (j = 1, . . . ,∞) in terms of δ and ρ.

LEMMA 2. If δ > 2, ρ > 0, αj(δ) = δj and ηj(ρ) = ρ for j = 1, . . . ,∞, then Pl(C) = 1, where
Pl has density pmgdP in (4) with hyperparameters αj(δ) and ηj(ρ) (j = 1, . . . ,∞). Furthermore,
given ε > 0, there exists a positive integer k(p, δ, ε) = O{log−1 δ log(p/ε2)} for every � such
that for all r � k, αj(δ) = δj , ηj(ρ) = ρ (j = 1, . . . , r) and �r = �r�rT + �, we have that
pr{�r | d∞(�,�r) < ε} > 1− ε where d∞(A, B) = max1�i,j�p|aij − bij|.

The penalty imposed on the loadings by the prior grows exponentially with δ as the column
index increases. This property of the prior ensures that all the loadings are estimated to be zero
after a finite column index, which corresponds to the estimated number of factors.
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3. ESTIMATION ALGORITHM

3·1. Expectation-maximization algorithm

We rely on an adaptation of the expectation-maximization algorithm to estimate � and �.
Choose a positive integer k of order log p as the upper bound on k∗; the estimate of the number
of factors will be less than or equal to k . The results are not sensitive to the choice of k due to the
properties of the multi-scale generalized double Pareto prior, provided k is sufficiently large. If
k is too small, then the estimated number of factors will be equal to the upper bound, suggesting
that this bound should be increased. Given k , define αj(δ) and ηj(ρ) (j = 1, . . . , k) as in Lemma 2,
with δ > 2 and ρ > 0 being prespecified constants.

We present the objective function as a starting point for developing the coordinate descent
algorithm and provide derivations in the Supplementary Material. Let F (t) = n−1E(ZTZ |
Y ,�(t),�(t)) and L(t) = n−1E(

∑n
i=1 yizT

i | Y ,�(t),�(t)), where the superscript (t) denotes
an estimate at iteration t and E(· | Y ,�(t),�(t)) denotes the conditional expectation given Y ,
�(t) and �(t) based on (1). The objective function for parameter updates in iteration t + 1 is

arg min
λd , σ 2

d
d=1,...,p

p∑
d=1

(
n+ 2

2npk
log σ 2

d +
‖w(t)d − X (t)λd‖2 − w(t)d

T
w(t)d + (Y TY /n)dd

2pkσ 2
d

+
[ k∑

j=1

αj(δ)+ 1

npk
log

{
1+ |λdj|

ηj(ρ)

}])
, (5)

where X (t) = F (t)1/2 and w(t)d = F (t)−1/2l(t)d (d = 1, . . . , p).

3·2. Estimating parameters using a convex objective function

The objective (5) is written as a sum of p terms. The dth term corresponds to the objective
function for the regularized estimation of the dth row of the loadings matrix, λT

d , with a specific

form of log penalty on λd (Zou & Li, 2008). Local linear approximation at λ(t)dj of the log penalty
on λdj in (5) implies that each row of � is estimated separately at iteration t + 1:

λ
lla(t+1)
d = arg min

λd

‖w(t)d − X (t)λd‖2
2pkσ 2(t)

d

+
k∑

j=1

αj(δ)+ 1

npk
{
ηj(ρ)+ |λ(t)dj |

} |λdj| (d = 1, . . . , p). (6)

This problem corresponds to regularized estimation of regression coefficients λd with w(t)d as the

response, X (t) as the design matrix, σ 2(t)
d as the error variance, and a weighted �1 penalty on λd .

The solution to (6) is found using block coordinate descent. Let column j of F and row d of
� without the jth element be written as f(−j),j and λT

d,(−j). Then the update to estimate λlla
d is

λ
lla(t+1)
dj = sign(λ̃(t)dj )

f (t)jj

(|λ̃(t)dj | − c(t)dj

)
+, c(t)dj =

σ
2(t)
d {αj(δ)+ 1}

n{ηj(ρ)+ |λ(t)dj |}
(j = 1, . . . , k), (7)
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where λ̃(t)dj = l(t)dj − λlla(t) T

d,(−j) f
(t)
(−j),j and (x)+ = max(x, 0). Fix λd at λlla(t+1)

d in (5) to update σ 2
d in

iteration t + 1 as

σ
2(t+1)
d = n

n+ 2

{
(Y TY /n)dd + λlla(t+1) TF (t)λlla(t+1) − 2l(t)Td λlla(t+1)}. (8)

If any root-n-consistent estimate of λdj is used instead of |λ(t)dj | in (6), then it acts as a warm
starting point for the estimation algorithm. This leads to a consistent estimate of λdj in one step
of coordinate descent (Zou & Li, 2008). An implementation of this approach for known values of
δ and ρ is summarized in steps (i)–(iv) of Algorithm 1 using the R (R Development Core Team,
2017) package glmnet (Friedman et al., 2010).

