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Abstract

High-fat diet (HFD)-induced metabolic inflammation in the central and peripheral 

organs contributes to the pathogenesis of obesity. Long-term HFD blunts signaling by 

ghrelin, a gastric-derived orexigenic peptide, in the vagal afferent nerve via a mechanism 

involving in situ activation of inflammation. This study was undertaken to investigate 

whether ghrelin resistance is associated with progressive development of metabolic 

inflammation. In mice, ghrelin’s orexigenic activity was abolished 2–4 weeks after 

the commencement of HFD (60% of energy from fat), consistent with the timing of 

accumulation and activation of macrophages and microglia in the nodose ganglion and 

hypothalamus. Calorie-restricted weight loss after 12-week HFD feeding restored ghrelin 

responsiveness and alleviated the upregulation of macrophage/microglia activation 

markers and inflammatory cytokines. HSP72, a chaperone protein, was upregulated in 

the hypothalamus of HFD-fed mice, potentially contributing to prevention of irreversible 

neuron damage. These results demonstrate that ghrelin resistance is reversible following 

reversal of the HFD-induced inflammation and obesity phenotypes.

Introduction

Obesity is a long-term disturbance of energy metabolism 
in which energy intake exceeds energy expenditure 
over a prolonged period (Moehlecke et  al. 2016). The 
control of food intake and body weight involves central 
nervous system integration of information from the 
peripheral nervous system and humoral signals from the 
gastrointestinal tract (Morton et al. 2006, Begg & Woods 
2013). Vagal afferents that innervate digestive organs 
transmit sensory information from their endings to the 
nucleus of the tractus solitarius (NTS) in the medulla 
oblongata, terminating in distinct hypothalamic nuclei 
involved in feeding and energy homeostasis. The vagus 

afferent nerve is a pseudounipolar neuron whose cell body 
is located in the nodose ganglion, making one projection 
to the NTS and the other to peripheral organs. Vagal 
afferent neurons express receptors for gut peptides such as 
ghrelin, cholecystokinin and glucagon-like peptide 1 that 
regulate feeding and energy homeostasis (Zarbin et  al. 
1981, Burdyga et al. 2006, Cummings & Overduin 2007).

Ghrelin, a peptide primarily produced in the stomach, 
stimulates feeding (Tschöp et  al. 2000, Nakazato et  al. 
2001). The growth hormone secretagogue receptor (GHSR), 
also known as the ghrelin receptor, is synthesized in vagal 
afferent neurons and transported to the stomach by axonal 
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transport (Date et  al. 2002). Electrophysiological studies 
indicate that ghrelin hyperpolarizes nodose ganglion 
neurons by activating KATP conductance (Grabauskas 
et al. 2015), thereby attenuating electrical activity of the 
vagal afferent (Date et al. 2002). This ghrelin signal is sent 
to the NTS and relayed via the noradrenergic pathway 
to hypothalamic neurons expressing the orexigenic 
neuropeptides agouti-related peptide (AgRP) and 
neuropeptide Y (NPY) (Date et al. 2006). GHSR, a G-protein-
coupled receptor, activates the intracellular Ca2+ signaling 
and AMP-activated protein kinase (AMPK) signaling 
pathways (Kohno et  al. 2003, Hardie 2004). Previous 
studies showed that neither central nor peripheral ghrelin 
administration induced feeding in diet-induced obese 
(DIO) mice fed a high-fat diet (HFD, 60% of energy from 
fat) for 12 or 16 weeks (Perreault et al. 2004, Briggs et al. 
2010, Gardiner et  al. 2010, Naznin et  al. 2015). Another 
study demonstrated that ghrelin resistance developed 
3 weeks after the start of HFD feeding (in that case, 23.5% 
energy from fat) (Briggs et al. 2014). In addition, we showed 
that ghrelin’s effects on energy expenditure, suppression 
of vagus afferent electrical activity and neuronal activation 
in the hypothalamic arcuate nucleus were abolished in 
12-week HFD-fed mice (Naznin  et  al. 2015). All of these 
DIO experiments used C57BL/6J mice, which develop 
severe obesity, hyperglycemia and insulin resistance (Reed 
et al. 2007). Consumption of HFD induces immune cell-
mediated tissue inflammation in the gut, adipose tissue, 
liver, skeletal muscle and hypothalamus (De Souza et al. 
2005, Schenk et al. 2008, Thaler et al. 2012, Hotamisligil 
2017), which causes macrophage-associated pathological 
alterations and insulin resistance. We confirmed that HFD 
caused accumulation and activation of macrophages and 
microglia in the nodose ganglion and hypothalamus of 
mice (Naznin et al. 2015). These inflammatory responses 
resulted in the reduction of Ghsr expression in these 
neuronal tissues, causing impaired transmission of gastric-
derived ghrelin signals to the hypothalamus (Naznin et al. 
2015). Ghrelin resistance under HFD is thought to be caused 
by dysregulation of ghrelin signaling via the vagal afferent. 
Ghrelin resistance is the consequence of several factors 
in addition to dysregulation of the ghrelin signaling via 
vagal nerve. Peripheral ghrelin reaches the hypothalamus 
by passive diffusion through the fenestrated capillaries of 
the median eminence, which project to the ventromedial 
part of the ARC and ultimately target NPY/AgRP neurons 
to induce a metabolic response (Schaeffer et al. 2013).