Algorithm 1. Estimation algorithm for expandable factor analysis.

Notation:
1. diag(A) is the diagonal matrix containing diagonal elements of a symmetric matrix A.
2. Chol(A) is the upper triangular Cholesky factorization of a symmetric positive-definite

matrix A.
3. bdiag(A1, . . . , Ap) is a block-diagonal matrix with A1, . . . , Ap forming the diagonal

blocks.
4. vec(A) = (aT

1, . . . , aT
d)

T ∈ R
cd×1, where A ∈ R

c×d .

Input:
1. Data Y ∈ R

n×p and upper bound k = O(log p) on the rank of the loadings matrix.
2. The δ-ρ grid with RS grid indices (δ1 < · · · < δR; ρ1 < · · · < ρS).

Do:
1. Centre data about their mean ŷij = yij − (n−1)

∑n
m=1 ymj (i = 1, . . . , n; j = 1, . . . , p).

2. Let Sŷŷ = Ŷ TŶ /n. Then estimate eigenvalues and eigenvectors of Sŷŷ: ζ̂1, . . . , ζ̂p and
ψ̂1, . . . , ψ̂p.

3. Define �0 to be the matrix {(ζ̂1)
1/2ψ̂1, . . . , (ζ̂k)

1/2ψ̂k}.
4. Begin estimation of �, � and π across the δ-ρ grid:

For r = 1, . . . , R
For s = S, . . . , 1

(i) Define αj = δj
r , ηj = ρsp1/2 if n � p, and ηj = ρs if n > p (j = 1, . . . , k).

(ii) Initialize the following statistics required in (7):

�0 = diag(Sŷŷ −�0�0T
), �0 = �0�0T +�0, G0 = (�0)−1�0, L0 = SŷŷG0,

�0 = Ik −�0T
G0, F0 = �0 + G0T

SŷŷG0, R0 = Chol(F0)·

(iii) Define X ∈ R
pk×pk , w ∈ R

pk×1, y ∈ R
pk×1 and v ∈ R

pk×1 required to
solve (6):

X = bdiag(R0, . . . , R0︸ ︷︷ ︸
p times

), w = {(�0)−1
11 , . . . , (�0)−1

11︸ ︷︷ ︸
k times

, . . . , (�0)−1
pp , . . . , (�0)−1

pp︸ ︷︷ ︸
k times

},

y = vec
{
(R0)−1L0T}

, v = 1
npk

(
α1+1

η1+|λ0
11|

, . . . , αk+1
ηk+|λ0

1k |
, . . . , α1+1

η1+|λ0
p1|

, . . . , αk+1
ηk+|λ0

pk |
)
·
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(iv) Estimate�lla in (7) and�lla in (8) using the R package glmnet in three steps:
• result← glmnet

(
x = X , y = y, weights = w, intercept = FALSE,

standardize = FALSE, penalty.factor = v/
∑pk

j=1 vj
)
.

• vec
(
�llaT)← coef

(
result, s =

∑pk
j=1 vj, exact = TRUE

)
[-1, ].

• (�lla)dd ← {n/(n+ 2)}{(Sŷŷ)dd + λlla
d

T
F0λlla

d − 2l0
d

T
λlla

d

}
(d = 1, . . . , p).

(v) Set�(r,s) = �lla,�(r,s) = �lla,�0 = �lla, and estimate the posterior weight
π(r,s) in (10).

End for.
Set �0 = �(r,S).

End for.
5. Obtain grid index (r̂, ŝ) for the estimate of (δ, ρ), where π(r̂,ŝ) = max(r,s)π

(r,s)·

Return:
�(r̂,ŝ), �(r̂,ŝ) and M(r̂,ŝ) = {(d, j) : λ(r̂,ŝ)

dj |= 0; d = 1, . . . , p; j = 1, . . . , k}.

The estimate of� obtained using (7) satisfies properties (a)–(d) described earlier. The adaptive
threshold c(t)dj in (7) ensures that property (a) is satisfied. The soft-thresholding rule to estimate
λdj ensures that property (b) is satisfied. The local linear approximation (6) has continuous
first derivatives in the parameter space excluding zero, so property (c) is also satisfied (Zou
& Li, 2008). The � estimate satisfies property (d) due to the structured penalty imposed by
the prior.

We comment briefly on the choice of prior and uncertainty quantification. We build on the
generalized double Pareto prior instead of other shrinkage priors not only because the estimate of
� satisfies properties (a)–(d), but also because local linear approximation of the resulting penalty
has a weighted �1 form. We exploit this for efficient computations and use a warm starting point
to estimate a sparse � in one step using Algorithm 1. Uncertainty estimates of the nonzero
loadings are obtained from Laplace approximation, and the remaining loadings are estimated as
zero without uncertainty quantification.

3·3. Root-n-consistent estimate of λdj

The root-n-consistent estimate ofλdj exists underAssumptionsA0–A4 given in theAppendix. If
ζ̂d and ψ̂d (d = 1, . . . , p) are the eigenvalues and eigenvectors of the empirical covariance matrix
Y TY /n, then

∑p
d=1 ζ̂dψ̂dψ̂

T
d is the eigendecomposition of Y TY /n. It is known that (ζ̂d)

1/2ψ̂dj
is a root-n-consistent estimator of λdj if p is fixed and n → ∞. If n → ∞, n � p → ∞
and log p/n → 0, then p−1/2(ζ̂d)

1/2ψ̂dj is a root-n-consistent estimator of p−1/2λdj; see the
Supplementary Material for a proof. Scaling by p1/2 is required because the largest eigenvalue of
� tends to infinity as p→∞ (Kneip & Sarda, 2011). This scaling does not change our estimation
algorithm for λdj in (7), except that ηj(ρ) is changed to ηj(ρ)p1/2 (j = 1, . . . , k).

3·4. Bayesian information criterion to select δ and ρ

The parameter estimates in (7) and (8) depend on the hyperparameters through δ and ρ, both
of which are unknown. To estimate δ and ρ, we use a grid search. Let δ1 < · · · < δR and
ρ1 < · · · < ρS form a δ-ρ grid. If (δr , ρs) is the value of (δ, ρ) at grid index (r, s), then αj(δr)
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and ηj(ρs) (j = 1, . . . , k) are the hyperparameters of our prior defined using Lemma 2, and�(r,s)

and �(r,s) are the parameter estimates based on this prior. Algorithm 1 first estimates �(r,s) and
�(r,s) for every (r, s) by choosing warm starting points and then estimates (δ, ρ) using all the
estimated � and �. These two steps in the estimation of (δ, ρ) are described next.

The structured penalty imposed by our prior implies that �(1,S) has the maximum number of
nonzero loadings. Algorithm 1 exploits this structure by first estimating �(1,S) and then other
loadings matrices along the δ-ρ grid by successively thresholding nonzero loadings in �(1,S) to
0. Let M(r,s) = {(d, j) : λ(r,s)

dj |= 0; d = 1, . . . , p; j = 1, . . . , k} be the set that contains the

locations of nonzero loadings in�(r,s). The estimation path of Algorithm 1 across the δ-ρ grid is
such that M(r,1) ⊆ · · · ⊆M(r,S) (r = 1, . . . , R) and M(R,S) ⊆ · · · ⊆M(1,S).

After the estimation of�(r,s) and �(r,s) (r = 1, . . . , R; s = 1, . . . , S), (δ, ρ) is set to (δr̂ , ρŝ) if
M(r̂,ŝ) has the maximum posterior probability. Let |A| be the cardinality of set A. Given (δr , ρs),
there are

( pk
|M(r,s)|

)
loadings matrices that have |M(r,s)| nonzero loadings but differ in the locations

of the nonzero loadings. Assuming that each of these matrices is equally likely to represent the
locations of nonzero loadings in the true loadings matrix, the prior for M(r,s) is

pr(M(r,s) | δr , ρs) ∝
(

pk

|M(r,s)|
)−1

(r = 1, . . . , R; s = 1, . . . , S). (9)