In this study, we sought to determine when ghrelin 
resistance develops during HFD exposure of mice and 
to investigate whether the onset of ghrelin resistance 

is linked to inflammation in the nodose ganglion and 
hypothalamus. Subsequently, we investigated whether 
calorie-restricted weight loss could reverse inflammation 
in these neuronal tissues in order to restore ghrelin 
sensitivity.

Materials and methods

Animals and dietary protocols

Male C57BL/6J mice (6-week-old male, 20–21 g, Charles 
River Laboratories) were maintained in individual cages 
under controlled temperature (21–23°C) and light (light 
on: 08:00–20:00) conditions. All animal experiments 
were approved by the Animal Care and Use Committee of 
University of Miyazaki.

Study 1: time course of ghrelin resistance

Mice were maintained on either chow diet (CD) (12.3% 
fat, 59.2% carbohydrate, 28.5% protein, 14.2 kJ/g; CLEA 
Rodent Diet CE-2, CLEA Japan, Tokyo, Japan) or HFD 
(60% fat, 20% carbohydrate, 20% protein, 21.9 kJ/g; no. 
D12492; Research Diets, New Brunswick, NJ, USA), with 
free access to food, for 12 weeks. Respective percentages 
of saturated fatty acid, monounsaturated fatty acid and 
polyunsaturated fatty acid in the HFD were 32, 36 and 
32%. Body weight and 24-h food intake were measured 
weekly. ‘Pre’ indicates the period before starting the HFD 
(Fig. 1).

Study 2: caloric restriction

Mice were assigned to one of three diet groups: HFD for 
16 weeks (HFD group); HFD for 12 weeks followed by a 
switch to CD for 2 weeks and then calorie restriction (60% 
ad libitum) for 2 weeks until their body weights reached 
those of age-matched CD-fed controls (HFD-CD/CR  
group); and standard laboratory chow for 16  weeks  
(CD group). .

Food intake experiments

Mice fed CD or HFD (n = 6 per group) were transferred 
to single cages and maintained for 1  week. They were 
acclimatized by subcutaneous (s.c.) injections of saline 
once daily for 3  days before the feeding experiment. 
Ghrelin (60 nmol/kg BW; Peptide Institute, Osaka, Japan) 
was administered subcutaneously (s.c.), and 2-h food 
intake was measured.
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Energy expenditure

Mice fed CD or HFD (n = 4–12 per group) were housed in 
a metabolic chamber (Shinfactory, Fukuoka, Japan) for 
1 week. They received s.c. injection of ghrelin (60 nmol/
kg BW) or saline at 10:00 and were then returned to the 
chamber. Energy expenditure was measured for 2 h in an 
Oxymax (Columbus Instruments, Columbus, OH, USA). 
Mice were deprived of food during the measurement.

Measurement of blood parameters

Mice were fasted from 09:00 to 14:00 before blood 
collection by tail prick. Blood glucose was measured using 
a glucometer (Terumo, Tokyo, Japan), and plasma insulin 
was measured using a mouse insulin EIA kit (Morinaga 
Institute of Biological Science, Yokohama, Japan). For 
plasma ghrelin measurements, mice were anesthetized 
deeply with sodium pentobarbital (Abbott Laboratories), 
and blood samples were collected by cardiac puncture. 
Plasma ghrelin was measured using the active ghrelin 
ELISA Kit (Mitsubishi Chemical Medience, Tokyo, Japan; 
intra- and inter-assay precision coefficient of variation 
<10%, assay range 2.5–160 fmol/mL). All samples were 
measured in duplicate.