Letπ(r,s) be the posterior probability ofM(r,s). Then an asymptotic approximation to−2 logπ(r,s)

is

−2 log f (Y ,�(r,s) | δr , ρs)+ |M(r,s)| log n+ 2 |M(r,s)| log(pk) (10)

if terms of order smaller than log n + log p are ignored, where f (Y ,� | δr , ρs) is the joint
density of Y and � based on (1). The first term in (10) measures the goodness-of-fit, and the
last two terms penalize complexity of a factor model with n samples and pk loadings with the
locations of nonzero loadings in M(r,s). Theorem 3 in the next section shows that −2 logπ(r,s)

and EBICγ (M(r,s)) have the same asymptotic order under certain regularity assumptions, where
EBICγ is the extended Bayesian information criteria of Chen & Chen (2008) and 0 � γ � 1 is
an unknown constant. The analytic forms of −2 logπ(r,s) and EBICγ (M(r,s)) are the same when
γ = 0·5 and terms of order smaller than log n+log p are ignored, so we use EBIC0·5 for estimating
M(r̂,ŝ) in our numerical experiments.

4. THEORETICAL PROPERTIES

Let �lla
n and �lla

n be the fixed points of �lla(t) and �lla(t)· The updates (7) and (8) define the
map g : θ(t) �→ θ(t+1), where θ = (�,�). The following theorem shows that our estimation
algorithm retains the convergence properties of the expectation-maximization algorithm.

THEOREM 1. If L(θ) represents the objective (5), then L(θ) does not decrease at every iteration.
Let Q be the local linear approximation of (5). Assume that Q(θ) = Q{g(θ)} only for stationary
points of Q; then the sequence {θ(t)}∞t=1 converges to its stationary point θ lla

n .

Let �∗ be the true loadings matrix and �∗ the residual variance matrix. We define λ∗dj = 0
(d = 1, . . . , p; j = k∗ + 1, . . . , k) and express �∗ as having k columns. The locations of true
nonzero loadings are in the set M∗ = {(d, j) : λ∗dj |= 0; d = 1, . . . , p; j = 1, . . . , k}. Let �̂ and �̂
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be the estimates of� and� obtained using our estimation algorithm for a specific choice of αj(δ)

and ηj(ρ) (j = 1, . . . , k); then M̂ = {(d, j) : λ̂dj |= 0; d = 1, . . . , p; j = 1, . . . , k} is an estimator
of M∗. If λ̂ = vec(�̂T) and λ∗ = vec(�∗T), then λ̂A and λ∗A retain elements of λ̂ and λ∗ with
indices in the set A. The following theorem specifies the asymptotic properties of �̂, �̂ and M̂.

THEOREM 2. Suppose that Assumptions A0–A6 in the Appendix hold and that n → ∞, n �
p→∞ and log p/n→ 0. Then, for any d = 1, . . . , p and j = 1, . . . , k:

(i) λ̂dj, σ̂ 2
d and M̂ are consistent estimators of λ∗dj, σ

2∗
d and M∗, respectively;

(ii) n1/2(λ̂M∗ −λ∗M∗)→ N|M∗|(0, C∗) and n1/2(σ̂ 2
d −σ 2∗

d )→ N (0, c∗) in distribution, where
C∗ is a |M∗| × |M∗| symmetric positive-definite matrix and c∗ > 0.

Theorem 2 holds for any multi-scale generalized double Pareto prior with hyperparameters αj(δ)

and ηj(ρ) (j = 1, . . . , k) that satisfies Assumption A5. In practice, the estimate of � depends on
the choice of δ and ρ. Restricting the search to the hyperparameters indexed along the δ-ρ grid,
Algorithm 1 sets the values of the hyperparameters to αj(δr̂) and ηj(ρŝ) (j = 1, . . . , k), where
π(r,s) achieves its maximum at grid index (r̂, ŝ). The following theorem justifies this method
of selecting hyperparameters and shows the asymptotic relationship between −2 logπ(r,s) and
EBICγ (M(r,s)).

THEOREM 3. Suppose that the generalized double Pareto prior with hyperparameters defined
using (δ∗, ρ∗) leads to estimation of M∗. Let M |=M∗ be another set that contains the locations
of nonzero loadings in an estimated � for a given (δ, ρ). Define πM = pr(M | Y ) and πM∗ =
pr(M∗ | Y ). If Assumptions A0–A7 in the Appendix hold, then for any M such that |M| ∈
{1, . . . , pk}:

(i) −2 logπM/EBICγ (M)→ 1 in probability as n→∞;
(ii) pr{max(πM : M |=M∗) < πM∗} → 1 as n→∞.

Let (δr∗ , ρs∗) be a point on the δ-ρ grid that leads to estimation of M∗. Then, Theorem 3 shows
that Algorithm 1 selects M∗ with probability tending to 1 because π(r

∗,s∗) will be larger than any
π(r,s) where (r, s) is such that M(r,s) |=M∗.

5. DATA ANALYSIS

5·1. Set-up and comparison metrics

We compared our method with those of Caner & Han (2014), Hirose & Yamamoto (2015),
Ročková & George (2016) and Witten et al. (2009). The first competitor was developed to estimate
the rank of�, and the last three competitors were developed to estimate�. We used two versions
of Ročková and George’s method. The first version uses the expectation-maximization algorithm
developed in Ročková & George (2016), and the second version adds an extra step in every
iteration of the algorithm that rotates the loadings matrix using the varimax criterion.

We evaluated the performance of the methods for estimating � on simulated data using the
root mean square error, proportion of true positives, and proportion of false discoveries:

mean square error =
p∑

d=1

k∑
j=1

(|λ∗dj| − |λ̂dj|)2/(pk), true positive rate = |M̂ ∩M∗|/|M∗|,

false discovery rate = |M̂\M∗|/|M̂|,
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Fig. 1. Rank estimate averaged across simulation replications for the methods of Caner & Han (2014) (crosses),
Hirose & Yamamoto (2015) (squares), Ročková & George (2016) varimax-free version (empty circles), Ročková &
George (2016) varimax version (filled circles) and Witten et al. (2009) (diamonds), as well as our estimation algorithm
(triangles). In each panel the horizontal grey line represents the true number of factors; error bars represent Monte

Carlo errors.

where �∗ and �̂ are the true and estimated loadings matrices and M∗ and M̂ are the true and
estimated locations of nonzero loadings. We assume that λ∗dj = 0 for any d and j = k∗+1, . . . , k .

Since λ∗dj and λ̂dj could differ in sign, mean square error compared their magnitudes.

5·2. Simulated data analysis

The simulation settings were based on examples in Kneip & Sarda (2011). The number of
dimensions varied among p = 50, 100, 250, 500, 2000. The rank of every simulated loadings
matrix was fixed at k∗ = 5. The magnitudes of nonzero loadings in a column were equal and
decreased as 10, 8, 6, 4 and 2 from the first to the fifth column. The signs of the nonzero loadings
were chosen such that the columns of any loadings matrix were orthogonal, with a small fraction
of overlapping nonzero loadings between adjacent columns:

λ∗dj =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2(6− j), 1+ (j − 1) p
k∗ � d � j p

k∗ , 1 � j � k∗,
−2(6− j), 1+ j p

k∗ � d � (j + 1) p
k∗ , 1 � j � k∗ − 1,

−2(6− j), ( j − 1) p
k∗ � d � j p

k∗ − 1, 2 � j � k∗,
0, otherwise.

The error variances σ 2
d increased linearly from 0·01 to 1 for d = 1, . . . , p. With varying sample

sizes n = 50, 100, 250, 500, 5000, data were simulated using model (1) for all combinations of n
and p. The simulation set-up was replicated ten times and all five methods were applied in every
replication by fixing the upper bound on the number of factors at 20. The δ-ρ grid had dimensions
20× 20, and log10 δ increased linearly from log10 2 to log10 10 while log10 ρ increased linearly
from −3 to 3 when n > p and from −2 to 6 when n � p.

All five methods had the same computational complexity of O(p log p) for one iteration, but
their runtimes differed depending on their implementations, with the method of Witten et al.
(2009) being the fastest. Figure 1 shows that Hirose andYamamoto’s method and both versions of
Ročková and George’s method significantly overestimated k∗ for large p. The method of Witten
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Fig. 2. Root mean square error averaged across simulation replications for the methods of Hirose &Yamamoto (2015)
(squares), Ročková & George (2016) varimax-free version (empty circles), Ročková & George (2016) varimax version
(filled circles) and Witten et al. (2009) (diamonds), as well as our estimation algorithm (triangles). Error bars represent

Monte Carlo errors.

et al. slightly overestimated k∗ across all settings. Caner and Han’s method showed excellent
performance and accurately estimated k∗ across all simulation settings, except when n = 5000
and p = 50 or 100. When n was larger than 500, Assumption A4 was satisfied and our method
accurately estimated k∗ as 5 in every setting, performing better than Caner and Han’s method
when n = 5000.