Real-time polymerase chain reaction (RT-PCR)

The nodose ganglion and hypothalamus were quickly 
removed from anesthetized CD- or HFD-fed mice. The 
tissue was stored in RNAlater (Life Technologies) at 
−80°C. For RNA extraction, samples were placed in tubes 
containing autoclaved glass beads (425–600 µm) (Sigma-
Aldrich) and vortexed for 6 min on a TissueLyser (Qiagen). 
Total RNA was extracted using the RiboPure kit (Ambion). 
RT-PCR was conducted on a Thermal Cycler Dice Real-
Time System II (Takara Bio) using SYBR Premix Ex Taq (2×) 
(Takara Bio). Primer sets for RT-PCR are shown in Table 1. 
mRNA levels for each gene were normalized against the 
level of Tbp mRNA in the same sample, used as an internal 
control.

Immunohistochemistry

 Nodose ganglia and whole brains (n = 4−5 per group) 
were immersed in 4% paraformaldehyde/phosphate 
buffer for 24 h at 4°C, incubated for 24 h in PB containing 
20% sucrose, quickly frozen on dry ice and cut into 8-µm 
slices using a cryostat at −20°C. Sections were blocked for 
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Figure 1
Changes in body weight (A), food intake (B) and energy intake (C) of 
mice fed CD or HFD for 12 weeks. Effects of HFD on ghrelin-induced food 
intake (D) and energy intake (E) in 1-, 2-, 4-, 8-, or 12-week CD- or 
HFD-fed mice. Values are means ± s.e.m. n = 6–8. *P < 0.05, **P < 0.01, 
***P < 0.001.

Table 1  Primer sequences for genes used in the real-time PCR analysis.

Gene Forward primer Reverse primer

Ghsr ATCACCTCTGGGTCTTGTTGCTG GCTGAATGGCTCATTGTAGTCCTG
Tlr4 GGAAGTTCACATAGCTGAATGAC CAAGGCATGTCCAGAAATGAGA
Iba1 AGCTGCCTGTCTTAACCTGCATC TTCTGGGACCGTTCTCACACTTC
Il6 CCACTTCACAAGTCGGAGGCTTA CCAGTTTGGTAGCATCCATCATTTC
Tnfα TATGGCCCAGACCCTCACA GGAGTAGACAAGGTACAACCCATC
Ap2a ACCCTCGTGTGGAGCCTAAGA AGGTTCACAAACGCGACAGA
Bhlhe22 CTGACAATTGGCAAGTGATGAAAG CTCCTGGCTCAGAATCAAGATG
Nrebp TGACAGTGGCCCTGACCATC GGTACAAGGCCCATTGCTTGA
Tbp CATTCTCAAACTCTGACCACTGCAC CAGCCAAGATTCACGGTAGATACAA
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5 min in protein-block serum-free solution (Dako), and 
then incubated overnight at 4°C with rabbit anti-Iba1 
(1:10,000; Wako Pure Chemicals), rat anti-CD86 (1:100; 
Abcam), mouse anti-HSP72 (1:50; Enzo Life Sciences, New 
York, NY, USA) or mouse anti-NeuN (1:200; Millipore, 
Chemicon International). Immunofluorescence was 
performed with Alexa Fluor 488-labeled anti-rabbit 
secondary antibody or Alexa Fluor 594-labeled anti-mouse 
secondary antibody (both 1:400; Invitrogen). Images were 
captured on an OLYMPUS AX-7 fluorescence microscope 
(Olympus). Cells immunoreactive for Iba1, CD86 or 
HSP72 in the nodose ganglion and hypothalamus of three 
mice were counted manually in three to five sections per 
mouse using the cellSens imaging software (Olympus). 
Quantitation was performed in a blinded fashion.