The four methods for estimating� differed significantly in their root mean square errors, true
positive rates, and false discovery rates; see Figs 2–4. Hirose and Yamamoto’s method had the
highest false discovery rates and the lowest true positive rates across most settings. Both versions
of Ročková and George’s method estimated an overly dense � across most settings, resulting
in high true positive rates and high false discovery rates. The extra rotation step in the second
version of Ročková and George’s method resulted in excellent mean square error performance;
however, varimax rotation is a post-processing step. A similar step to reduce the mean square
error could be added to our method, for example by including a step to rotate the �0 in step 3
of Algorithm 1 using the varimax criterion. When n and p were small, the method of Witten et
al. achieved the lowest false discovery rates while our method achieved the highest true positive
rates. When n and p were larger than 250 and 100, respectively, Assumption A4 was satisfied and
our method simultaneously achieved the highest true positive rates and lowest false discovery
rates while maintaining competitive mean square errors relative to the rotation-free methods.

5·3. Microarray data analysis

We used gene expression data on ageing in mice from the AGEMAP database (Zahn et al.,
2007). There were 40 mice aged 1, 6, 16 and 24 months in this study. Each age group included
five male and five female mice. Tissue samples were collected from 16 different tissues, including
the cerebrum and cerebellum, for every mouse. Gene expression levels in every tissue sample
were measured on a microarray platform. After normalization and removal of missing data, gene
expression data were available for all 8932 probes across 618 microarrays. We used a factor
model to estimate the effect of latent biological processes on gene expression variation.
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Fig. 3. True positive rate averaged across simulation replications for the methods of Hirose & Yamamoto (2015)
(squares), Ročková & George (2016) varimax-free version (empty circles), Ročková & George (2016) varimax ver-
sion (filled circles) and Witten et al. (2009) (diamonds), as well as our estimation algorithm (triangles). Error bars

represent Monte Carlo errors.
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Fig. 4. False discovery rate averaged across simulation replications for the methods of Hirose & Yamamoto (2015)
(squares), Ročková & George (2016) original version (empty circles), Ročková & George (2016) varimax ver-
sion (filled circles) and Witten et al. (2009) (diamonds), as well as our estimation algorithm (triangles). Error bars

represent Monte Carlo errors.

AGEMAP data were centred before analysis following Perry & Owen (2010). Gene expression
measurements were represented by Y ∈ R

n×p, where n = 618 and p = 8932. Further, agei
represented the age of mouse i and genderi was 1 if mouse i was female and 0 otherwise.
Least-squares estimates of the intercept, age effect and gender effect in the linear model yid =
β0d + β1d agei + β2d genderi + eid (i = 1, . . . , n), with idiosyncratic error eid , were represented
as β̂0d , β̂1d and β̂2d . Using these estimates for d = 1, . . . , p, the mean-centred data were defined
as

ŷid = yid − β̂0d + β̂1d agei + β̂2d genderi (i = 1, . . . , n; d = 1, . . . , p).



Expandable factor analysis 661

Four mice were randomly held out, and all tissue samples for these mice in Ŷ were used as test
data. The remaining samples were used as training data. This set-up was replicated ten times. All
four methods were applied to the training data in every replication by fixing the upper bound on
the number of factors at 10. The δ-ρ grid had dimensions 20× 20, and log10 δ increased linearly
from log10 2 to log10 10 while log10 ρ increased linearly from −3 to 6.

The results for all five methods were stable across all ten folds of crossvalidation. Caner and
Han’s method, Hirose andYamamoto’s method, both versions of Ročková and George’s method,
the method of Witten et al. and our method selected 10, 10, 10, 4 and 1, respectively, as the number
of latent biological processes k∗ across all folds. Our result matched the result of Perry & Owen
(2010), who confirmed the presence of one latent variable using rotation tests. Our simulation
results and the findings in Perry & Owen (2010) strongly suggest that our method accurately
estimated k∗ and the other methods overestimated k∗.

We also estimated the factors for the test data. With ŷi denoting test datum i and UDV T

denoting the singular value decomposition of�, the factor estimate of test datum i was n−1/2
T U Tŷi,

where nT denotes the number of samples in the training data. Perry & Owen (2010) found that
factor estimates for the tissue samples from cerebrum and cerebellum, respectively, had bimodal
densities. We used the density function in R with default settings to obtain kernel density estimates
of the factors. Hirose andYamamoto’s method and both versions of Ročková and George’s method
estimated the number of factors as 10, which made the results challenging to interpret. The method
of Witten et al. recovered bimodal densities in all four factors for both tissue samples, but it was
unclear which of these four factors corresponded to the factor estimated by Perry & Owen (2010).
Our method estimated the number of factors to be 1 and recovered the bimodal density in both
tissue samples.
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APPENDIX

Assumptions

Assumptions A0–A4 follow from the theoretical set-up for high-dimensional factor models in Kneip &
Sarda (2011). Assumption A5 is based on results in Zou & Li (2008) for variable selection.

Assumption A0. Let yi = wi + ei, E(yi) = 0, var(yi) = �∗, E(wi) = 0, var(wi) = �∗�∗T, E(ei) = 0
and var(ei) = �∗ (i = 1, . . . , n).

Assumption A1. There exist finite positive constants D0, D3 and D1 � D2 such that E(y2
id) � D0,

E(e4
id) � D3 and 0 < D1 � (�∗)dd � D2 (i = 1, . . . , n; d = 1, . . . , p).



662 S. SRIVASTAVA, B. E. ENGELHARDT AND D. B. DUNSON

Assumption A2. There exists a constant C0 ∈ (8,∞) such that
∑n

i=1 wijwil/n,
∑n

i=1 eijeil/n,∑n
i=1 wijeil/n and

∑n
i=1 yijyil/n are (C0/n)-sub-Gaussian for every j, l ∈ {1, . . . , p}. A random variable

X is c-sub-Gaussian if pr{|X − E(X )| > t} � 2 exp{−t2/(2c)} for any t > 0.

Assumption A3. Let b1 > · · · > bk∗ > 0 be the eigenvalues of �∗�∗T; then there exists a v0 such that
0 < v0 � 1, pv0 > 6D2, minj,l�k∗ ,j |=l |bj/p− bl/p| � v0, and minj�k∗ bj/p � v0.

Assumption A4. The sample size n and dimension p � n are large enough that C0(log p/n)1/2 � D0/p
and v0 � 6{D2/p+ C0(log p/n)1/2}.

Assumption A5. Let k be the upper bound on k∗ and let δ, ρ, αj(δ) and ηj(ρ) (j = 1, . . . , k) be defined as
in Lemma 2. Then k = O(log p), αj(δ)→∞, n−1/2αj(δ)→ 0 and (np)1/2ηj(ρ)→ cj > 0 (j = 1, . . . , k)
as n→∞, n � p→∞ and log p/n→ 0.

Assumption A6. The elements of the set M∗ are fixed and do not change as n or p increases to∞.

Model (2) is recovered upon substituting wi = �∗zi into Assumption A0. Assumption A1 ensures that
�∗ is positive definite. Assumption A2 ensures that the empirical covariances are good approximations of
the true covariances. Specifically, for any t > 0,

sup
1�j,l�p

∣∣∣∣∣
1

n

n∑
i=1

wijwil − cov(wij, wil)

∣∣∣∣∣ � t, sup
1�j,l�p

∣∣∣∣∣
1

n

n∑
i=1

eijeil − cov(eij, eil)

∣∣∣∣∣ � t,

sup
1�j,l�p

∣∣∣∣∣
1

n

n∑
i=1

wijeil

∣∣∣∣∣ � t, sup
1�j,l�p

∣∣∣∣∣
1

n

n∑
i=1

yijyil − cov(yij, yil)

∣∣∣∣∣ � t

hold simultaneously with probability at least At(n, p) = 1− 8p2 exp{−nt2/(2C0)}. If t0 = C0(log p/n)1/2,
then At0(n, p)→ 1 as n, p→∞ and log p/n→ 0. Assumption A3 guarantees identifiability of �0 when
p is large and v0 � 1/p. Assumption A4 is required to ensure that p−1/2(ζ̂d)

1/2ψ̂dj is a root-n-consistent
estimator of p−1/2λdj as n→∞, n � p→∞ and log p/n→ 0.

One additional assumption is required to relate EBICγ (M) and πM = pr(M | Y ).
Assumption A7. Let p = O(nκ) for a fixed constant κ � 1 such that γ > 1− 1/(2κ).

Assumption A7 and equation (4.6) in Theorem 3 of Kneip & Sarda (2011) imply that ζ̂l > 0 for any l
such that 1 � l � 2k < p, because (log p)3/2/n1/2 → 0 as n→∞.
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