Statistical analysis

Statistical analyses were performed by one- or two-way 
ANOVA followed by a Bonferroni’s post-test for multiple 
comparisons, as appropriate. When two mean values were 
compared, analysis was performed by Mann–Whitney, 
Wilcoxon or unpaired t-test. All data are expressed as 
means ± s.e.m. P < 0.05 was considered to be statistically 
significant.

Results

Effects of HFD on body weight, food intake and 
ghrelin responses

Body weights of mice on HFD were significantly higher 
than those of CD-fed mice 2  weeks after the initiation 
of HFD feeding (Fig.  1A). Average food intake of HFD-
fed mice was lower than that of CD-fed mice from 2 to 
12  weeks (Fig.  1B), although the energy intake of HFD-
fed mice was greater during this period (Fig. 1C). Ghrelin 
administration significantly increased food intake in both 
1- and 2-week HFD-fed mice, but not in 4-, 8- or 12-week 
HFD-fed mice (Fig.  1D and E). Ghrelin administration 
decreased energy expenditure in both 2- and 4-week 
CD-fed mice and 2-week HFD-fed mice, but not in 4-week 
HFD-fed mice (Fig. 2A, B, C and D).

mRNA expression of Ghsr, inflammatory genes and 
transcriptional factors

Ghsr mRNA levels in both the nodose ganglion and 
hypothalamus did not differ significantly between 
CD-fed and HFD-fed mice at 2  weeks, but at 4  weeks 

were significantly lower in HFD-fed mice (Fig.  3A and 
B). Tlr4 expression in the nodose ganglion did not differ 
significantly between CD- and HFD-fed mice at 2 weeks, 
but was significantly higher in HFD-fed mice at 4 weeks 
(Fig.  3C). Two-week HFD feeding did not modulate the 
expression of any of the genes investigated in the nodose 
ganglion or hypothalamus, in comparison with 2-week 
CD feeding, whereas 4-week HFD feeding significantly 
upregulated the Iba1, Il6 and Tnfα mRNAs in comparison 
with 4-week CD feeding (Fig.  3D and E). Expression of 
Ap2a, Bhlhe22 and Nrebp, which encode transcription 
factors of Ghsr, in the nodose ganglion and hypothalamus 
did not differ significantly between the CD and HFD 
groups at 12 weeks (Fig. 4).

Effect of HFD on immunohistochemical markers 
of inflammation

The average number of macrophages stained with anti-
Iba1 antibody in the nodose ganglion (Fig.  5A, B, C, D 
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Figure 2
Effect of ghrelin on energy expenditure in DIO mice. Energy expenditure 
in 2-week CD- (A) or HFD-fed mice (B), and 4-week CD- (C) or HFD-fed 
mice (D) receiving ghrelin. Values are means ± s.e.m. n = 4–12. *P < 0.05, 
**P < 0.01, ***P < 0.001.
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and E) and hypothalamus (Fig.  5F, G, H, I and J) was 
significantly higher in HFD-fed mice than that in CD-fed 
mice at 4  weeks, whereas no difference was observed 
between these two groups at 2  weeks. The expression 
level of the M1 macrophage marker CD86 in the nodose 
ganglion was significantly higher in HFD-fed mice than 
in CD-fed mice at 4  weeks, but no difference between 
groups was apparent at 2  weeks (Fig.  5K, L, M and N). 
Macrophages immunoreactive for CD86 in the HFD group 
were larger and were morphologically rounded and more 
ramified, than those in the CD group (Fig. 5M). The average 
number of HSP72-positive cells in the hypothalamus was 
significantly greater in the HFD group than that in the CD 
group after 4 weeks of HFD feeding (Fig. 5O and P).

Effects of caloric restriction on ghrelin sensitivity 
and inflammation

The difference in body weight between the CD and 
HFD-CD/CR groups became insignificant at the end of 
4-week caloric restriction (Fig.  6B). In the HFD-CD/
CR group, epididymal fat weight, fasting blood glucose 
and plasma insulin and ghrelin returned to normal 
levels (Fig.  6C, D, E and F). Ghrelin administration 
significantly stimulated food intake in the HFD-CD/
CR group (Fig. 6G). The Ghsr mRNA level in the nodose 
ganglion was significantly lower in 16-week HFD mice 
than that in CD-fed mice, whereas the level in the 
HFD-CR group did not differ from that in the CD group 

(Fig. 6H). Iba1, Il6 and Tnfα mRNAs in both the nodose 
ganglion and hypothalamus of the HFD-CD/CR group 
were not upregulated relative to the CD group (Fig. 6I). 

Figure 3
Ghsr mRNA expression in the nodose ganglion (A) 
and hypothalamus (B) of mice fed CD or HFD for 
2 (A) or 4 (B) weeks. mRNA levels of Tlr4 (C) in the 
nodose ganglion of 2- or 4-week CD- or HFD-fed 
mice. mRNA levels of Iba1, Il-6, and Tnfα in the 
nodose ganglion and hypothalamus of 2- (D) or 
4- (E) week CD- or HFD-fed mice. mRNA levels 
were normalized against the level of Tbp mRNA 
(a housekeeping gene) in the same sample, and 
the normalized values are presented as fold 
change relative to CD. Values are means ± s.e.m. 
n = 8–10. *P < 0.05 vs CD.
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and C) and hypothalamus (D, E and F) of CD- or HFD-fed mice at 
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in the same sample. n = 9–14. Values are means ± s.e.m.
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Figure 5
HFD-induced macrophage accumulation in the nodose ganglion and hypothalamus. Representative immunohistochemical detections of Iba1 (red) and 
NeuN (green) in the nodose ganglion (A, B, C and D) and hypothalamus (F, G, H and I) of 2- or 4-week CD- or HFD-fed mice. Numbers of cells stained 
with anti-Iba1 antibody in the nodose ganglion (E) and hypothalamus (J). Representative images of Iba1 (green) and CD86 (red) in the nodose ganglion 
(K, L and M) of 2- or 4-week CD- or HFD-fed mice. Arrows indicate co-localization of CD86 with Iba1. Numbers of CD86-positive cells in the nodose 
ganglion (N). Histochemical analyses of HSP72 in the hypothalamus of 2-, 4- or 12-week HFD-fed mice (O). Numbers of HSP72-positive cells in the 
hypothalamus (P). Values are means ± s.e.m. n = 4–5. *P < 0.05, **P < 0.01 vs CD. Scale bars, 50 μm. Dotted lines indicate the third ventricle.
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The average number of Iba1-positive macrophages in the 
nodose ganglion and hypothalamus was also significantly 
higher in the HFD group than that in both the CD and 
HFD-CD/CR groups, whereas no significant difference 
was observed between the CD and HFD-CD/CR groups 
(Fig. 6J, K, L and M).

Discussion

We investigated whether exposure to HFD could affect 
ghrelin responsiveness in mice. Metabolic inflammation 
in both the nodose ganglion and hypothalamic arcuate 
nucleus developed 2–4 weeks after the start of the HFD. 
The anabolic activities were also abolished during 
this interval. In a previous study, we found that 1-day 
HFD feeding in C57BL/6J mice induced inflammatory 
responses, concomitant with upregulation of activated 
macrophage/microglia markers and inflammatory 
cytokines, in the nodose ganglia and arcuate nuclei 
(Waise et  al. 2015). Thaler and coworkers found that 
the HFD-induced inflammatory response in the rat 
hypothalamus exhibited a complex ‘on–off–on’ pattern 
in which the initial inflammatory response developed 
3  days after the start of HFD (60% energy from fat), 
followed by a decline to baseline from days 7 to 14, and 
a subsequent return to elevated levels by day 28 (Thaler 
et  al. 2012). This hypothalamic inflammatory response 
occurred rapidly, even before substantial weight gain, 
in response to HFD feeding. Microglia/macrophages 
play regulatory roles in the innate immune system 
of the nervous system by responding to pathological 
insults. Acute inflammatory cytokine production, 
which develops rapidly in response to HFD in animals, 
is crucial for the initiation of adaptive immune 
responses, and allows the host to adapt to pathological 
conditions (Thaler et al. 2012, Waise et al. 2015). Chronic 
inflammatory signals in the nodose ganglion and 
hypothalamus cause microglia/macrophages to assume 
a ramified morphology. In response to homeostatic 
perturbations, these more active cells produce cytokines, 
reactive oxygen species and other toxic mediators 
(Neumann et al. 2006, Hanani 2010). The time course of 
inflammatory responses observed in this study was well 
correlated with the development of ghrelin resistance at 
4 weeks. Iba1, ionized calcium-binding adaptor molecule 
1, is a marker of microglia/macrophage activation in the 
nervous system (Ito et al. 1998). We found that 4-week 
HFD-induced activation of microglia/macrophages and 
inflammatory responses in the nodose ganglion and 

hypothalamus, as reflected by greater numbers of both 
Iba1- and CD86-positive macrophage/microglia. These 
cells were morphologically rounded and more ramified, 
indicating that more activated subtypes of macrophages/
microglia were present after 4  weeks of HFD. Lending 
support to this argument, expression of TLR4, a putative 
mediator of saturated fatty acid-induced inflammatory 
signaling, was elevated in the nodose ganglion after 
4 weeks of HFD.

Berkseth and coworkers showed that 4-week CD (12% 
energy from fat) following 16-week HFD (60% energy from 
fat) in C57BL/6J mice reversed the activation of astrocytes 
and microglial accumulation in the hypothalamic 
arcuate nucleus (Berkseth et  al. 2014). Another group 
demonstrated that calorie-restricted weight loss restored 
the ghrelin responsiveness of NPY/AgRP neurons (Briggs 
et al. 2013). In this study, the metabolic inflammation of 
HFD-fed mice was reversible when their body weight, fat 
mass and plasma glucose and insulin returned to normal 
levels after 4-week caloric restriction. Concomitantly, the 
orexigenic activity of ghrelin was restored, and plasma 
ghrelin and Ghsr expression in the nodose ganglion 
were also normalized. Ghsr expression is regulated by 
transcription factors including AP2, bHLH and NREBP, as 
well as hormones such as growth hormone, β-estradiol, 
triiodothyronine and hydrocortisone (Yin et  al. 2014). 
mRNA levels of Ap2a, Bhlhe22 and Nrebp in both the 
nodose ganglion and hypothalamus did not differ 
significantly between CD- and HFD-fed mice. It remains 
possible that unknown transcription factors of Ghsr are 
downregulated in nodose ganglion and hypothalamus of 
HFD mice, and the molecular mechanism by which Ghsr 
expression is reduced under HFD should be investigated 
in future research. Harvey and coworkers recently showed 
that the ghrelin/GOAT system regulates HFD-induced 
inflammation in the spleen and thymus (Harvey et  al. 
2017). In this study, we obtained no evidence of a direct 
interaction between ghrelin resistance and inflammation. 
However, the simultaneous development of ghrelin 
resistance and metabolic inflammation suggests a causal 
relationship between the two.

HSP72, a molecular chaperone, is expressed in 
multiple cell types, including neurons and glial cells. It 
protects stressed neurons from protein aggregation and 
apoptosis under various pathophysiological conditions 
(Foster & Brown 1997, Waise et  al. 2015). HSP72 
downregulates expression of TNFα, JNK and IKK, thereby 
alleviating metabolic dysregulation in obesity-induced 
insulin resistance (Henstridge et al. 2014). In this study, 
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upregulation of HSP72 in the hypothalamus of HFD-fed 
mice may have helped to prevent irreversible neuron 
damage, allowing recovery of hypothalamic inflammation 
by caloric restriction.

This HFD-CD/CR experiment had some limitations. 
For calorie restriction study 12  weeks HFD switched to 
60% ad libitum of the CD because their body weight did 
not decrease enough to match with CD-fed controls. And 
as these mice 60% ad libitum of the CD, there might be 
possible they eat this small amount of diet at once and be 
starved for long time during CR. This long-term starvation 
may change their metabolic status.

In conclusion, our data showed that inflammation 
and unresponsiveness to peripherally administered 
ghrelin occurred by 4 weeks of HFD feeding in C57BL/6J 
mice. This ghrelin resistance was reversible following 
reversal of the HFD-induced inflammation and obesity 
phenotype by caloric restriction. These findings suggest 
that diet-induced inflammation begets a state of ghrelin 
resistance and that downregulation of ghrelin biosynthesis 
and ghrelin resistance under HFD could prevent humans 
and animals from overeating. Ghrelin plays multifaceted 
roles in the regulation of growth hormone secretion, 
cell proliferation and differentiation, neuroprotection, 
mood, immunity and learning and memory (Muller et al. 
2015). Future studies should investigate how disruption 
of ghrelin signaling in obesity influences multiple types 
of homeostatic regulation within the body.
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